Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 5

=7 Date: September 28, 2015

What we're learning in this Slide Set:

« Separate Compilation

« NameSpaces

ENSC 251: Lecture Set 5

Textbook Chapters:

Relevant to this slide set:
 Chapter 12

Coming soon:
 Chapter 13

ENSC 251: Lecture Set 5

This lecture set will cover two topics that relate to the organization of
your C++ program.

Learning to distribute your program across multiple files is extremely
valuable for:

* readability,
e reuse and

« reducing the recompilation effort when you make changes.

ENSC 251: Lecture Set 5

A funny, yet true, statement on the state of affairs:

THE #1 PROGRAMMER EXCUSE
FOR LEGITIMATELY SLACKING OFF:

“MY CODE'S COMPILING.”

HEY! GET BACK.
TOVORK! ./
/

‘ COMPILING!

i{
OH CARRYQN/)— (\leb 74

%
f

*WARNING: Synthesis IS much worse http://xkcd.com/303/

ENSC 251: Lecture Set 5 5

Separate Compilation:

When you divide your code across multiple files, each of these files is
compiled separately and then linked together to create the final executable.

|ldeally you would ant to place the definition of a class and its associated
function definitions in a single file that is separate from the program file that
uses the class

This lets you build a library of classes that can be included in multiple
different program.

Furthermore, you can precompile each class library just once and then link
It into each program that needs to use it:

Hint: this is just like the predefined libraries you use (iostream,
cstdlib, etc).

ENSC 251: Lecture Set 5 6

Separate Compilation:

You can even define the class in two separate files so that the standard
interface (specification of what the class does) is separated from the
Implementation.

- We talked about using this to improve the encapsulation of your
programs.

- It will also let you recompile only the implementation file.

This is good for ADTs:
« member variables are private,
* basic operations are public/friends/overloaded operators,

« their implementation is unavailable to the user

ENSC 251: Lecture Set 5 7

Separate Compilation:

Note: The rules for how you set up your files for generic compilation is
generic, however, the commands you use to compile and link files may

vary amongst compilers

ENSC 251: Lecture Set 5

//Header file dtime.h: This is the INTERFACE for the class DigitalTime.
//Values of this type are times of day. The values are input and output 1in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

#include <iostream>

us ‘ing namespace std : f.j()f” the definition of the typé‘f}

.. . 4/////////’1Streamandostream,whmh
E lass DigitalTime are used as parameter types
public:

friend bool operator ==(const DigitalTime& timel, const DigitalTime& time2);
//Returns true if timel and time2 represent the same time;
//otherwise, returns false.

DigitalTime(int the_hour, int the_minute);
//Precondition: 0 <= the_hour <= 23 and 0 <= the_minute <= 59.
//Initializes the time value to the_hour and the_minute.

DigitalTime();
//Initializes the time value to 0:00 (which is midnight).

void advance(int minutes_added);
//Precondition: The object has a time value.
//Postcondition: The time has been changed to minutes_added minutes later.

void advance(int hours_added, 7nt minutes_added);
//Precondition: The object has a time value.
//Postcondition: The time value has been advanced
//hours_added hours plus minutes_added minutes.

ENSC 251: Lecture Set 5 9

DigitalTime Interface Continued:

friend istream& operator >>(istream& ins, DigitalTime& the_object);
//0verloads the >> operator for input values of type DigitalTime.
//Precondition: If ins is a file input stream, then ins has already been
//connected to a file.

friend ostream& operator <<(ostream& outs, const DigitalTime& the_object);

//0verloads the << operator for output values of type DigitalTime.
//Precondition: If outs is a file output stream, then outs has already been

//connected to a file.

