Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set 8

=7 Date: October 21, 2015

What we're learning in this Slide Set:

 Inheritance — Part |l

ENSC 251: Lecture Set 8

Textbook Chapters:

Relevant to this slide set:
 Chapter 15

Coming soon:
 Chapter 16
 Chapter 17

ENSC 251: Lecture Set 8

We previously talked about some of the basics of inheritance and
derived classes (Recall chapter 10)

Basically, inheritance allows you to create a very general form of a
class and then later derive more specialized versions of the class that
inherit all the properties of the previous class.

Recall, our discussions of the BankAccount classes and derived
classes previously.

ENSC 251: Lecture Set 8

Remember, inheritance is the process whereby a new derived class is
created from a base class

Alternately, the base class may also be called the parent class and the
derived class the child class.

Derived classes include all the member variables and functions of the
base class

« They can also have additional member functions and/or variables
that are particular to the derived class.

ENSC 251: Lecture Set 8 5

Example of Inheritance Hierarchy for Home Automation Devices

Device
base string model
or string serialNumber
A A
inherits status() inherits model and
and openClose() serialNumber from
from Device class IS-A IS-A Device class
|
v derived or child class derived or child class i
DoorDevice ThermostatDevice
string status() string status()
void openClose() void setTemp (int t)

Note that a derived class can either redefine or override a base class
function (e.g. status()).

ENSC 251: Lecture Set 8

Another example:
Think about the predefined classes ifstreamand istream.

e ifstreamis a derived class from the istreamclass by adding
functions such as open and close

e cin belongs to the class of all input streams (i.e. istream), but not
to the input-file streams (ifstream).

— It lacks the member functions open and close for the derived
class ifstream

ENSC 251: Lecture Set 8 7

Let’s look at an example of a record keeping program with
records for employees (both salaried and hourly
employees).

The common denominator is that they are all employees,
however:

One subset is paid an hourly wage, and

The other subset is paid a fixed wage per month (or week)

Let's look at an example implementation of the base
employee class

ENSC 251: Lecture Set 8

//This is the header file employee.h.
//This is the interface for the class Employee.
//This is primarily intended to be used as a base class to derive
//classes for different kinds of employees.
E3 I . #ifndef EMPLOYEE_H
ase Class. #define EMPLOYEE H

#include <string>

What iS miSSing using namespace std;

namespace employeessavitch

from the {

class Employee

employee class ¢
public:
D Employee();
Interface) Employee(string the_name, string the_ssn);
string get_name() const,
string get_ssn() const;
double get_net_pay() const;
void set_name(string new_name);
void set_ssn(string new_ssn);
void set_net_pay(double new_net_pay);
void print_check() const;
private:
string name;
string ssn;
double net_pay;
s

}Y//employeessavitch
#endif //EMPLOYEE_H 9

//This is the file: employee.cpp.

//This is the implementation for the class Employee.

//The interface for the class Employee is in the header file employee.h.
#include <string>

#include <cstdlib>

#include <iostream>

#include “employee.h”

using namespace std;

namespace employeessavitch
{
Employee: :Employee() : name(“No name yet”), ssn(“No number yet”), net_pay(0)
{
//deliberately empty

}

Employee: :Employee(string the_name, string the_number)
: name(the_name), ssn(the_number), net_pay(0)

{
//deliberately empty
}
string Employee::get_name() const
{
return name;
}

string Employee::get_ssn() const

{
}

return ssn;

double Employee::get_net_pay() const

{
return net_pay,;
}
void Employee::set_name(string new_name)
{
name = new_name;
}
void Employee::set_ssn(string new_ssn)
{
SSn = new_ssn;
}
void Employee::set_net_pay (double new_net_pay)
{
net_pay = new_net_pay;
}
void Employee::print_check() const
{
cout << “\nERROR: print_check FUNCTION CALLED FOR AN \n”
<< “UNDIFFERENTIATED EMPLOYEE. Aborting the program.\n”
<< “Check with the author of the program about this bug.\n”;
exit(1l);
}
}//employeessavitch

Note: The print check function prints an error because it
does not know how to print a check (cheque) without
knowing the employee type

Now our derived classes can inherit the member variables
and member functions

The example places the class Employee and the two
derived classes in the same namespace.

