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What we're learning in this Slide Set:

* Recursion
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Textbook Chapters:

Relevant to this slide set:
 Chapter 14

Coming soon:
 Chapter 15 & 16
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In CMPT 128, you were previously introduced to recursion.
Recursive Definitions define an object in terms of itself

 Forexample: The GNU Acronym stands for “GNU Not Unix”

This is also a common method of defining solutions to mathematical
and computational problems:

 The Fibonacci sequence defines f(n) in terms of f(n-1) and f(n-2)

Recursive functions have their own problems, so use them wisely.

« Think: What do you need to worry about?
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When you are designing a function to solve a task, one technique has
you break the function down into a series of subtasks that must be
completed to complete the function

« Sometimes one or more of these tasks is a recurrence of the original
function on a smaller version/subset of the input data.

For example, if you wish to search an array for a particular value, you
could subdivide into halves and then search these smaller arrays for
the value

* You could then repeat this task of halving the array and searching
the smaller versions until you found the value (or determined that it
wasn’t in the array)
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Recursion

In C++, a function definition may contain a call to the function being
defined. In such cases, the function is said to be recursive.

Essentially, you are decomposing the problem into a series of sub-
problems and this can be a very useful technique for solving algorithmic
problems.

* Think of our array search problem in Lab Assignment 1

— We'll look at a solution at the end of this slide set
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Here’s an example from the text book where a recursive void function
writes numbers to the screen vertically:

void write_vertical(int n);

//Precondition: n >= 0.

//Postcondition: The number n 1s written to the screen
//vertically with each digit on a separate line.

The simple case (base case) is if n is one digit (i.e. n<10), then simply
write n to the screen.

What if n is comprised of more than one digit?

 First We need to print all the higher digits to the screen

« Then we need to print the last digit to the screen (i.e. n<10)
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So the pseudocode for our solutionis:

frn < 50

{

e ; Rocuraive subtask
else //n is two or more digits long:

{

write_vertical (the number n with the last digit removed);
cout << the last digit of n << endl;

How do we calculate “the number n with the last digit removed?”

How do we calculate the last digit of n?

Hint: These are integers.
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Let’s look at the pseudocode for an alternate version of:

void write_vertical(int n);

//Precondition: n >= 0.

//Postcondition: The number n is written to the screen
//vertically with each digit on a separate line.

Step 1: Output the first digit of n
Step 2: Output the number n with the first digit removed.

This is a valid decomposition that can be implemented recursively, but
our other definition is easier. Why?
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An important concept to keep in mind when choosing your
decomposition is that eventually you want to have a subcase that is not
a recursive call (like the base case in an inductive proof).

A successful definition of a recursive function requires at least
one case that does not involve a recursive call as well as one or
more cases that do require recursive calls.

So how do we code a recursive function and how does it actually
execute at run time?
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void write_vertical(int n);
//Precondition: n >= 0.

//Postcondition: The number n is written to the screen vertically

//with each digit on a separate Iline.

int main( )
{
cout<< "write_vertical(3):" <<endl;

write_vertical(3);
cout<< "write_vertical(12):" <<endl;
write_vertical(12);

cout<< "write_vertical(123):" <<endl;
write_vertical(123);

return 0;

}

//uses iostream:
void write_vertical(int n)

{
if (n < 10)

{
}

else //n is two or more digits long:

{

cout << n << endl;

write_vertical(n / 10);
cout << (n % 10) << endl;

11



Let's look at what happens when we call:  yrite vertical(3):

void write_vertical(int n)

What parts of the function {
get exercised? Ef (n < 10
cout << n << endl;
i?se //n 1s two or more digits long:
{ write_vertical(n / 10);
cout << (n % 10) << endl;
}
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Let's look at what happens when we call:  write vertical(12);

void write_vertical(int n)

What parts of the function {
get exercised? Ef (n < 10
cout << n << endl;
i?se //n 1s two or more digits long:
{ write_vertical(n / 10);
cout << (n % 10) << endl;
}