.
- [' . £l . |
| ia 16 nhart N1 1T hne iImmnilecmicnut atinng
p r 7 Va e - T2 19 e ir L Ol Lrie il f_ welrriclriba L—‘.’LI_-"]A' /.
. /
t h . [[-~ L I Lol s
IT7 16 1INT Dart NT 1T e 1NT £
m our ’ 1o riov part 01 Lrie v
. . - !
- - ' .]
T - . P o~ o=
t t) o .
mntominute; The wordprivate ind s that
}: i b ot et s ol it
) Lo 12 1l b ‘L/‘;L.!: v UL Lic ‘L/",' HC TTLOT 140,

Note: The Interface indicated it's name: dtime.h

The suffix .h indicates this is a header file (the interface file is always a
header file.

Any program that wants to use the class DigitalTIme must use the
following include directive:

#include “dtime.h”
ENSC 251: Lecture Set 5 10

Any program that wants to use the class DigitalTIme must use the
following include directive:

#include “dtime.h”

Predefined header files are included using <> (angular brackets).

The “” (double quotes) indicate that header file is provided/written by you.

This distinction tells the compiler where to search for the file:
-in a library of predefined libraries, or
-in your work space/current directory

Note: you may set up a repository of programmer-defined
libraries as well, but that is outside of the scope of this class)

ENSC 251: Lecture Set 5 11

Warning: using the following include directive:

#include “dtime.h”

“*This will only let you compile the program, it won't let you run it.

Why do you think that is?

ENSC 251: Lecture Set 5

12

To run the program, you also need to compile and link in the
implementation file.

Although it is not always required, proper code styles says that the
implementation and header file have the same name with different suffixes.

As such, your dtime. h header file’s implementation file is called
dtime.cpp

Notes: -some compilers like “CPP” as a suffix;

-this style is extensible for C-programming and commonly use
(interface in the header file and implementation in a “.c” file)

Let’s look at the Implementation of DigitallTime

ENSC 251: Lecture Set 5 13

//Implementation file dtime.cpp (Your system may require some
//suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
//The interface for the class DigitalTime is in the header file dtime.h.
#include <iostream>

#include <cctype>

#include <cstdlib>

#include "dtime.h"

using namespace std;

//These FUNCTION DECLARATIONS are for use in the definition of
//the overloaded input operator >>:

void read_hour(istream& ins, 7nt& the_hour);

//Precondition: Next input in the stream ins is a time in 24-hour notation,
//1ike 9:45 or 14:45.

//Postcondition: the_hour has been set to the hour part of the time.

//The colon has been discarded and the next input to be read is the minute.

void read_minute(istream& ins, 7nt& the_minute);
//Reads the minute from the stream ins after read_hour has read the hour.

int digit_to_int(char c);
//Precondition: ¢ is one of the digits '0' through '9'.
//Returns the integer for the digit; for example, digit_to_int('3') returns 3.

bool operator ==(const DigitalTime& timel, const DigitalTime& time2)

{

return (timel.hour == time2.hour && timel.minute == time2.minute);

}
ENSC 251: Lecture Set 5 14

Constructors:

//Uses iostream and cstdlib:
DigitalTime: :DigitalTime(int the_hour, int the_minute)
{
it (the_hour< 0 || the_hour> 23 || the_minute< 0 || the_minute> 59)

{

cout<< "Illegal argument to DigitalTime constructor.";

exit(l);
}
else
{
hour = the_hour;
minute = the_minute;
}
}
DigitalTime::DigitalTime() : hour(0), minute(0)
{
//Body intentionally empty.
}

ENSC 251: Lecture Set 5

15

Overloaded advance function:

void DigitalTime::advance(7nt minutes_added)

{
int gross_minutes = minute + minutes_added;
minute = gross_minutes % 60;
int hour_adjustment = gross_minutes / 60;
hour = (hour + hour_adjustment) % 24;

}

void DigitalTime::advance(int hours_added, int minutes_added)

{
hour = Chour + hours_added) % 24;

advance(minutes_added) ;

-one advances by minutes only

-the other advances by hours plus minutes (and calls the
advance function that only advances by minutes