C++ does not require them to be in the same namespace,
but since they are related, it makes sense to keep them
together.

The derived class has a similar definition to the base class

but adds a colon and the keyword public as well as the
name of the base class to the first line of the definition

class HourlyEmployee : public Employee

{

ENSC 251: Lecture Set 8 12

Derived class:
Hourly

Employee

//This is the header file hourlyemployee.h.
//This is the interface for the class HourlyEmployee.
#ifndef HOURLYEMPLOYEE_H

#define HOURLYEMPLOYEE_H

#include <string>
#include “employee.h”

using namespace std;
namespace employeessavitch

{
class HourlyEmployee : public Employee
{
public:
HourlyEmployee();
HourlyEmployee(string the_name, string the_ssn,
double the_wage_rate, double the_hours);
void set_rate(double new_wage_rate);
double get_rate() const;
void set_hours(double hours_worked);
double get_hours() const;
void print_check();
private: \ You only list the declaration of an
doubTe wage_rate; inherited member function if you
double hou r'; ; want to change the definition of the
}: function.
}Y//employeessavitch

#endif //HOURLY EMPLOYEE_H

13

//This is the header file salariedemployee.h.

//This is the interface for the class SalariedEmployee.
#ifndef SALARIEDEMPLOYEE_H

#define SALARIEDEMPLOYEE_H
Derlved CIaSS: #include <string>

#include “employee.h”

Salaried

using namespace std;

Employee

namespace employeessavitch

{

class SalariedEmployee : public Employee

{
public:
SalariedEmployee();
SalariedEmployee (string the_name, string the_ssn,
double the_weekly_salary);
double get_salary() const;
void set_salary(double new_salary);
void print_check();
private:

double salary;//weekly
}s

}Y//employeessavitch

#endif //SALARIEDEMPLOYEE_H

14

Some important notes about derived classes (assume
public inheritance):

Derived classes automatically access all the member variables and
functions of the base class

 However, derived classes can only directly access the public
member variables and functions.

« Like all other classes, derived classes are not allowed to directly
access private member variables or use private member functions of
the base class

— But every object of the derived class (HourlyEmployee,
SalariedEmployee) has these private member variables. This is
why you need accessor and mutator functions

(We’'ll talk about protected members later.)

ENSC 251: Lecture Set 8 15

Some important notes about derived classes (assume
public inheritance):

Derived classes can also add additional member variables (e.g. salary)
and functions (get_salary) to their definition

« All member functions and member variables added directly to the
derived class can be accessed directly by that class

You do not give the declarations of the inherited member functions as
part of the derived class definition unless you want to change them.

This is why the print_check function from the base class was repeated
in both of our derived classes.

We also have to pay special attention to the constructors for derived
classes (but we'll look at that later).

The implementation file for the derived class defines all of the added
member functions (and does not include definitions for inherited
member functions unless the definition has changed in the derived

class). ENSC 251: Lecture Set 8 16

Some important notes about derived classes (assume public
inheritance):

Remember, Base and Derived classes are commonly referred to as Parent
and Child classes.

If a class is a parent of a parent of a parent of another class, it is often
called an ancestor class.

Furthermore, if class A is an ancestor class of class B, then class B can
also be referred to as a descendant of class A.

Derived classes inherit all the member variables and all ordinary member
functions of the base class (some specialized functions such as
constructors are not automatically inherited).

As you will see, by having the common base class, Employee, you are
saved from having to write a significant amount of identical code for twice
for the two derived classes.

As such, inheritance allows you to reuse the code in the Employee class

ENSC 251: Lecture Set 8 17

The definition of an inherited member function can be changed in the
definition of a derived class so that it has a different meaning for a
derived class than the base class:

This is called redefining the inherited member function

For example the member function print_check() is redefined for both
the derived classes

To redefine a member function, include it in the class definition of the
derived class and give it a new definition (as you would with any
member function added to the derived class).

Let’s look at the implementation of the derived class Hourly Employee

ENSC 251: Lecture Set 8 18

//This is the file: hourlyemployee.cpp

//This is the implementation for the class HourlyEmployee.
//The interface for the class HourlyEmployee is in

//the header file hourlyemployee.h.