ENSC 251: Lecture Set 7 13



To understand what’s happening, let’s trace :

Here’s our function:

void write_vertical(int n)

{
1 (n < 10)
{
cout << n << endl;
}
else //n 1s two or more digits long:
{
write_vertical(n / 10);
cout << (n % 10) << endl;
}
}

What happens in the first call?
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To understand what's happening, let'strace: write_vertical(123):

1 (123 < 10)

{
cout << 123 << endl;

}

else //n 1s two or more digits long:

{ Com putation will
write_vertical(123 / 10); «—— stophereuntil the
cout << (123 % 10) << endl;

}

Since 123 is greater than 10, the “else” case of the if statement gets
exercised.

Once the new function call happens, execution of this current function
call is halted.
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To understand what's happening, let'strace: write_vertical(123):

1 (123 < 10)

{
cout << 123 << endl;

}

else //n 1s two or more digits long:

{ Computation will
write_vertical(123 / 10); «—— stophereuntil the
cout << (123 % 10) << endl; recursive call returns

¥

Since 123 is greater than 10, the “else” case of the if statement gets
exercised.

Once the new function call Write_vertical(123 / 10);
(write_vertical(n / 10):) happens, execution of this current

function call Is halted.
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To understand what’s happening, let’s trace :

if (123 < 10)

write_vertical(123);

{
cou
}
else //
{
wri
cou
}

if (12 < 10)
{

cout << 12 << endl;

}

else //n 1is two or more digits long:

{

cout << (12 % 10) << endl;

write_vertical(12 / 10);=— "~ nrer

il o vrorr irciize
| C I C Ui g'!/t/

Since 123/10 is equivalent to 12 in integer mathematics,
write_vertical(123 / 10): becomes write_vertical(12);

Again, with this recursive call, the else case gets exercised (12 >10)
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To understand what's happening, let'strace: write_vertical(123):

if (123 < 10)
{
if (12 < 10)
{ -
27 if (1 < 10)
{ } { No recursive call
el cout << 1 << enC”; //// this time
} else //n is two or more digits long:
{
} write_vertical(l / 10);
cout << (1 % 10) << endl;
}

Since 12/10 is equivalent to 1 in integer mathematics,
write_vertical(12/ 10); becomes write_vertical(l);

Since 1< 10, the if case gets exercised, and ‘1’ is output to the screen
and the function call returns.
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To understand what's happening, let'strace: write_vertical(123):

if (123 < 10)

if (12 < 10)

{
cout << 12 << endl;

}

else //n is two or more digits long:

{
write_vertical (12 / 10); _ Computation
cout << (12 % 10) << endl;“* '

}

The suspended computation of the previous function call now resumes.

The modulus of 12 % 10 is then printed to the screen after which this
function call terminates.
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To understand what's happening, let'strace: write_vertical(123):

if (123 < 10)
{
cout << 123 << endl;
}
else //n 1s two or more digits long:
{
write_vertical (123 / 10); Computation
cout << (123 % 10) << end1; ™ ., chere
}

The suspended computation of the original function call now resumes.

The modulus of 123 % 10 is then printed to the screen after which this
function call terminates.

The resultis the numbers 1,2, and 3 being printed sequentially to the
screen with one digit per line.
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Although the functionwrite vertical () usesrecursion,itis
evaluated the same as any other function call.

The difference is that with each recursive call, the input parameter to
the function is altered.

The computer views recursion function calls the same as any other
function call.

The arguments to the function are passed on the stack to the next
function call (which just happens to be the same executable code as
the current function call).

The key to using recursion to solve computational problems is to solve
the subtask locally, and then pass the relevant data back to the
previous function call.
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Don’t forget that each function call (even recursive ones) have their
own scope.

As such, you have to explicitly return information to the previous calling
function if it is required to solve the task.
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Although C++ does not restrict how recursive calls are used (similar to
normal functions), the design of the function must ultimately terminate
In a base case that does not depend on recursion.