ENSC 251: Lecture Set 5

16

lostream and digit_to _int (helping function) functions:

//Uses iostream:
ostream& operator <<(ostream& outs, const DigitalTime& the_object)

{

outs << the_object.hour<< ':';

1T (the_object.minute< 10)
outs << '0';

outs << the_object.minute;

return outs;

}

//Uses iostream:
istream& operator >>(istream& ins, DigitalTime& the_object)

{

read_hour(ins, the_object.hour);
read_minute(ins, the_object.minute);
return ins;

}
int digit_to_int(char c)
{
return (static_cast <int>(c) - static_cast<int>('0"));
}

ENSC 251: Lecture Set 5 17

read_minute function (used in overloaded “>>" operator):

//Uses iostream, cctype, and cstdlib:
void read_minute(istream& ins, int& the_minute)

{

char cl, c2;
ins >> cl >> c2;

{

cout<< "Error illegal input to read_minute\n",;
exit(l);
}

the_minute = (digit_to_int(cl) * 10) + digit_to_int(c2);
1 (the_minute< 0 || the_minute> 59)

{

cout<< "Error illegal input to read_minute\n";
exit(l);

ENSC 251: Lecture Set 5

18

read hour function (used in overloaded “>>" operator):

//Uses iostream, cctype, and cstdlib:
void read_hour(istream& ins, 7nt& the_hour)

{

char cl, c2;
ins >> cl >> c2;

i C1(C isdigit(cl) && (isdigit(c2) || c2 == ":")))
{
cout<< "Error illegal input to read_hour\n";
exit(1l);
}
1f (isdigit(cl) && c2 == ':")
{
the_hour = digit_to_int(cl);
}
else//(isdigit(cl) && isdigit(c2))
{
the_hour = (digit_to_int(cl) * 10) + digit_to_int(c2);
ins >> c2;//discard ':'
if (c2 '=":")
{
cout<< "Error illegal input to read_hour\n";
exit(1);
}
}
it (the_hour < 0 || the_hour > 23)
{
cout<< "Error illegal input to read_hour\n";
exit(1l);
}

19

Application File using DigitalTime

//Application file timedemo.cpp (your system may require some suffix
//other than .cpp): This program demonstrates use of the class DigitalTime.
#include <iostream>

#include "dtime.h"

using namespace std;

int main()

{

DigitalTime clock, old_clock;

cout<< "Enter the time in 24-hour notation: ";
cin>> clock;

old_clock = clock;
clock.advance(15);
1 (clock == old_clock)
cout << "Something 1is wrong.";
cout << "You entered " << old_clock << endl;
cout << "15 minutes later the time will be "
<< clock << endl;

clock.advance(2, 15);

cout << "2 hours and 15 minutes after that\n"
<< "the time will be "
<< clock << endl;

return 0;
20

Compilation process:

Both the implementation and program file (or application/driver file) must
include the header file.

Step 1: Compile the Implementation file
Step 2: Compile the Program file
Step 3: Link the two together (using the linker)

Note: When you generate an executable, the linker will be called
automatically. However, it is a separate executable and can be given
separate commands from the compiler

Note: You don’t need to compile the header file. Why? (Hint: What does
the preprocessor do with the include command?)

ENSC 251: Lecture Set 5 21

Summary:

Previously, you would have put all of your code in one file (and not needed
the additional include statement for your class).

However, by separating the files:

« To reuse your DigitalTime class, you only need to include the header file
in different programs (reducing the code you need to write).

* You don’t need to recompile the program if you change the
implementation file (you just need to relink the files).

* You don’t need to recompile the implementation file, if you change the
program (you just need to relink the files).

Additional hint: 1) For now, keep your header and implementation files in
the same directory (you don'’t have to, but we won’t cover it here).

2) You can put them both outside your current working
directory, but be sure to include the directory path in the quotes.

