Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 6

=7 Date: October 5, 2015

What we're learning in this Slide Set:

* Nodes and Linked Lists
e Stacks

 Queues

ENSC 251: Lecture Set 6

Textbook Chapters:

Relevant to this slide set:
 Chapter 13

Coming soon:
 Chapter 14
 Chapter 15

ENSC 251: Lecture Set 6

A linked list is constructed using a set of nodes connected by pointers

It has no fixed size
It can grow and shrink during the run time of a program

It is the underlying structure of many key programming abstraction

— (queues, stacks, and trees)

Typically nodes are comprised of complex structures (structs or
classes)

ENSC 251: Lecture Set 6

struct ListNode

{
string item;
For example look at this definition of a Tt Cognti1 -
ListNode: .. L1stNode 1nkK;
typedef ListNode* ListNodePtr;
The corresponding list would look like head "rol1s"
this: - 16
|
'ljamll
3
|
"tea"
2

end marker

ENSC 251: Lecture Set 6 5

struct ListNode
{
string item;
int count;

To use this in a program: , ,
ListNode *1ink;

First you define the struct (to create the 13

new type) typedef ListNode* ListNodePtr;
Note we have also used typdef to create a head "rol1s"
pointer to type ListNode - 10

In our list example, we also have a pointer
head. Note that it is only a pointer to a
node and not a node itself: Y

ListNodePtr head;

end marker
ENSC 251: Lecture Set 6 6

Although it is not illegal, the definition of the struct type ListNode is

inherently circular (as it contains a pointer to its own type):

struct ListNode

head

"rolls”

{
string 1tem;
int count;
ListNode *1ink;
}s

typedef ListNode* ListNodePtr;

In fact, it is the ability to point to its own
type that lets us create a linked list:

ENSC 251: Lecture Set 6

10

end marker

7

If you want to change the number of rolls you are going to buy
(according to the list) from 10 to 12, you can use the following
statement:

(*head) .count = 12; head . "
rolls

10

The parentheses are not optional as
you want to dereference head (but the dot
operator would be performed first without v

the parentheses). “Jam"

Generally, people use the arrow operator | 3

-> as itis a less confusing notation. |t ‘

combines the dereferencing operator *

with the dot operator. l
head->count = 12; "t;a"

end marker

ENSC 251: Lecture Set 6 8

The arrow operator is commonly used to specify a member of a
dynamic struct (or object) that is pointed to by a given pointer.

head->count
head->1tem

head

12;

"bagels",;

"rolls"

head

10

After

"bagels”

jam

The arrow operator is commonly used to specify a member of a
dynamic struct (or object) that is pointed to by a given pointer.

Generically, you use the arrow operator as:

Pointer Variable->Member Name

For another example: struct Record
{

int number;
char grade;

}s

Record *p;

p = new Record;
p->number = 2001;
p->grade = 'A';

HINT: Remember to allocate memory before
you start trying to make assignments

ENSC 251: Lecture Set 6 10

The end of the list is specified by the constant NULL

It is a special defined constant that is part of the C++ language in the
standard libraries

Before After
head "rolls" head "bagels"
= -
10 12
|
' '
lljam'l lljamll
3 3
|
' #
llteall "tea"
2 2
NULL NULL

11

NULL has two purposes:

« Itis used to give a value to a pointer that would otherwise be
undefined (not have any value)

— This prevents potential unintentional references to memory that
is not part of your program (which would crash your program)

 |[tis alsoused as an “end marker” to indicate the termination/end of
a linked list.

 For some compilers, NULL is actually the number O.

— But for readability and clarity people use the term NULL (as itis
specifically designed for the context of pointers.

It is defined in <iostream> and <cstddef> so you need to include one of
these (or a similar library) to use NULL.

ENSC 251: Lecture Set 6 12

You don’t need to use a “using” directive in order to make NULL
available to your program

Since it is a special defined constant, the preprocessor will replace it
with “0” before the compiler runs so there are no namespace issues.

To set a pointer to NULL, you simply: double *there = NULL;

Remember, the constant NULL can be assigned to a pointer of any
type because all pointers are addresses.

ENSC 251: Lecture Set 6 13

Since NULL is actually the number zero, there is an ambiguity problem.