#include <string>

#include <iostream>

#include “hourlyemployee.h”

using namespace std;

namespace employeessavitch

{

HourlyEmployee: :HourlyEmployee() : Employee(), wage_rate(0), hours(0)
{
//deliberately empty

}

HourlyEmployee: :HourlyEmployee(string the_name, string the_number,
double the_wage_rate, double the_hours)
: Employee(the_name, the_number), wage_rate(the_wage_rate), hours(the_hours)

{
//deliberately empty

}
void HourlyEmployee::set_rate(double new_wage_rate)
{
wage_rate = new_wage_rate;
}

double HourlyEmployee::get_rate() const
{

return wage_rate;

}

void HourlyEmployee: :set_hours(double hours_worked)

{
hours = hours_worked;
}
double HourlyEmployee::get_hours() const
{
return hours;
}
We have chosen to set net_pay as
part of the print_check function
since that is the question. But note
void HourlyEmployee::print_check() that C++ allows us to drop the const
{ in the function print_check when
set_net_pay (hours * wage_rate); we redefine it in a derived class.
cout << “\n__ _ \n”’;
cout << “Pay to the order of “ << get_name() << endl;
cout << “The sum of “ << get_net_pay() << “ Dollars\n”;
cout << M \n”’;
cout << “Check Stub: NOT NEGOTIABLE\n”;
cout << “Employee Number: “ << get_ssn() << endl;
cout << “Hourly Employee. \nHours worked: “ << hours
<< “ Rate: " << wage_rate << “ Pay: “ << get_net_pay() << endl;
cout << “__ \n”’;
}

}//employeessavitch

Constructors in Derived Classes
A constructor in a base class is not inherited in the derived class.

However, you can invoke a constructor from a base class within the
definition of a derived class constructor.

* This will normally meet your needs

A derived class’s constructor uses the base class’ constructorin a
special way.

Specifically, the base class constructor initializes all of the inherited
data.

So a derived class constructor begins with an invocation of the
constructor for the base class

ENSC 251: Lecture Set 8 21

There is a special syntax for invoking the base class constructorin the
derived class shown in these two examples:

HourlyEmployee: :HourlyEmployee(string the_name,
string the_number, double the_wage_rate,
double the_hours)
: Employee(the_name, the_number),
wage_rate(the_wage_rate), hours(the_hours)

{
//deliberately empty
}
HourlyEmployee: :HourlyEmployee() : Employee(), wage_rate(0),
hours(0)
{
//deliberately empty
}

The portion after the colon is the initialization section of the constructor
definition

ENSC 251: Lecture Set 8 22

There is a special syntax for invoking the base class constructorin the
derived class shown in these two examples:

HourlyEmployee: :HourlyEmployee(string the_name,
string the_number, double the_wage_rate,
double the_hours)
: Employee(the_name, the_number),
wage_rate(the_wage_rate), hours(the_hours)

{
//deliberately empty
}
HourlyEmployee: :HourlyEmployee() : Employee(), wage_rate(0),
hours(0)
{
//deliberately empty
}

The portions Employee(the name, the number) and
Employee () are invocations of two of the different constructors for the

base class Employee

ENSC 251: Lecture Set 8 23

There is a special syntax for invoking the base class constructorin the
derived class shown in these two examples:

HourlyEmployee: :HourlyEmployee(string the_name,
string the_number, double the_wage_rate,
double the_hours)
: Employee(the_name, the_number),
wage_rate(the_wage_rate), hours(the_hours)

{
//deliberately empty
}
HourlyEmployee: :HourlyEmployee() : Employee(), wage_rate(0),
hours(0)
{
//deliberately empty
}

As you can see, the syntax for invoking (calling) the base class
constructoris analogous to the syntax used to set member variables:
wage rate(the wage rate) setswage rateto the wage rate

ENSC 251: Lecture Set 8 24

There is a special syntax for invoking the base class constructorin the
derived class shown in these two examples:

HourlyEmployee: :HourlyEmployee(string the_name,
string the_number, double the_wage_rate,
double the_hours)
: Employee(the_name, the_number),
wage_rate(the_wage_rate), hours(the_hours)

{
//deliberately empty
}
HourlyEmployee: :HourlyEmployee() : Employee(), wage_rate(0),
hours(0)
{
//deliberately empty
}

Since all of the work to initialize the object’'s member variables is done
in the initialization section, the body of the constructors is empty.