ENSC 251: Lecture Set 5 22

Final thoughts on code reuse:

While reuse saves you effort (designing code) and time (writing and
compiling), it is also more reliable.

Why would this be?

You may also want to make libraries of commonly used function (sorted by
type/operation) so that you can simply reuse them in all of your programs.

* This is extremely common in C programming as well.

ENSC 251: Lecture Set 5 23

Another use of #ifndef:

Since you should now be looking to distribute your program across multiple
files (separate header & implementation files for each class and potentially
multiple program files), you may now find that more than one file has an
include directive for your ADTs (i.e. multiple files have an

#include “dtime.h"”)

What if you include dtime directly and include another ADT that also
includes dtime?

C++ does not allow you to define a class more than once (even if all the
definitions are the same)

In larger code bases (10K+ lines), it becomes almost impossible to track
whether you've include a class definition more than once (especially with
derived classes).

ENSC 251: Lecture Set 5 24

Another use of #ifndef:

To avoid this problem, C++ lets you use the preprocessor command #ifndef
to indicate that if you have already included this section of code before, do
not do it again.

The following directive “defines” DTIME H:

#define DTIME H

The preprocessor uses this command to add DTIME_H to its list of “defined
constants” (typically it should have a value) as the preprocessor uses this
command in a “search and replace” format in your file).

You can use this with the #ifndef processor as follows:

#ifndef DTIME H
#define DTIME_H

<a class definition>
#endif

ENSC 251: Lecture Set 5 25

Another use of #ifndef:

#ifndef DTIME_H
#define DTIME_H

<a class definition>
#endif

If you use this in your header file, then it will ensure that even if your
header file is included multiple time, the class will only be defined once
since DTIME_H will be defined the first time the header file is included.

The next slide has an example.

Remember: there is an #ifdef preprocessor command (“if defined”) that
complements this #ifndef command (“if NOT defined”).

* In this case we are using #ifndef because we do not want to include
extra code; we use #ifdef to enable us to conditionally add extra code

(e.g. debugging)
ENSC 251: Lecture Set 5 26

New header file to avoid multiple class definitions

//Header file dtime.h: This is the INTERFACE for the class DigitalTime.
//Values of this type are times of day. The values are input and output 1in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

#ifndef DTIME_H
#define DTIME_H

#include <iostream>
using namespace std;

class DigitalTime

{

<The definition of the class DigitalTime is the same as 1in Display 12.1.>

}s

#endif//DTIME_H

Note the identifiername (DTIME_H) doesn’t matter, but for readability, this

is the style that many people use. Establish/Followthe code conventions
of your team.

Going forward, | expect to see this in every header file you write.
ENSC 251: Lecture Set 5 27

Namespaces:

Let you reuse the names of classes, functions, etc. by qualifying the
names.

They divide your code into separate components (“spaces”) that let you
reuse the same names with different meanings

-so that the names are “local” to that namespace

Why is this good? When working on a team with 100 programmers, there
Is a good possibility that two people may choose to name something the
same way.

A namespace is a collection of name definitions (e.g. class definitions and
variable declarations).

ENSC 251: Lecture Set 5 28

Namespaces:

To date, we have been using the “standard” namespace (std).

This namespace includes all the names in the standard library files (e.g.
cstdlib’s iostream).

All the code that you write is included in the global namespace by default
(if you don’t specify anything)

This means that you *could™ define your own cstdlib in the global
namespace (instead of using the predefined library if you wanted to.

ENSC 251: Lecture Set 5 29

Namespaces:

You are also allowed to use more than one namespace at the same time.

However, since each name space might have the same functions (let’s say
that there are two namespaces ns1 and ns2 that have the same function,

my function), you will get an error if you simply try to call the function.

To clarify to the compiler which call is which, you can do the following:

{
using namespace nsl;
my_function();

}

{
using namespace ns2;
my_function();

}

Remember, the braces define a block of code and any definitions inside
that block, are local to that block. As such each block has it's own scope
and you can use these function calls in the same program.