Which function would get called if they were overloaded as follows:

void func(int *p);
void func(int 1);

and we made the call func (NULL); ?

Since both are equally valid C++11 resolves this by introducing a new
constant, nullptr.

» Itis not the integer zero, butit is a literal constant used to represent
a null pointer.

* You can use it anywhere you would use NULL for a pointer:

double *there = nullptr;

ENSC 251: Lecture Set 6 14

A linked list is a list of nodes in which each node has a member
variable that is a pointer that points to the next/previous node in the list.

« The first node in the list is called the head, the last is called the tail.

 Neither the head nor tail are the actual nodes at the head/tail of the
list, they are instead pointers to them

— Note: the textbook doesn’t include reference to the idea of a tail
or tail pointer as itis less common.

« The last node in the list points to NULL (as there is nothing after it)

 When you “traverse” the list, you can check if you are at the last

node by checking to see if the “next” pointer in the list points to
NULL.

Now let’s look at some basic functions for manipulating linked lists.

ENSC 251: Lecture Set 6 15

struct Node

{

int data;
Node *11ink;

—

If | define the following simple Node type:
typedef Node* NodePtr;

We next need a “head” pointer: NodePtr head:

and the ability to store something there: head = new Node;

We can then initialize the node to have the following head->data = 3:
values: head->1ink = NULL;

The result of these actions is the following: head

NULL

ENSC 251: Lecture Set 6 16

WARNING: You always need to maintain a pointer variable to the start
(head) of your linked list. Not only is it a way to name the list, butitis a
way to ensure that you don’t “lose” any of your nodes. Finally, it
provides you with a generic way to insert/remove nodes from your list
so that you can create generic functions for manipulating linked lists.

Let’s look at a repeatable/systematic way to insert and remove items
from the head (and/or tail) of a list.

void head_insert(NodePtr& head, 7nt the_number);

Our function is going to have to use the new operator to create a new
node, copy the data into that node, and then insert it into the list.

Let's look at some pseudocode.

ENSC 251: Lecture Set 6 17

void head_insert(NodePtr& head, 7nt the_number);

Pseudocode for head_insert function;
1. Create a new dynamic variable (new node) pointed to by “temp_ptr”
2. Copy the data into the new node pointed to by “temp_ptr”

3. Make the link member of this new node point to the first node in the
original linked list (the head).

4. Make the head pointer variable point to the new node pointed to by
temp_ptr.

Here is the code for steps 3 & 4

temp_ptr->1ink = head;
head = temp_ptr;

ENSC 251: Lecture Set 6 18

void head_insert(NodePtr& head, 7nt the_number);

Realistically, you should be drawing out these algorithms before you
write them until you are VERY comfortable with pointers and linked lists
(i.e. long after you have taken this class).

So let’s do that:
1. Create a new dynamic variable (new node) pointed to by “temp_ptr”

2. Copy the data into the new node pointed to by “temp_ptr”

temp_ptr

12
| —
| ?
head 15
[
Y

NULL 19

void head_insert(NodePtr& head, int the_number);

3. Make the link member of this new node point to the first node in the
original linked list (the head).

4. Make the head pointer variable point to the new node pointed to by
temp_ptr.

3. temp_ptr->Tink = head; 4, head = temp_ptr;
temp_ptr 12 temp_ptr 12
| - | -
| . |
L Added Changed L
head 15 head 15
- ’ '///;.'-
| ¢
3 3
NULL NULL

ENSC 251: Lecture Set 6 20

void head_insert(NodePtr& head,

After the function call you have:

temp_ptr 12
; =
|
Changed
head
P 15

head

L —

7/

G

NULL

ENSC 251: Lecture Set 6

int the_number);

12

15

NULL

-

21

Special notes:

void head_insert(NodePtr& head, int the_number)

{
NodePtr temp_ptr;
temp_ptr = new Node;
temp_ptr->data = the_number;
temp_ptr->1link = head;
head = temp_ptr;

}

Looking at this code, what happens if the original list is an empty list
(i.e. the head pointer currently points to none)? Does it work?

« Thisis a special corner case you always need to check when
designing functions to manipulate lists.