ENSC 251: Lecture Set 8

25

There is a special syntax for invoking the base class constructorin the
derived class shown in these two examples:

HourlyEmployee: :HourlyEmployee(string the_name,
string the_number, double the_wage_rate,
double the_hours)
: Employee(the_name, the_number),
wage_rate(the_wage_rate), hours(the_hours)

{
//deliberately empty
}
HourlyEmployee: :HourlyEmployee() : Employee(), wage_rate(0),
hours(0)
{
//deliberately empty
}

The key point: You should always include an invocation of one of the
base class constructors in the initialization section of a derived class
constructor so that all of the member variables can be initialized.

ENSC 251: Lecture Set 8

26

If a constructor definition for a derived class does not include an
invocation of a constructor for the base class, then the default version
of the base class constructor will automatically be invoked.

So this:
HourlyEmployee: :HourlyEmployee() : wage_rate(0), hours(0)

{
//deliberately empty

}
Is equivalent to this:

HourlyEmployee: :HourlyEmployee() : Employee(), wage_rate(0),
hours (0)

{
//deliberately empty

}

However, style wise, it is better to be explicit with respect to calling the
base class constructor for readability.

ENSC 251: Lecture Set 8 27

Final Notes on constructors for derived classes:

Remember: a derived class object has all the member variables of the
base class (even if they are private and cannot be directly accessed).

All of these member variables need to be allocated memory and should
be initialized.

This allocation of memory for the inherited member variables must be
done by a constructor for the base class

It also provides an easy way to initialize these variables.

The call to the base class constructor (even if it is the default one) is
the first action taken by a derived class (If there is no default
constructor for the base class, that is an error condition).

If class C is derived from class B, which is derived from class A, then
when an object of class C is created, first the constructorfor class A is
called, then a constructor for class B is called and finally the remaining
class C constructor actions are taken.

ENSC 251: Lecture Set 8 28

Object’s of Derived Classes have more than one type:

Object’s of derived classes can be used anywhere an object of a base
class can be used. For example:

* You can use the object of a derived class in lieu of an object of the
base class as an argument for a function.

« You can assign an object of the derived class type to an object of
base class type.

NOTE: You cannoft assign an object of a base class type to an object
of a derived class type.

More generally, an object of a class type can be used anywhere
that an object of any of its ancestor classes can be used.

Hint: Think of our HourlyEmployee derived class and the Employee
base class.

ENSC 251: Lecture Set 8 29

Use of Private Member Variables from the Base Class in a Derived Class

Remember: Even though derived classes include the member variables
from the base class, you cannot directly access (by name) a private
member variable in the definition of a member function outside of the
base class even if that member function is part of a derived class.

This makes accessor and mutator functions very important. For example,
we can initialize the variable joe’s name as follows:

HourlyEmployee joe(“Josephine”, “123-45-6789”, 0, 0);
But to change the name, we need a mutator function:

joe.set_name(“Mighty-Joe™);

ENSC 251: Lecture Set 8 30

Use of Private Member Variables from the Base Class in a Derived Class

This means that if we want to redefine the print_check() function, the
following is illegal:

void HourlyEmployee: :print_check()

{ llegal use of net_pay
net_pay = hours * wage_rate;

Instead we need to use the accessor and mutator functions of the base
class as shown here:

void HourlyEmployee::print_check()
{

set_net_pay(hours * wage_rate);
cout << “\n___ _ _ \n";

cout << “Pay to the order of “ << get_name() << endl;
cout << “The sum of “ << get_net_pay() << “ Dollars\n”;

ENSC 251: Lecture Set 8 31

Use of Private Member Variables from the Base Class in a Derived Class

It may seem odd that you cannot directly access private member
variables of a base class in a derived class.

However, as part of encapsulation, we want to hide private details of
classes and not make them accessible to users.

« This is particularly helpful if the base class gets redefined/updated.