ENSC 251: Lecture Set 5 30

Namespaces:

If you place a using directive at the start of a file, then it applies to the entire
file.

If you place it within enclosed braces, it only applies to the block.

The using directive should be placed at the start of a file or the start of a
block (as it applies from the location at which it appears until the end of the
block).

ENSC 251: Lecture Set 5 31

Creating a Namespace:

To place code in a namespace, you simply:

namespace Name_Space_Name

{

Some_Code

}

Once you place some code definitions in a namespace, you make them
available by using the the “using” directive:

using namespace Name_Space_Name;

You can have as many of these namespace grouping as you want for a
single namespace distributed throughout your code.

The key is that every name defined in a name space is available in that
namespace, but it can also be made available to code outside the
namespace (let's see an example...)

ENSC 251: Lecture Set 5 32

Function Declarations:

#include <iostream>
using namespace std;

namespace savitchl

{

void greeting();
}
namespace savitch2
{

void greeting();
}

void big_greeting();

ENSC 251: Lecture Set 5

33

main:

int main()

{ Names in this block use
{ definitions in namespaces
using namespace savitch2; «— savitch2, std, andthe
greeting(); global namespace.
}
{ Names in this block use

using namespace savitchl; definitions in namespaces
. savitchl, std, andthe
greeting();

} global namespace.

big_greeting(); Names out here use only definitions

<« innamespace std and the

return 0 global namespace.

ENSC 251: Lecture Set 5 34

Function Definitions:

namespace savitchl

{
void greeting()
{
cout << "Hello from namespace savitchl.\n";
}
}
namespace savitch2
{
void greeting()
{
cout<< "Greetings from namespace savitch2.\n";
}
}
void big_greeting()
{
cout<< "A Big Global Hello!\n";
}

ENSC 251: Lecture Set 5

35

Qualifying Names:

What if you want to use funl () fromnsl and fun2 () from ns2, but both
nsl and ns2 define afunctionmy function (to keep it simple assume no
arguments for any of the functions).

The following would provide conflicting definitions for my function

using namespace nsl;
using namespace ns2,

Instead you want to indicate the specific functions you want to use from
each namespace with using declarations:

using nsl::funl;

using ns2::fun2;

Generic form: using Name_Space: :0ne_Name

This will only let you use One Name from that namespace and nothing

else.
ENSC 251: Lecture Set 5 36

Qualifying Names:

What if you want to use funl () from ns1 or some other function/variable
once or a few times:

You can then name the function or other item (e.g. variable/parameter type)
using the scope operator as follows:

nsl::funl();
int get_number(std::istream input_stream)

In the function get number, the input streamis of type istreamas
defined in the std namespace.

If this use of the type name istreamis the only name you need from the

namespace (or if you qualify all of the names you need from the
namespace using std: :), then you do not need:

using namespace std;

ENSC 251: Lecture Set 5 37

Subtle differences:

There are two differences between a using declaration and a using
directive:

using std::cout; versus using namespace std;

1. A using declaration makes only one name in the namespace available
while a using directive makes all of the names in the namespace
available

2. A using declaring introduces a name (like cout) into your code so
that no other use of the name can be made. However, a using
directive only potentially introduces the names in that namespace.

ENSC 251: Lecture Set 5 38

Subtle differences:

Recall point 2:

A using declaring introduces a name (like cout) into your code so that
no other use of the name can be made. However, a using directive only
potentially introduces the names in that namespace.

Assuming both namespaces have the functionmy function, here's an
example:

using namespace nsl;

This is fine: using namespace ns2;
This is illegal: using nsl: :my_funct1_on;

using ns2::my_function;
Why?

ENSC 251: Lecture Set 5 39

Compilation Unit:

Is an implementation file (such as a class implementation file) along with all
of the necessary header files that need to be included.