ENSC 251: Lecture Set 6 22

Special notes:

Why did we have a temp_ptr point to the new node instead of having
head point to the new node:

head = new Node;
head->data = the_number;

What happens to the original list when we do this?

head 12
I :
We don’t have anything pointing
to itanymore...
15
It's lost and now a memory leak in
our program that may cause it to |
crash: L
 Worse it could crash the O/S 3
(but that is harder/less likely) NULL

23

What if we want to search a linked list?

NodePtr search(NodePtr head, 7nt target);
//Precondition: The pointer head points to the head of
//a linked 1ist. The pointer variable in the last node
//1s NULL. If the list is empty, then head is NULL.
//Returns a pointer that points to the first node that
//contains the target. If no node contains the target,
//the function returns NULL.

This function returns a pointer to the first node that contains the target
value. If no node in the list contains the target value, it returns NULL.

Since an empty list is a little more difficult, let's assume only non-empty
lists to start with.

ENSC 251: Lecture Set 6 24

NodePtr search(NodePtr head, 7nt target);
Pseudocode for search function.

1. Make the temp variable “here” point to the first node in the linked
list (same as the head pointer).

head head

here

W -— o | -— | |-
w | -—i— | |[-—F - | —.——

NULL NULL

Let’'s assume the “target” is 6 in this example.
ENSC 251: Lecture Set 6 25

NodePtr search(NodePtr head,
Pseudocode for search function.

int target);

2. while (“here” is not pointing to a node containing the target and here

Is not pointing to the last node)

Make “here” point to the next node in the list.

head

>> l
hele
1

o) |

£

NULL

v hepe
W ricré

A |
2 .“\I’LIW?

|

head

here

here

NULL

Let’'s assume the “target” is 6 in this example.
ENSC 251: Lecture Set 6

26

NodePtr search(NodePtr head, int target);
Pseudocode for search function.

3. if (the node pointed to by here contains “target”)
return here;
else

return NULL;

ENSC 251: Lecture Set 6

27

Special Notes:
How do we traverse the list?

By having here update it's value after each comparison to the
next item in the list

here = here->1l1nk;
So a preliminary version of the code looks like:

here = head;

while (here->data != target & & here->1ink != NULL)
here = here->11ink;

it (here->data == target)
return here;

else
return NULL;

Notice we check to see if “here” is currently pointing to the last item in

the list by checking to see if the link to the nextitem is pointing to

NULL. s

Special Notes:

If the preliminary version of the code looks like:
here = head;

while (here->data != target & & here->1ink != NULL)
here = here->11ink;

1T (here->data == target)
return here;

else
return NULL;

Will it work for an empty list?
Why/Why not?

ENSC 251: Lecture Set 6 29

Our final code looks like:

Function Declaration:

struct Node

{

int data;
Node *Tink;
s

typedef Node* NodePtr;

NodePtr search(NodePtr head, 7nt target);
//Precondition: The pointer head points to the head of
//a linked 1ist. The pointer variable in the last node
//1s NULL. If the 1list is empty, then head is NULL.
//Returns a pointer that points to the first node that
//contains the target. If no node contains the target,
//the function returns NULL.

ENSC 251: Lecture Set 6

30

Our final code looks like:

Function Definition:

//Uses cstddef:
NodePtr search(NodePtr head, int target)

{

NodePtr here = head;

1T (here == NULL)
{ —

return NULL; Empty list case
} /

else
{
while (here->data != target &&
here->Tink != NULL)
here = here->11nk;

1t (here->data == target)
return here;

else
return NULL;

ENSC 251: Lecture Set 6

31

Pointers as Iterators (see Ch 18 for more details)

An iterator let you cycle through the data items stored in a data
structure so that you can perform the desired action(s) on each data
item

It can be an object of some iterator class.

If you think about arrays and linked lists, it can also be an array index
or pointer

You can use a pointer/array index to move through a linked list/array
one node at a time.

The general outline for an iterator in the context of a linked list is:
Node_Type *iter;
for (iter = head; iter != NULL; iter = iter->11nk)

Do whatever you want with the node pointed to by iter;

What if you want to print out every piece of data in your linked list, how
would you change this?

How would you construct iterator code for an array?
32

Insertion of nodes in an ordered list

void insert(NodePtr after_me, int the_number);
//Precondition: after_me points to a node in a linked 1ist.
//Postcondition: A new node containing the_number

//has been added after the node pointed to by after_me.

If the list is ordered, you cannot simply insert data at the beginning/end.