Otherwise, all we would have to do to access the private member
variables of a class would be to create a derived class and access itin a
member function of the derived class.

« This would make private member variables accessible to anyone.

Besides, intentional subversion and adversarial situations, direct access
to private member variables of a class could also result in a user changing
the values by mistake or in an inappropriate way

« Mutator and accessor functions prevent this.

ENSC 251: Lecture Set 8 32

Private Member Functions from the Base Class in a Derived Class

Since derived classes cannot directly access any private member of an
object, this means that private member functions are effectively not
inherited as they are not available for use.

Since private functions should be “helper” functions, this should not be a
problem.

* |f you really need to use the function in a derived class, then it should
be moved to the public section of the base class declaration.

We will now discuss an alternative to labelling class members as private
and public that provide some other alternatives.

ENSC 251: Lecture Set 8 33

Using the protected qualifier

Since derived classes cannot directly access any private member of an
object, there is an alternate classification for member variables that let
them be accessed by name but only in a derived class (and not anywhere
else).

Using the qualifier protected before a member variable or member
function in a class has the same effect as labelling them as private
members outside derived classes.

« However, inside a derived class, these variables and functions can be
accessed by name.

ENSC 251: Lecture Set 8 34

Using the protected qualifier

For example, what would happen if all of the private member variables in
the Employee class were labelled as protected instead of private?

How would this effect our definition of the redefined print_check()
function?

void HourlyEmployee: :print_check()
//0nly works if the member variables of Employee are marked
//protected instead of private.

{

net_pay = hours * wage_rate;

cout << “\n____ .~~~ \n”;
cout << “Pay to the order of “ << name << endl;
cout << “The sum of “ << net_pay << “ Dollars\n”;

cout << \n”;
cout << “Check Stub: NOT NEGOTIABLE\n”;
cout << “Employee Number: “ << ssn << endl;

cout << “Hourly Employee. \nHours worked: “ << hours

<< “ Rate: “ << wage_rate << “ Pay: “ << net_pay
<< endl;
cout << “__ _ \n”’;

} 35

Using the protected qualifier

Also note that if you derive class C from class B from class A and label the
member variables of class A as protected instead of private:

* Not only will they be accessible by name in class B’s member function
definitions,

« But they will also be accessible by name in class C’'s member function
definitions.

ENSC 251: Lecture Set 8 36

Using the protected qualifier

Many view using the protected qualifier as bad style and believe that it
should not be used.

« It compromises the principle of encapsulation (hiding the class
Implementation and that all member variables should be marked
private).

* Instead they believe that these inherited variables should only be
accessed by accessor and mutator functions.

However, this encapsulation comes at a cost, so why would you choose to
use the bad style of labelling variables as protected?

ENSC 251: Lecture Set 8 37

Redefining member functions

As previously shown in our example, the HourlyEmployee class and the
SalariedEmployee class both redefine the function print_check (differently)
to be used as appropriate in their derived classes.

When a function is redefined, its declaration must be listed in the definition
of the derived class even though the declaration is the same as the base

class.

Let’s look at the implementation of the SalariedEmployee class...

ENSC 251: Lecture Set 8 38

//This is the header file salariedemployee.h.

//This is the interface for the class SalariedEmployee.
#ifndef SALARIEDEMPLOYEE_H

#define SALARIEDEMPLOYEE_H

BUt f|rSt, we #include <string>
#include “employee.h”

recall the class

using namespace std;

definition for the

namespace employeessavitch

{
Salaried
class SalariedEmployee : public Employee
{
Employee public:
SalariedEmployee();
ClaSS SalariedEmployee (string the_name, string the_ssn,
double the_weekly_salary);
double get_salary() const;
void set_salary(double new_salary);
void print_check();
private:
double salary;//weekly
s
}//employeessavitch

#endif //SALARIEDEMPLOYEE_H

39

//This is the file salariedemployee.cpp.

//This is the implementation for the class SalariedEmployee.
//The interface for the class SalariedEmployee is in

//the header file salariedemployee.h.