As such, the general rules for defining/designing successful recursive
functions are:

« Identify one or more cases in which the function accomplishes its
task without any use of recursive calls. These cases are called the
base cases (or stopping cases).

 Identify one or more cases in which the function can accomplish its
task by using recursive calls to accomplish one or more smaller
versions of the task.

Generally, you are going to require an if-else statement to determine
which of the cases is to be executed in the specific function call.

« Typically either the if or else case will then require a recursive call of
the function.
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Recursive functions that do not include base cases will result in an infinite
chain of recursive calls.

This will eventually cause your program to crash as you will eventually
overflow your stack.

Here’s an example of infinite recursion:
void new_write_vertical(int n)

{

new _write_vertical(n / 10);
cout << (n % 10) << endl;
}

Note, this version of the function will compile; however, there is not case for
termination.

Eventually, the function new_write_vertical (0) ; will be called infinitely.

To reach the base case(s), each iteration will generally reduce the value of
the input parameter/size of the input set, to reduce the complexity of the
problem to be solved.
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As previously mentioned, most computer systems use a stack to keep
track of:

- The return address after the completion of a function call, and
- To pass parameters between the scopes of the different functions.

Each of one of these blocks of data defines the local scope of a
function’s execution and is known as an activation frame (referring to a
reference to the local function code and a copy of its parameters and
storage for any output parameters.

Since stacks are Last In- First Out structures, the top of the stack will
always store the context of the last function call.

« This allows you to embed as many functions as you want within
functions ensuring that if all of these function calls were actually “in-

lined” into your executable, the code execution order would still be
the same.
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A couple notes about the finite stack size of your computing program:

Obviously, the stack has to be finite in size because memory is finite in
size.

While it is easy to have a recursive function overflow your stack (if you
make to many function calls), this can also happen due to repeated
interrupts (and interrupt service routines) that lead to you calling a
function within a function within a function ...

All this being said, the stack is quite large, so overflows are not easy to
achieve.

If you are worried that someone may use a function with a large
enough parameter to overflow the stack make this a test case.

« Ifit passes, you are fine.

« |Ifitdoesn’t, you can increase the size of your stack using a linker
command.
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Recursion versus iteration:
« Some languages don’t allow recursion

* Itis not absolutely necessary: you can achieve any task without
using recursion if you want to by using loops.

— This is generally referred to as an iterative version.

The next slide show you how to implement the write vertical()
without using recursion.

Why do we use recursion?

« Because the solutions are more elegant and often simpler to write

ENSC 251: Lecture Set 7 27



lterative

version:

versus...

//Uses iostream:
void write_vertical(int n)

int tens_in_n = 1;
int left_end_piece = n;
while (left_end_piece> 9)
{
left_end_piece = left_end_piece/10;
tens_in_n = tens_in_n * 10;
}
//tens_in_n is a power of ten that has the same number
//of digits as n. For example, if n is 2345, then
//tens_in_n is 1000.

for (int power_of_10 = tens_in_n;
power_of_10 > 0; power_of_10 = power_of_10/10)
{

cout << (n/power_of_10) <<endl;
n=n% power_of_10;
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Recursive

version:

void write_vertical(int n)

{
i (n < 10)
cout << n << endl;
}
else //n 1s two or more digits long:
{
write_vertical(n / 10);
cout << (n % 10) << endl;
}
}

ENSC 251: Lecture Set 7
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Costs of recursion:
Just because recursive functions look simpler doesn’t make them faster.

Generally they are slower than the iterative versions and use more storage
than the equivalentiterative version.

» lterative versions may require more static code to implement the
singular function, however,

« They also require only one function call whereas the recursive version
requires multiple function calls (using multiple stack frames).