This function assumes that a separate function has already identified
where the new node is to be inserted into the list.

* It returns a pointer called after me pointing to some node in the
linked list.

Just like with the insertion at the head_insert function, we have to
create a new node.

We then want to insert it after “after_me” with the new data,
‘the_number”.

ENSC 251: Lecture Set 6 33

void insert(NodePtr after_me, int the_number);
Insertion of nodes in an ordered list.

head

2

after_me

!

- temp_ptr

\

|

!

18
NULL

//add a 1ink from the new node to the list:
temp_ptr->1link = after_me->1ink;
//add a 1ink from the 1list to the new node:

after_me->T1ink = temp_ptr; 34

void insert(NodePtr after_me, int the_number);

Insertion of nodes in an ordered list.

head 5
J—
|
after_me i
— temp_ptr
o 5 -
9 -
|
18
NULL
“*WATCH //add a 1ink from the new node to the Tlist:
THE temp_ptr->1link = after_me->11ink;
//add a 1ink from the 1ist to the new node:
ORDER* after_me->1ink = temp_ptr;

35

void insert(NodePtr after_me, int the_number);

Insertion of nodes in an ordered list.

head 5

:

after_me 3

temp_ptr

\

A

!

18
NULL

*What

happens if //add a Tink from the new node to the 1list:
temp_ptr->1link = after_me->1ink;
you reverse //add a Tink from the list to the new node:

them? after_me->1ink = temp_ptr; 36

Function Declaration:
struct Node

{

int data;
Node *11ink;
}s

typedef Node* NodePtr;

void insert(NodePtr after_me, int the_number);
//Precondition: after_me points to a node in a linked

//1ist.

//Postcondition: A new node containing the_number

//has been added after the node pointed to by after_me.

Function Definition:
void insert(NodePtr after_me, int the_number)

{
NodePtr temp_ptr;

temp_ptr = new Node;

temp_ptr->data = the_number;

temp_ptr->1link = after_me->11ink;
after_me->1ink = temp_ptr;

37

void insert(NodePtr after_me, int the_number)

{
NodePtr temp_ptr;
temp_ptr = new Node;
temp_ptr->data = the_number;
temp_ptr->1link = after_me->11ink;
after_me->1link = temp_ptr;

}

Does this function work if after_me is the last node?

Does this function work if after_me is the fist node?

This function allows you to maintain an ordered list
(numerical/alphabetical, etc.).

You are able to readjust the pointers to insert the node into the list,
independent of length or position.

ENSC 251: Lecture Set 6

38

void insert(NodePtr after_me, int the_number)

{
NodePtr temp_ptr;
temp_ptr = new Node;
temp_ptr->data = the_number;
temp_ptr->1link = after_me->1ink;
after_me->1link = temp_ptr;

}

If you tried to do this with an array, you would have to copy values to
new locations to shift their ordering.

Despite that accessing data in an array is more efficient than a linked
list, the ability to quickly insert and remove data into a linked list should
help you to understand why some times they are a better choice of data
structure than an array.

Next we'll look at removing a node from a linked list.

ENSC 251: Lecture Set 6 39

Removing a node from a linked list
head

2
I
|
1
|
before 6
o=
|
v ,--J_;;ili
| discard 3
b. i

Y
5

NULL

1. Position the pointer discard so that it points to the node to be
deleted and position the pointer before so that it points to the node
before the one to be deleted.

ENSC 251: Lecture Set 6

40

Removing a node from a linked list

head 5
o
|
1
|
before 6
‘ —
|
| discard ?

NULL

2. Reposition the links in the list to remove the discard node and
maintain connectivity.

before->1ink = discard->11ink;

41

Removing a node from a linked list
head

| -

before

| -

discard T — A

| —

: -
NULL

Then you simply have to destroy the discarded node so it returns to the

freestore (unless you plan to use it for something else)

delete discard;
42

Removing a node from a linked list

void insert(NodePtr after_me, int the_number)

{
NodePtr temp_ptr;
temp_ptr = new Node;
temp_ptr->data = the_number;
temp_ptr->1link = after_me->11ink;
after_me->1ink = temp_ptr;

}

So what do we need to do to the above “insert” function to discard a
node from a linked list (Hint: the new function’s input parameter should
be before).