Every compilation file has an unnamed namespace

A namespace grouping for the unnamed namespace is written like any
other, except without a name

namespace

{

void sample_function()

} //unnamed namespace

All names defined in the unnamed namespace are local to the compilation
unit.

* This means they can be reused in other compilation units.

ENSC 251: Lecture Set 5 40

Compilation Unit:

When you create an ADT any helper functions (i.e. functions that are not
members or friend functions of the class) should go in the unnamed
namespace.

 Why?
Think of digit to int, read hour, and read minute.

 We want these functions to be local to the class DigitalTIme, but
your application program cannot reuse these names

« This does not really hide these functions from the user (or hides them
poorly depending on your perspective).

Putting them in the unnamed namespace, localizes their definition to the
compilation unit and makes their names reusable in other programs.

Here’'s an example

ENSC 251: Lecture Set 5 41

dtime.h:

//Header file dtime.h: This is the interface for the class DigitalTime.
//Values of this type are times of day. The values are input and output 1in
//24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

#1fndef DTIME_H

#define DTIME_H One grouping for the namespace dtimesavitch.

_ _ Another grouping for the namespace dtimesavitch
#1qc1ude <iostream> is in the implementation file dtime.cpp.
using namespace std;

namespace dtimesavitch ‘*////////////

{

class DigitalTime

{
<The definition of the class DigitalTime is the same as in Display 12.1.>
3
}//end dtimesavitch

#endif //DTIME_H

ENSC 251: Lecture Set 5 42

dtime.cpp:

//Implementation file dtime.cpp (your system may require some

//suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.

//The interface for the class DigitalTime is in the header file dtime.h.
#include <iostream>

#include <cctype>
#include <cstdlib>
#include "dtime.h"

using namespace std, ,
g P ’ One grouping for the unnamed

— nhamespace
namespace
{

//These function declarations are for use in the definition of
//the overloaded input operator >>:

void read_hour(istream& ins, 7nt& the_hour);

//Precondition: Next input in the stream ins is a time in 24-hour notation,
//11ke 9:45 or 14:45.

//Postcondition: the_hour has been set to the hour part of the time.
//The colon has been discarded and the next input to be read is the minute.

void read_minute(istream& ins, 1nt& the_minute);
//Reads the minute from the stream ins after read_hour has read the hour.

int digit_to_int(char c);
//Precondition: ¢ is one of the digits '0O' through '9'.
//Returns the integer for the digit; for example, digit_to_int('3"')
//returns 3.
}//unnamed namespace

43

dtime.cpp (part 2): One grouping for the namespace dtimesavitch.
namespace dtimesavitch / Another grouping is in the file dtime.h.

{

bool operator ==(const DigitalTime& timel, const DigitalTime& time2)
<The rest of the definition of == is the same as in Display 12.2.>

DigitalTime::DigitalTime()
<The rest of the definition of this constructor is the same as in Display 12.2.>

DigitalTime::DigitalTime(int the_hour, int the_minute)
<The rest of the definition of this constructor is the same as in Display 12.2.>
void DigitalTime: :advance(int minutes_added)
<The rest of the definition of this advance function is the same as in Display 12.2.>

void DigitalTime::advance(int hours_added, int minutes_added)
<The rest of the definition of this advance function is the same as in Display 12.2.>

ENSC 251: Lecture Set 5 44

dtime.cpp (part 3):

ostream& operator <<(ostream& outs, const DigitalTime& the_object)
<The rest of the definition of << is the same as in Display 12.2.>

//Uses iostream and functions in the unnamed namespace:
istream& operator >>(istream& ins, DigitalTime& the_object)

{

Functions defined in the unnamed
namespace are local to this com-
pilation unit (this file and included
files). They can be used anywhere
in this file, but have no meaning
outside this compilation unit.

read_hour(ins, the_object.hour);
read_minute(ins, the_object.minute);
return ins;

}
} //dtimesavitch

Another grouping for the
namespace <« ,nnamed namespace.