— Since the computer automatically does this for you, you don’t see
this cost

As such, using recursion can make your job easier as a programmer, but
you need to think about your application to determine if the cost of
recursion is acceptable to runtime memory usage and performance:

* Think of one example for each situation.
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As mentioned previously, recursive functions generally return values unlike
our previous example.

They can return any type of value (like any other function) and use the
same style as other recursive functions:

« One or more cases return a fixed value without using any recursive calls
(the base case/stopping case(s))

« At least one case returns a value computed in terms of a recursive call
of the same function using a smaller value/set of values.

The next example uses recursion to calculate 7nt y = power(2, 3);
(2° = 8)

The definition of this function is based on the equation x" = x™1 * x; and the
fact that x0 = 1;
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//Program to demonstrate the recursive function power.
#include <iostream>

#include <cstdlib>

using namespace std;

int power(int X, int n);
//Precondition: n > = 0.
//Returns x to the power n.

int main( )

{
for (int n = 0; n < 4; n++)
cout << "3 to the power " << n
<< " 1s " << power(3, n) << endl;
return 0;
What happens when: )
-  power(2, 0)7? //uses iostream and cstdlib:
int power(int X, int n)
- power(2, 1)? {
if (n < 0)
{
cout << "Illegal argument to power.\n";
exit(l);
}
if (n > 0)
return ( power(x, n - 1) * x);
else // n ==
return (1);



//Program to demonstrate the recursive function power.
#include <iostream>

#include <cstdlib>

using namespace std;

int power(int X, int n);
//Precondition: n > = 0.
//Returns x to the power n.

int main( )

{

for (int n = 0; n < 4; n++)

cout << "3 to the power " << n

<< is << power(3, n) << endl;
o return 0;
What about our original 4
power(2, 3);? //uses iostream and cstdlib:
int power(int X, int n)
{
if (n < 0)
{
cout << "Illegal argument to power.\n";
exit(1l);
}
if (n > 0)
return ( power(x, n - 1) * x);
else // n ==
return (1);



. power(2, 3) is power(2, 2) * 2
What about our original power(2, 2) is power(2, 1) * 2

power(2, 3);7 Recall: hower(2, 1) is power(2, 0) * 2
power(2, 0) is 1 (stopping case)

Sequence of recursive calls How the final value is computed
| 1

power(2,0) ) *2

Start Here power(2, 3) is 8 4



When designing recursive functions, things to keep in mind:

Other than doing a quick check that your stack won’t overflow for the
largest expected input values, you don’t need to worry about the runtime
operations of the stack and suspended computations (the computer does
this for you).

Recursive functions need to satisfy the following criteria:
1. There is no possibility of infinite recursion.
2. Each base case/stopping case returns the correct value for that case.

3. Forthe recursive cases, if all recursive calls return the correct value,
then the final value returned by the function is the correct value.

Note: If all recursive calls return the correct value, then the final value
returned by the function will be correct.

* (What does this remind you of?7?7?)
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Recursive functions need to satisfy the following criteria:
1. There is no possibility of infinite recursion.
2. Each base case/stopping case returns the correct value for that case.

3. Forthe recursive cases, if all recursive calls return the correct value,
then the final value returned by the functionis the correct value.

1. To ensure there is no infinite recursion, you need to make sure your
recursive case(s) properly decompose your problem into a sub-problem
that will eventually reach a base case

* For example: with the power function, we kept decreasing the integer
exponent by one so that it would eventually reach zero)
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Recursive functions need to satisfy the following criteria:
1. There is no possibility of infinite recursion.
2. Each base case/stopping case returns the correct value for that case.

3. Forthe recursive cases, if all recursive calls return the correct value,
then the final value returned by the functionis the correct value.

2. Think carefully about your problem: is there only one base case? Either
way, make sure that the correct value is returned in all cases

« For example: with the power function, the only base case is when the
exponent equals zero as the correct value for x0 = 1;
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Recursive functions need to satisfy the following criteria:
1. There is no possibility of infinite recursion.
2. Each base case/stopping case returns the correct value for that case.