ENSC 251: Lecture Set 6

43

What does the following statement do?

head?2 = headl;

Will this gives you two copies of the same list (why/why not)?

What happens if you change the linked list pointed to by head1?

What happens if you delete the node pointed to by head1?

ENSC 251: Lecture Set 6

44

What data structures can you create with pointers/linked lists?

Up until now, we've been discussing a normal linked list.

« It only lets you move follow the links in one direction

However, a node in a doubly linked list has two links:
* One pointing to the next node

* One pointing to the previous node

struct Node

{
int data;
Node *forward_Tlink;
Node *back_T1link;

s

ENSC 251: Lecture Set 6

45

struct Node
Doubly linked lists {

int data;
Node *forward_1link;
Node *back_Tink;

Generally, you have a head and tail pointer 5

Also some of your functions for manipulating the list (constructors, etc),
will have to change to account for the additional link (compared to a

generic singly linked list). Front
| - 1
A
' +
2
1l
Y +
back

46

struct TreeNode
A binary tree {

int data;
TreeNode *Teft_Tlink;
TreeNode *right_1l1ink;

Each node has 2 children

There are no cycles in a tree. }:
root 40
o= /

20 50

///// NULL
10 30 60
NULL NULL NULL

NULL NULL NULL 47

struct TreeNode

A binary tree { _
int data;
You can reach any node from the top (root) TreeNode *Teft_Tink;
node) by following the path of links. TreeNode *right_Tink;
s

There are no cycles in a tree.
If you follow these links, you eventually get to the end (the leaves)

It is called a binary tree because each node has two links that point to
two children nodes (or the value NULL).

There are other kinds of trees with different numbers of links to different
numbers of child nodes, but the binary tree is the common case.

A tree is not a form of a linked list, but its use of pointers is similar to
how they are used in a linked list.

Because they are traversed along branches from root to leaf, the links
to the child nodes generally have left and right in their name.

ENSC 251: Lecture Set 6 48

Linked Lists of Classes

In C, you would obviously create linked lists using structs.
However, in C++, you can also create them using classes.

 The logic is identical, you just have to use the syntax of a class
instead of a struct.

The following class is for the same Node structure we were using
before and includes a set of public accessor and mutator functions.

ENSC 251: Lecture Set 6 49

Node Class

Definition:

//This is the header file for Node.h. This is the interface for
//a node class that behaves similarly to the struct defined
//1n Display 13.4

namespace linkedlistofclasses

{
class Node
{
public:
Node();
Node(int value, Node *next);
//Constructors to initialize a node
int getData() const;
//Retrieve value for this node
Node *getLink() const;
//Retrieve next Node in the list
void setData(int value);
//Use to modify the value stored in the 1ist
void setLink(Node *next);
//Use to change the reference to the next node
private:
int data;
Node *711ink;
};

typedef Node* NodePtr;
} //1inkedlistofclasses
//Node. h

//This is the implementation file Node.cpp.
//It implements Tlogic for the Node class. The interface

Node Class //file is in the header file Node.h

_ #include <iostream>
Implementation: #inciude "Node.h"

namespace linkedlistofclasses

{ Node: :Node() : data(0), Tink(NULL)
{ //deliberately empty
}
Node: :Node(7int value, Node *next) : data(value), link(next)
{ //deliberately empty
}

//Accessor and Mutator methods follow

int Node::getData() const
{

return data;

}

Node* Node::getLink() const
{

}

return Tink;

Node Class

Implementation
void Node::setData(int value)

Continued: {
data = value;
}
void Node::setLink(Node *next)
{
Tink = next;
}
} //1linkedlistofclasses
//Node. cpp

ENSC 251: Lecture Set 6

52

//This program demonstrates the creation of a linked 1ist

//using the Node class. Five nodes are created, output, then
Program //destroyed.

using #include <iostream>

#include "Node.h"
Node Class:

using namespace std;
using namespace linkedlistofclasses;

//This function inserts a new node onto the head of the Tist
//and is a class-based version of the same function defined
//in Display 13.4.

void head_insert(NodePtr& head, int the_number)

{
NodePtr temp_ptr;
//The constructor sets temp_ptr->1link to head and
//sets the data value to the_number
temp_ptr = new Node(the_number, head);
head = temp_ptr;
}

This function is logically identical to our other head_insert function with
structures, except the constructoris used to initialize the data and next
fields.