#include <iostream>

#include <string>

#include “salariedemployee.h”

using namespace std;

namespace employeessavitch

{

SalariedEmployee::SalariedEmployee() : Employee(), salary(0)
{
//deliberately empty
}
SalariedEmployee::SalariedEmployee(string the_name, string the_number,
double the_weekly_salary)
: Employee(the_name, the_number), salary(the_weekly_salary)

{
//deliberately empty
}
double SalariedEmployee::get_salary() const
{
return salary;
}

void SalariedEmployee::set_salary(double new_salary)

{

salary = new_salary;

}

Part 2 of SalariedEmployee Class Implementation:

void SalariedEmployee: :print_check()

{
set_net_pay(salary);
cout << “\n___ \n”’;
cout << “Pay to the order of “ << get_name() << endl;
cout << “The sum of “ << get_net_pay() << “ Dollars\n”;
cout << “ \n"";
cout << “Check Stub NOT NEGOTIABLE \n”;
cout << “Employee Number: “ << get_ssn() << endl;
cout << “Salaried Employee. Regular Pay: *“
<< salary << endl;
cout << “__ \n”;
}
}Y//employeessavitch

41

An example program using the two Derived classes:

#include <iostream>

#include “hourlyemployee.h”
#include “salariedemployee.h”
using std::cout;

using std::endl;

using namespace employeessavitch;

int main()

{
HourlyEmployee joe;
joe.set_name(“Mighty Joe”);
joe.set_ssn(“123-45-6789");
joe.set_rate(20.50);
joe.set_hours(40);

cout << “Check for “ << joe.get_name()

<< “ for “ << joe.get_hours() << “ hours.\n”;
joe.print_check();
cout << endl;

SalariedEmployee boss(“Mr. Big Shot”, “987-65-4321", 10500.50);
cout << “Check for “ <<boss.get_name()<< endl;
boss.print_check();

The functions set_name, set_ssn, set_rate, set_hours,
and get_name are inherited unchanged from the class Emp1oyee. The
return 0; function print_check is redefined. The function get_hours was added
} to the derived class Hour lyEmployee.

A sample dialogue from the example program:

Check for Mighty Joe for 40 hours.

Pay to the order of Mighty Joe

The sum of 820 Dollars

Check Stub: NOT NEGOTIABLE

Employee Number: 123-45-6789

Hourly Employee.

Hours worked: 40 Rate: 20.5 Pay: 820

Pay to the order of Mr. Big Shot
The sum of 10500.5 Dollars

Check Stub NOT NEGOTIABLE
Employee Number: 987-65-4321
Salaried Employee. Regular Pay: 10500.5

Redefining member functions

Note: Redefining a function definition in a derived class is different from
overloading a function name:

When you redefine a function definition, the new function definition given in
the derived class has the same number and types of parameters as in the
base class.

If the new function in the derived class were to have a different number of
parameters or a parameter of a different type from the function in the base
class, then the derived class would have both functions (that would be
overloading).

ENSC 251: Lecture Set 8 44

Redefining member functions

Note: Redefining a function definition in a derived class is different from
overloading a function name:

For example, if we added the following function declaration to the definition
of the class HourlyEmployee:

void set_name(string first_name, string last_name);

The class would now have this two-argument function set_name and it
would inherit the Employee class one argument function:

void set_name(string new_name);

This is overloading.

ENSC 251: Lecture Set 8 45

Redefining member functions

Note: Redefining a function definition in a derived class is different from
overloading a function name:

Conversely, both the Employee class and the HourlyEmployee class have
the same definition:

void print_check();

As such, the class HourlyEmployee only has one function named
print_check() and its definition of the function is different from the original
definition in the base class Employee.

In this case, the function print_check() has been redefined.

ENSC 251: Lecture Set 8 46

Signature

A function’s signature is the function’s name with the sequence of types
in the parameter list, not including the const keyword and not including
the ampersand (&). When you overload a function name, the two
definitions of the function name must have different signatures using
this definition of signature.’

If a function has the same name in a derived class as in the base class but
has a different signature, that is overloading, not redefinition.

Some compilers may allow overloading on the basis of const versus no
const. For now assume that they don’t, (and do not worry about it).

ENSC 251: Lecture Set 8 47

Redefining member functions

What if you redefine a function in a derived class, but at some point want to
use the original function defined in the base class for a derived class
object?