3. Forthe recursive cases, if all recursive calls return the correct value,
then the final value returned by the functionis the correct value.

3. Depending on the nature of the computation, there may be one or more
recursive cases. Make sure that your solution is valid for the entire set of
possible input values.

* For example: with the power function, the only recursive case is when
n>0; in that case, you want to return power (x, n-1) * x;

Think: How would you prove this to yourself?
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Recursive functions need to satisfy the following criteria:
1. There is no possibility of infinite recursion.
2. Each base case/stopping case returns the correct value for that case.

3. Forthe recursive cases, if all recursive calls return the correct value,
then the final value returned by the functionis the correct value.

Final notes, the above conditions basically apply to recursive functions that
do not return values (i.e. void return values), except:

1. There is no possibility of infinite recursion.

2. Each base case/stopping case performs the correct action for that
case.

3. For the recursive cases, if all recursive calls perform their actions
correctly, then the final operation performed by the original
function call is correct.
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Binary search algorithm using recursion.
This algorithm searches a sorted array for a specified value.

Instead of searching every single array entry for the value or searching the
array in sequence until you have passed the point at which the value is
stored, we will be using a traditional “binary search” algorithm.

Our algorithm will have two call-by-reference parameters:
-found — a boolean parameter that will be set to true if the value is found

-location — an integer value that will be set to the index of the value’s
location if it is found.

So the pre and post conditions are:

Precondition: a[0] through a[final_index] are sorted in increasing
order.

Postcondition: if key is not one of the values a[0] through a[final_
index], then found == false; otherwise, a[location] == key
and found == true.
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Binary search algorithm using recursion.

A binary search of a sorted list assumes you can subdivide the problem into
two parts and consider the two sub-problems independently.

found = false; //so far.

mid = approximate midpoint between 0 and final_index;

1T (key == a[mid])

{

found = true;
location = mid;

}
else 1f (key < a[mid])
search a[0] through a[mid - 1];
else 1f (key > a[mid])
search a[mid + 1] through a[final_index];
If the value you are searching for (the key) is in a sorted list, it will either be

at the mid-point, in the first half of the list or the second half of the list.

« This first step has either solved the problem or reduced our search
space by half
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Binary search algorithm using recursion.

The smaller search space can now be searched recursively using the same
algorithm. However, we need to be able to adjust our search space
window, so we need two additional parameters (first and last)

To search a[first] through a[last] do the following:
found = false; //so far.

mid = approximate midpoint between first and last;
17 (key == a[mid])

{

found = true;
Tocation = mid;
}
else 1f (key < a[mid])
search a[first] through a[mid - 1];
else 1 (key > a[mid])
search a[mid + 1] through a[last];
By adding the parameters first and last to our function call, we can
initially set their values to 0 and £final index and then adjusttheir value

with each recursive function call to shrink the search space.
ENSC 251: Lecture Set 7 42



Binary search algorithm using recursion.
What do we do if the number isn’tin the list?

Does this code have the necessary base case?

To search a[first] through a[last] do the following:
found = false; //so far.

mid = approximate midpoint between first and last;
1 (key == a[mid])
{

found = true;

Tocation = mid;
}
else 1f (key < a[mid])

search a[first] through a[mid - 1];
else 1 (key > a[mid])

search a[mid + 1] through a[last];
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Final pseudocode: We specify the last base case by recognizing that if the
value of £irst ever becomes larger than last, then there is nowhere left

to search.

int a[Some_Size_Value],

Algorithm to search a[first] through a[last]

1
2

//Precondition:
//al[first]<= a[first + 1] <= a[first + 2] <= ... <= a[last]

To locate the value key:

Ooo~NOYUVT DS WN

it (first > last) //A stopping case
found = false;
else
{
mid = approximate midpoint between first and last;
1t (key == a[mid]) //A stopping case
{
found = true;
location = mid;
}
else 1f key < a[mid] //A case with recursion
search a[first] through a[mid - 1];
else 71f key > a[mid] //A case with recursion
search a[mid + 1] through a[last];



Actual

code:

//Program to demonstrate the recursive function for binary search.