ENSC 251: Lecture Set 6 53

Program
using
Node Class

Continued:

int main(Q)

{

NodePtr head, tmp;

//Create a list of nodes 4 -> 3 -> 2 ->1 -> 0
head = new Node(0, NULL);
for (int i = 1; 1 < 5; i++)
{
head_insert(head, 1);
}
//Iterate through the 1ist and display each value
tmp = head;
while (tmp != NULL)
{
cout << tmp->getData() << endl;
tmp = tmp->getLink();
}
//Delete all nodes in the 1list before exiting
//the program.

tmp = head;
while (tmp != NULL)
{

NodePtr nodeToDelete = tmp;
tmp = tmp->getLink();
delete nodeToDelete;

}

return 0;
54

Two common data structures built using linked lists are:
« stacksand

e queues.

Although you could implement them with a doubly linked list, their
design only calls for a “normal” (singly) linked list.

ENSC 251: Lecture Set 6

95

Stacks

A Stack is a data structure that lets you retrieve data in the reverse
order from which it is stored.

Hint: Think of a stack of books

B
A A

If | store ‘A’ then ‘B’ then ‘C’ (as shown here), | have to retrieve them in
reverse order: ‘C’ then ‘B’ then ‘A’.

ENSC 251: Lecture Set 6 56

Stacks
Stack are a LIFO data structure:

Last in/first out.
They are commonly used in many language programming tasks:
« Data is passed to and from a function call on the stack

« A key aspect of how recursive function calls work

Let's see a simple example

ENSC 251: Lecture Set 6

S7

Stack.h

//This is the header file stack.h. This is the interface
//which is a class for a stack of symbols.

#ifndef STACK_H

#define STACK_H

namespace stacksavitch

{
struct StackFrame
{
char data;
StackFrame *11ink;
}s

typedef StackFrame* StackFramePtr;

class Stack

{
public:
Stack();
//Initializes the object to an empty stack.
Stack(const Stack& a_stack);
//Copy constructor.

~Stack();

for the class Stack,

//Destroys the stack and returns all the memory to the freestore.

(Constructors and Destructor)

ENSC 251: Lecture Set 6

58

Stack.h Continued:

void push(char the_symbol);
//Postcondition: the_symbol has been added to the stack.

char pop();
//Precondition: The stack is not empty.
//Returns the top symbol on the stack and removes that

//top symbol from the stack.

bool empty() const;
//Returns true if the stack is empty. Returns false otherwise.

private:
StackFramePtr top;

}s
}//stacksavitch

#endif //STACK_H

Stacks have two fundamental operations:
 Push- adding an item to the stack

* Pop-removing an item from the stack

— (Hint: Think of a Pez dispenser)

ENSC 251: Lecture Set 6 59

Example

Program:

(cin.ignore s discussed
in Chapter 8; it discards
Input remaining on the
current input line up to
10,0000 characters or until
a return is entered. It also
discards the return.)

//Program to demonstrate use of the

#include <iostream>

#include "stack.h"

using namespace std;

using namespace stacksavitch;

int main()
{
stack s;
char next, ans;

do
{
cout << "Enter a word: ";
cin.get(next);
while (next != '\n')
{
s.push(next);
cin.get(next);

}

cout << "Written backward that is: "

while (! s.empty())
cout << s.pop();
cout << endl;

cout << "Again?(y/n): ";
cin >> ans;
cin.ignore(10000, '\n');
} while (ans != 'n' & ans != 'N');

return 0;

Stack class.

60

Stacks
Remembering that Stacks are a LIFO data structure:
« All datais inserted at the top (head) of the linked list, and

« All data is removed from the top (head) of the linked list.

An empty stack is therefore an empty linked list (with top pointing to NULL)

So what does the implementation of the different functions in the Stack
class look like:

(Warning: Remember you need a copy Constructor. Do you recall why?)

ENSC 251: Lecture Set 6 61

//This is the implementation file stack.cpp.
//This is the implementation of the class Stack.