You are able to do this using the scope resolution operator you use to
define class functions. For example, assume the following definitions
based on our original examples: Employee jane_e;
HourlyEmployee sally_h;
This uses the print_check() from the class Employee
jane_e.print_check();
This uses the print_check from the class HourlyEmployee
sally_h.print_check();

This uses the print_check given in the base class Employee with the
derived class object sally h
sally_h.Employee: :print_check();

ENSC 251: Lecture Set 8 48

Functions that are not inherited

If Derived is a derived class and Base is a base class, then all “normal’
functions are inherited from the Base to Derived class.

There are some “special” functions that are not inherited (e.g. constructors).
Destructors are also (effectively) not inherited (similar to private member
functions) in that you cannot call them explicitly in the Derived class.

Copy constructors are not inherited.

« Although the compiler will generate a default copy constructor if you do
not create one it will not work correctly for classes with pointers or
dynamic data in their member variables.

Therefore, derived classes are no different from any other class:

« If your class member variables involve pointers, dynamic arrays or
dynamic data, you should define a copy constructor.

ENSC 251: Lecture Set 8 49

Functions that are not inherited

The assignment operator (‘'=") is not inherited.

« |If the Base class defines an assignment operator and the Derived class
does not, the the assignment operator used by the Derived class will be
the default assignment operator that C++ generates (unless you define it
in the Derived class yourself).

This is because the assignment operator for the Base class is generally
insufficient for the Derived class.

 However, for the assignment operator to work properly for the Derived
class, generally it needs to incorporate the definitions of the assignment

operator from the Base class

Next we will talk about how to design overloaded assignment operators,
etc. for derived classes.

ENSC 251: Lecture Set 8 50

Overloading assignment operators in a Derived class

The following code gives you an outline for overloading the assignment
operator.

« Remember that an overloaded assignment operator must be defined as
a member function of the class (not a friend function).

Assuming Derived is a derived class of Base class, then:

Derived& Derived: :operator =(const Derived& right_side)

{

Base::operator =(right_side);

The remainder of the code would include the appropriate assignments for
the new member variables introduced in the Derived class definition

ENSC 251: Lecture Set 8 51

Overloading copy constructors in a Derived class

The following code gives you an outline for overloading the copy
constructor.

Assuming Derived is a derived class of Base class, then:

Derived: :Derived(const Derived& object)
: Base(object), <probably more initializations>

{

The invocation of the Base class copy constructor (i.e. Base (object))
Initializes all the inherited member variables.

« Remember that since an object of type Derived is also of type Base,
object is a legal argument of the Base class copy constructor.

Then the remainder of the code would include the appropriate assignments
for the new member variables introduced in the Derived class definition

ENSC 251: Lecture Set 8 52

Destructors in a Derived class

Similar to the Copy Constructor and assignment operator, if we assume
that the Base class has a correctly functioning destructor, then we can
assume that it can be incorporated in to the Derived class destructor.

The Derived class will automatically invoke the Base class destructor, so it
need not be explicitly called in the Derived class destructor.

Instead the Derived class destructor only needs to worry about “deleting” all
member variables (and any data they point to) that were added in the
Derived class.

The Base class destructor will delete the inherited member variables.
The order of these calls is the reverse of the constructor calls:

If class C is derived from class B is derived from class A, then when an
object of class C goes out of scope, first the destructor for class C is called,
then the destructor for class B, and finally class A’s destructor.

ENSC 251: Lecture Set 8 53

Polymorphism

Polymorphism refers to the ability to associate multiple meanings to one
function name.

However, while this general definition applies to overloaded functions,

when people generally use the word polymorphism, they are generally
referring to late binding- a specific mechanism for associating multiple
meanings to one function name.

A virtual function (in some sense) is one that may be used before itis
defined.

« This is kind of confusing, so let’'s go through a theoretical example and
then a practical example.

ENSC 251: Lecture Set 8 54

Late Binding

Let’'s assume a set of graphics classes with a Base class Figure and a
bunch of derived classes Rectangle, Circle, and Triangle.

Each derived class needs their own draw function because the shapes are
different.