{
int digit_to_int(char c)
<The rest of the definition of digit_to_int is the same as in Display 12.2.>

void read_minute(istream& ins, 7nt& the_minute)
<The rest of the definition of read_minute is the same as in Display 12.2.>

void read_hour(istream& ins, int& the_hour)
<The rest of the definition of read_hour is the same as in Display 12.2.>

}Y//unnamed namespace
ENSC 251: Lecture Set 5 45

Application program:

//This is the application file: timedemo.cpp. This program
//demonstrates hiding the helping functions in an unnamed namespace.

#include <iostream>
#include "dtime.h"

-

void read_hour(int& the_hour);

int main()

{

using namespace std;

using namespace dtimesavitch;

read_hour(the_hour); /

int the_hour;

DigitalTime clock(the_hour, 0), old_clock;

old_clock = clock;
clock.advance(15);
11 (clock == old_clock)

cout << "Something is wrong.";

If you place the using directives
here, then the program behavior
will be the same.

This is a different function
read_hour than the one in the
implementation file dtime . cpp
(shown in Display 12.7).

cout << "You entered " << old_clock << endl;
cout << "15 minutes later, the time will be "

<< clock; << endl;

ENSC 251: Lecture Set 5

46

Application program (part 2):

clock.advance(2, 15);

cout << "2 hours and 15 minutes after that\n"
<< "the time will be "
<< clock; << endl;

return 0;
}

void read_hour(int& the_hour)

{

using namespace std;

cout << "Let's play a time game.\n"
<< "Let's pretend the hour has just changed.\n"
<< "You may write midnight as either 0 or 24,\n"
<< "but I will always write it as 0.\n"
<< "Enter the hour as a number (0 to 24): ";

cin >> the_hour;

11 (the_hour == 24)
the_hour = 0;

NOTE: This function read_hour has the same name as the DigitalTime
function, but since that helper function is part of the ADT’'s compilation unit,

there is no overlap in the declaration.
ENSC 251: Lecture Set 5 47

Last thoughts on namespaces:

-It's a good idea to create namespaces that you can be reasonably
confident will be unique.

« Use yourlast name or some other unique string to identify all
namespaces that you create (and minimize the chances that somebody
else will create the same namespace as you).

Note:
The global and unnamed namespace are not the same.
 Both can be accessed without a qualifier

 However, names in the global namespace have global scope (all
program files)

 Names in the unnamed namespace are local to a compilation unit

ENSC 251: Lecture Set 5 48

Review Questions for Slide Set 5

What is the compilation process when you divide your code
across multiple files?

How do you include a custom library (like the LinkedList one
you created in Assignment 2) in an application program?

What's the difference in syntax between including predefined
header files versus programmer defined header file in a
program? Why is this distinction important to the compiler?

Why does adding the include statement let your program
compile but not let it run?

What is the difference between the linker and compiler?
What does the preprocessor do with the include command?

ENSC 251: Lecture Set 5 49

Review Questions for Slide Set 5

What are the advantages of having separate compilations for
library files from application files?

Do header and cpp files have to be in the same library?

What are #ifndef and #ifdef? Are these preprocessor,
compiler or linker commands?

What is the syntax for #ifndef and #ifdef?

How would you use #ifdef? Give an example.
How would you use #ifndef? Give an example.
What is a namespace?

What is the global namespace?

Can you use more than one namespace at once?

ENSC 251: Lecture Set 5 50

Review Questions for Slide Set 5

Can you have the same function name in more than one
namespace? Why or why not?

How should you use the “using” directive?

How do you make something declared in a namespace
available to code outside the namespace?

What does the phrase “qualifying names” refer to?

What's the difference between a “using declaration” and a
“‘using directive™?
What is the unnamed namespace?

Why would you put helper functions in the unnamed
namespace?

How are the global and unnamed namespace the same? How

are they different?
ENSC 251: Lecture Set 5 51