Stack Class //The interface for the class Stack is in the header file stack.h.
#include <iostream>

t~n- #include <cstddef>
Implementation: #include "stack.h"

using namespace std;

namespace stacksavitch

{
//Uses cstddef:

Stack::Stack() : top(NULL)

{
//Body intentionally empty.
}

Stack::Stack(const Stack& a_stack)

<The definition of the copy constructor is Self-Test Exercise 11.>
Stack::~Stack()

{
char next;
while (! empty())
next = pop(); //pop calls delete.
}

//Uses cstddef:
bool Stack::empty() const

{
return (top == NULL);
} 62

void Stack::push(char the_symbol)
Stack Class <The rest of the definition is Self-Test Exercise 10.>

. //Uses iostream:
Implementation: char Stack: :pop()

{
i (empty())
{

cout << "Error: popping an empty stack.\n";
exit(1l);
}

char result = top->data;

StackFramePtr temp_ptr;
temp_ptr = top;
top = top->1link;

delete temp_ptr;
return result;

}
}//stacksavitch

Recommended practice: Based on what we’ve talked about, write the
push function for this Stack class

63

Queues

Queues are a FIFO data structure; they handle data in a first in, first out
manner:

« It's exactly the same as when you wait in a “line” (queue) for a cashier

 People are served in the order in which they arrive.

While a queue can be implemented using a singly linked list, it needs a
head and a tail pointer:

* You can think of the head as the front of the line (queue) and the tail as
the end of the line (queue)

« Without a tail pointer, you would have to traverse the entire list to add a
new item to the list.

— Significant run time overhead compared to storing one additional
address variable

ENSC 251: Lecture Set 6 64

Queues

Queues are a FIFO data structure; they handle data in a first in, first out
manner:

A —— B — C —
4 4 4
C
B B
A A A
C
B ¢ |
\ \
\‘\1__>A _ »B \;»;__b.c

Let’s look at how you implement this...

ENSC 251: Lecture Set 6 65

//This is the header file queue.h. This is the interface for the class Queue,
//which is a class for a queue of symbols.
queue.h #ifndef QUEUE_H
#define QUEUE_H
namespace queuesavitch

{
struct QueueNode
{
char data;
QueueNode *11ink;
};

typedef QueueNode* QueueNodePtr;

class Queue
{
public:
Queue();
//Initializes the object to an empty queue.
Queue(const Queue& aQueue);
~Queue();
void add(char item);
//Postcondition: item has been added to the back of the queue.
char remove();
//Precondition: The queue is not empty.
//Returns the item at the front of the queue and
//removes that item from the queue.
bool empty() const;
//Returns true if the queue is empty. Returns false otherwise.

ENSC 251: Lecture Set 6 66

queue.h CONTINUED...

private:
QueueNodePtr front; //Points to the head of a linked Tist.
//Items are removed at the head
QueueNodePtr back; //Points to the node at the other end of the
//1linked 1list. Items are added at this end.
| ¥
}//queuesavitch
#endif //QUEUE_H

This particular queue stores data of type char and has a “front” and
“back” pointer instead of a “head” and “tail” pointer.

The two basic operations you can perform on a queue are:
 Add an item, and

« Remove an item.

Let’'s see how you would use a queue in an application.
67

Remember:

<The ignore member of cin is discussed in Chapter 8. It discards input remaining on the

current input line up to 10,000 characters or until a return is entered. It also discards the
return ('\n') at the end of the line.>

Program using queue class:

//Program to demonstrate use of the Queue class.
#include <iostream>

#include "queue.h"
using namespace std;
using namespace queuesavitch;

(don’t forget your namespace)

ENSC 251: Lecture Set 6 68

main()

int main()

{

Queue q;
char next, ans;

do
{

cout << "Enter a word: ";
cin.get(next);
while (next != "\n')
{
g.add(next);
cin.get(next);

}

cout << "You entered:: ";
while C ! q.empty(Q))
cout << g.remove();

cout << endl;
cout << "Again?(y/n): ";
cin >> ans;
cin.ignore(10000, '\n');

} while (ans !="'n' & ans != 'N');

return 0;
ENSC 251: Lecture Set 6

69

If an empty queue is an empty linked list, what does this mean for your
“‘empty” member function?

In other words, what should the values of front and back be if the queue
is empty?

Let’s look...

ENSC 251: Lecture Set 6 70

Implementation of queue class:

//This is the implementation file queue.cpp.

//This is the implementation of the class Queue.