#include <iostream>
using namespace std;
const int ARRAY_SIZE = 10;

void search(const int a[], int first, int last,

//Precondition: a[first] through a[last] are sorted in increasing
//Postcondition: if key is not one of the values a[first] through
//then found == false; otherwise, a[location] == key and found ==

int key, bool& found, 7nt& location);

int main( )

{

int a[ARRAY_SIZE];

constint final_index = ARRAY_SIZE - 1;
int key, location;

bool found;

cout << "Enter number to be located: ";
cin >> key;

search(a, 0, final_index, key, found, location);

i (found)
cout << key << " is 1in index location "
<< location <<endl;

else
cout << key <<

return 0;

is not in the array." <<endl;

order.
al[last],
true.
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Actual
void search(const int al[], int first, int last,

code: int key, bool& found, 7nt& location)
int mid;
1 (first > last)
{
found = false;
}
else
{
mid = (first + Tast)/2;
1t (key == a[mid])
{
found = true;
lTocation = mid;
}
else 1f (key < a[mid])
{
search(a, first, mid -1, key, found, location);
}
else 1f (key > a[mid])
{
search(a, mid + 1, last, key, found, location);
}
}
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Assuming the key is 63, let’s look at how the function executes:

a[0]
a[1]
a[2]
a[3]
af4]
a[5]
a[6]
a[7]
a[8]

al9]

Next...

15

20

35

41

57

63

75

80

85

90

- first ==

- Mid =

(0 + 9)/2
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a[0]
a[1]
a[2]
a[3]
af4]
a[5]
a[6]
a[7]
a[8]

al9]

15

20

Not in

35 | ———

41

57

63

75

80

85

90

this half

- first ==

(5 + 9)/2

-—— Jast == 9
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Assuming the key is 63, let’s look at how the function executes:

alo]
a[1]
a[2]
al[3]
af4]
al[5]
a[6]
a[7]
al[8]

al9]

15

20

35

41

57

63

75

80

85

90

From the previous iteration

mid = (5 + 6)/2 whichis
- first == a[mid] is a[5] == 63
found = true;
~-—— Jast == Tocation = mid;
Not here
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Binary search algorithm using recursion.

Checking our algorithm:

1. There is no infinite recursion: Since the search space is reduced during
each recursive call, this function will terminate.

2. Each stopping case performs the correct action: There are two stopping
cases eitherkey == a[mid] or first > last.

1. If first > last, there are no array elements between a[ first]

and a[last] so the key is notin the array. In this case, the
function correctly returns found setto false and the function

terminates.

2. Ifkey == a[mid] the algorithm sets found equal to true

Thus both stopping cases are correct.
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Binary search algorithm using recursion.
Checking our algorithm:

3. For each recursive case, if all recursive functions perform the correct
actions, the initial function call will perform the correct actions. There
are two cases for recursive calls: when key < a[mid] and when
key > a[mid]

1. Case 1: key < a[mid]. Since the listis sorted, we know that if the
if the key is in the list, it must be one of the elements ina[first]
through a[mid-1 ], hence the recursive call:

search(a, first, mid - 1, key, found, Tocation);

2. Case 1: key > a[mid]. Since the listis sorted, we know that if the
if the key is in the list, it must be one of the elements ina[mid+1]
through a[ last ], hence the recursive call:

search(a, mid + 1, last, key, found, location);
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Binary search algorithm using recursion.

Since this solution passes all three criteria, we can be satisfied that the
recursive function definition is good.

Something else to keep in mind: We don’t have to use this function to
search an entire search space. Based on its definition, we can use it to
search any contiguous subspace as well.
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Efficiency of Binary search algorithm (Hint: Intro to Complexity Analysis)

A binary search is generally much faster than trying to search all of the
array elements in order because it initially reduces the search space by
half, and then by an additional quarter, and then by an eighth (and so on
and soon...).