//The interface for the class Queue is in the header file queue.h.
#include <iostream>

#include <cstdlib>

#include <cstddef>

#include "queue.h"

using namespace std;

namespace queuesavitch

{

//Uses cstddef:

Queue: :Queue() : front(NULL), back(NULL)
{

}

//Intentionally empty.

Queue: :Queue(const Queue& aQueue)
<The definition of the copy constructor is Self-Test Exercise 12.>

Queue: :~Queue()
<The definition of the destructor is Self-Test Exercise 13.>

//Uses cstddef:
bool Queue::empty() const

{
return (back == NULL); //front == NULL would also work -
}

Implementation of queue class continued: (add function)

//Uses cstddef:
void Queue::add(char 1item)

{
1 (empty())
{
front = new QueueNode;
front->data = 1item;
front->1ink = NULL;
back = front;
}
else
{
QueueNodePtr temp_ptr;
temp_ptr = new QueueNode;
temp_ptr->data = item;
temp_ptr->1ink = NULL;
back->Tink = temp_ptr;
back = temp_ptr;
}
}

ENSC 251: Lecture Set 6

Implementation of queue class continued: (remove function)

//Uses cstdlib and iostream:
char Queue::remove()
{

1 (empty())

{

cout << "Error: Removing an item from an empty queue.\n";
exit(1);
}

char result = front->data;

QueueNodePtr discard;

discard = front;

front = front->11ink;

it (front == NULL) //if you removed the last node
back = NULL;

delete discard;
return result;

}
}//queuesavitch

What would the implementation code for the copy constructor be?

ENSC 251: Lecture Set 6 73

What would the implementation code for the destructor be?
« Hint: recall the code for the stack’s destructor.

Queue: :~Queue()

ENSC 251: Lecture Set 6

74

Summary:

A node is a struct/class object that has one or more member variables
that are pointers.

 Nodes are connected to “adjacent” nodes by pointer their member
variable “links” to their “neighbours”

A linked list is a list of nodes where each node points to the next node
In the list.

 The end of the list is indicated by setting the pointer member
variable to NULL/nullptr

Data structures built using linked lists include:
« Stacks (LIFO data structures)

* Queues (FIFO data structures)

ENSC 251: Lecture Set 6 75

Review Questions for Slide Set 6

What are characteristics of linked lists?
What are benefits of linked lists?

What is the structure of a Linked List node? Why is it
inherently circular? Why is this okay?

What is the function of the keyword typedef?

How do you dereference a pointer to a struct or an object

(what are the two ways to dereference a dynamic struct or
object)?

What is the purpose of NULL/nullptr? What is the difference
between the two?

Do you need a using directive to reference NULL? Why or
Why not?

ENSC 251: Lecture Set 6

76

Review Questions for Slide Set 6

Can you use NULL with all pointer types? Why or Why not?
Why is there an ambiguity problem (potentially) with NULL?
Why do you need a head ptr for a linked list/stack/queue?
Why do you need a tail pointer for a queue?

What does LIFO mean? Give an example. When is it used?
What does FIFO mean? Give an example. When is it used?

Be able to explain the operation of and write the code for the
basic functions of insert_head, insert_tail, remove head,
remove _talil, push, pop, search, remove.

What test cases do your linked list functions need to be able
to pass?

ENSC 251: Lecture Set 6 77

Review Questions for Slide Set 6

What is an iterator?

Why does order matter when altering the order of nodes in a
linked list? For example, if you have

temp_ptr-> link = current_node->link //followed by
current_node->link = temp_ptr

If you reverse the order of these instructions, will your inked
list be the same?

What is a required feature of a doubly linked list?
What are the features of a binary tree?

What are the differences if you want to create a Stack class if
the node structure is defined in a class versus a struct?

ENSC 251: Lecture Set 6 78

Review Questions for Slide Set 6

How would you define an empty queue, stack and linked list?

Do these types of data structures (e.g. stack/queue/linked list)
require copy constructors? If yes why?

Do these types of data structures (e.g. stack/queue/linked list)
require destructors? If yes why?

Do these types of data structures (e.g. stack/queue/linked list)
require custom assignment overloaded functions (as opposed
to the default)? If yes why?

What is the definition of a node?

ENSC 251: Lecture Set 6 79