For an array of 100 elements, the binary search will never need to compare
more than 7 array elements to the key (100 -> 50 ->25->12->6->3 ->1).

« Conversely if we simply searched in order, we could have to compare all
100 elements.

What's even better is the larger the array, the greater the savings will be.

For an array of 1000 elements, a binary search will have to compare 10
elements, where as a normal sequential search will require (on average)
500 elements (with a potential maximum of 1000 comparisons).
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An iterative version of the Binary Search Algorithm:

Recall our original recursive function definition:

void search(const int a[], int first, int last,

int key, bool& found, int& location);
//Precondition: a[first] through a[last] are sorted in increasing order.
//Postcondition: i1f key is not one of the values a[first] through a[last],

//then found == false; otherwise, a[location] == key and found == true.

Now look at the iterative function definition:

void search(const int a[], int low_end, int high_end,

int key, bool& found, 7nt& location);
//Precondition: a[low_end] through a[high_end] are sorted in increasing

//order.
//Postcondition: If key is not one of the values a[low_end] through

//alhigh_end], then found == false; otherwise, a[location] == key and
//found == true.
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An iterative version of the Binary Search Algorithm (function

Implementatlon): void search(const int a[], int low_end, int high_end,
int key, bool& found, 7nt& location)

{

int first = Tow_end;
int Tast = high_end;
int mid;

found = false; //so far
while ( (first <= last) && !(found) )

{
mid = (first + Tast)/2;
1t (key == a[mid])
{
found = true;
location = mid;
}
else 1f (key < a[mid])
{
Tast = mid -1;
}
else 1f (key > a[mid])
{
first = mid + 1;
}
}



Recursive member functions

Member functions can also be recursive (just like normal functions).
Remember the class BankAccount?

The following example overloads the member function named update ()

« The first version has no arguments and posts one year of simple interest
to the back account balance.

 The other (new) version of update () takes an integer argument of
some number of years and updates the account by posting the interest
for that many years. This version is recursive and has one parameter
called years.
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Recursive member functions

The algorithm for update (years) is:
If the number of years is 1, then //Base case
Call the version of update with no arguments
Else if the number of years is greater than 1 //Recursive case

)

Call update(years-1) to calculate the previous years
interest and then call the version of update with no
arguments to calculate the interest accumulated for one
additional year

This is based on the idea that the interest over x years is equal:

X years interest = (x-1) years interest + one years interest;
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class BankAccount

{

public:
BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

BankAccount(int dollars, double rate);
//Initializes the account balance to $dollars.00 and
//initializes the interest rate to rate percent.

BankAccount( );
//Initializes the account balance to $0.00 and
//initializes the interest rate to 0.0%.

Two different functions
with the same name

void update( ); =
//Postcondition: One year of simple interest
//has been added to the account balance

void update(int years);
//Postcondition: Interest for the number of years given has been added to the
//account balance. Interest is compounded annually.

double get_balance( );
//Returns the current account balance.

double get_rate( );
//Returns the current account interest rate as a percentage.

void output(ostream& outs);

//Precondition: If outs is a file output stream, then outs has already

//been connected to a file.

//Postcondition: Balance & interest rate have been written to the stream outs.
private:

double balance;

double interest_rate;

double fraction(double percent); //Converts a percentage to a fraction. 57
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int main( )

{
BankAccount your_account(100, 5);
your_account.update(10);

cout.setf(ios::fixed);

cout.setf(ios::showpoint);

cout.precision(2);

cout << "If you deposit $100.00 at 5% interest, then\n"
<< "in ten years your account will be worth $"
<< your_account.get_balance( ) << endl;

return 0;
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All other member function definitions are the same as previously given.

void BankAccount: :update( )
{

}

balance = balance + fraction(interest_rate)*balance;

. : Overloading (that is, calls
void BankAccount::update(int years) 0 another function with
{ the same name)

if (years == 1) o

{ Ar////7
update( ); |

} /
else 1f (years > 1) Recursive function call /
{ _—
/
update(years - 1); <« /
update( ); = /
}

}
Let’'s check our three criteria.
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All other member function definitions are the same as previously given.

void BankAccount: :update( )

{
balance = balance + fraction(interest_rate)*balance;
}

Overloading (that is, calls
void BankAccount::update(int years) Overloacing (that 5 cal
{ the same name)

1f CYearS D , /
update( ); ﬂ
} /
else i1f (years > 1) Rocursive function call |
update(years - 1); <«
update( );
}
}

1. There is no infinite recursion: Years is repeatedly reduced by 1 until it is
equal to 1 (the stopping/base case).
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All other member function definitions are the same as previously given.

void BankAccount: :update( )

{
balance = balance + fraction(interest_rate)*balance;
}

Overloading (that is, calls
void BankAccount::update(int years) t0 another function with
{ the same name)

Ef (years == 1) <J,,,ff/fxfi’”7" ’

I

update( ); «— :

}

else if (years > 1) Recursive function call /

h e )
update(years - 1); <«
update( ); =

}

}

2. Each stopping case performs the correct action for that case: In this case
the base case calculates one year’s interest (which is correct).
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All other member function definitions are the same as previously given.

void BankAccount: :update( )

{
balance = balance + fraction(interest_rate)*balance;
h
Overloading (that is, calls
void BankAccount::update(int years) Jreneadng (e e
| the same name)
17 (years == 1) &
update( ); <«— ‘
}
else 1t (years > 1) Pecursive function call
update(years - 1); <«
update( ); =
}
}

3. For each recursive case, the recursive call is performed correctly: when
years>1, because the recursive call posts years-1 worth of interest and
then adds in the additional year’s worth of interest using a verified function

for calculating one year of interest. 62



All other member function definitions are the same as previously given.

void BankAccount: :update( )

{
balance = balance + fraction(interest_rate)*balance;
h
Overloading (that is, calls
void BankAccount: :update(int years) + 2nother function with
| the same name)
1f (years == 1) = |
{ - ——_—‘~"‘~-———#-~’—P‘~~—_#—— ###### - /
update( ); <«—
} ,
e e Recursive function call /
update(years - 1); <«
update( ); =
}
}

Remember: Even though these overloaded functions appear to have the
same name, the compiler recognizes them as different (based on the arity

of their parameters).
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We could have done the same version of update if the original update
function (with no input parameters) had been called post one year();.

void BankAccount: :update(int years)

{
1T (years == 1)
{
post_one_year();
}
else 11 (years > 1)
{
update(years - 1);
post_one_year();
}
}
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Important Note:

Although our example used recursion with overloading, they are unrelated.

 When you overload a function you are describing two different functions
with the same name (but different types/arity of input parameters).

* Recursive functions must include a call to a function with the exact same
definition (as opposed to one that happens to have the same name)

Do not confuse the two.

In closing, recursive solutions often require you to solve a more general
problem than the given task

This is often necessary to enable proper recursive calls as the smaller
problems may not be exactly the same as the given task.
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Review Questions for Slide Set 7

What is the definition of recursion?

What are the benefits of designing a recursive solution to a
function?

When you create a recursive function, what do you need to
worry about?

How do you design a recursive function?

How do you enable a recursive function to reach a base
case?

If you do not include a base case in your recursive function,
what will happen?

Why do you have to worry about stack overflows with
recursion?
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Review Questions for Slide Set 7

Is there any task that needs to be solved recursively and
cannot be solved iteratively? If no, why use recursion?

Which is faster iterative or recursive solutions? Why?

What are the three criteria that all recursive functions need to
satisfy?

How does the binary search algorithm work? What is the
benefit of a binary search?

Can you use recursive functions inside of class definitions?
Are recursive functions and overloaded functions related?
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