Let’s also assume that the parent class Figure has functions that apply to
all figures, such as center (which would move a figure to the centre of the
screen by erasing and redrawing it.

 To redraw the figure, Figure: :center might use the draw function,
but each derived class would have their own draw function.

« Since the draw functions for the derived classes did not exist when we
wrote and compiled Figure’s center function, we need the concept of
virtual functions defined in the Figure parent class to make this work.

The solution is to make draw in the base class, Figure, a virtual function.

ENSC 251: Lecture Set 8 55

Late Binding

As discussed on the last slide, we need virtual functions for parent classes
as the compiler will not know anything about functions created in child
classes.

When you make a function virtual, you are telling the compiler that you do
not know the function implementation, but that when the function is used in
a program, it should get the implementation for the object instance.

* This technique of waiting until run-time to determine the implementation
of a procedure is called late binding or dynamic binding.

Virtual functions provide C++ with the mechanism for late binding.

Let’s look at another example (with code).

ENSC 251: Lecture Set 8 56

Late Binding

Let’'s assume you are designing a record keeping program with a base
class Sale.

Initially, the only sales will be to retail customers that buy one particular
item.

Later, you may want to add sales with discounts, or mail-order sales with
shipping charge (all potential derived classes).

All sales will have a basic price for the item and produce some bill.

 Initially, the bill is just the basic price, but if you add discounts, then the
bill will also depend on the size of the discount.

ENSC 251: Lecture Set 8 57

Late Binding

Your program will also need to compute the daily gross sales (which should
be the sum of all the individual sales bills).

« You may also want to calculate the smallest, largest, and or average
sales for the day

All of these can be calculated from the individual bills, but the functions for
computing the bills will not be added until later (as it will depend on the type
of sale).

« As such, we make the function for computing the bill a virtual function.

The next slides contain the interface and implementation for the class Sale.

« This corresponds to simple sales of a single item with no added
discounts or charges.

ENSC 251: Lecture Set 8 58

Definition of the base class Sale

//This i1s the header file sale.h.

//This is the interface for the class Sale.
//Sale is a class for simple sales.

#ifndef SALE_H

#define SALE_H

#include <iostream>
using namespace std;

namespace salesavitch

{

class Sale

{
public:
Sale();
Sale(double the_price);
virtual double bill1() const;
double savings(const Sale& other) const;

//Returns the savings if you buy other instead of the calling object.
protected:

double price;
}s
bool operator <(const Sale& first, const Sale& second);
//Compares two sales to see which is larger.
}Y//salesavitch

#endif // SALE_H

Implementation of the base class Sale

//This is the implementation file: sale.cpp
//This is the implementation for the class Sale.
//The interface for the class Sale is 1in

//the header file sale.h.

#include “sale.h”

namespace salesavitch

{
Sale::Sale() : price(0)
{}
Sale::Sale(double the_price) : price(the_price)
{}
double Sale::bil11() const
{
return price;
}
double Sale::savings(const Sale& other) const
{
return (bill() - other.bill());
}
bool operator <(const Sale& first, const Sale& second)
{
return (first.bil1() < second.bill1());
}
Y//salesavitch

ENSC 251: Lecture Set 8

60

Late Binding

As you can see from the code, the reserved word virtual has been included
in the function declaration for bill in the class definition.

You will also see that the member function savings and the overloaded
operator ‘<' both use the function bill.

Since bill is declared as a virtual function we can define new versions of the
function bill in derived classes and the definitions of the member function
savings and the overloaded operator ‘<’ from the Sale class will use the
version of the function bill that corresponds with the object’s derived class.

Let’s look at the derived class DiscountSale.

ENSC 251: Lecture Set 8 61

Definition of the derived class DiscountSale

//This is the interface for the class DiscountSale.
#ifndef DISCOUNTSALE_H
#define DISCOUNTSALE_H This is the filediscountsale.h

#include “sale.h”

namespace salesavitch

{
class DiscountSale : public Sale
{
public:
DiscountSale();
DiscountSale(double the_price, double the_discount);
//Discount is expressed as a percent of the price.
virtual double bill1() const;
protected: -‘\\\\\\\\
double discount; The keyword virtual is not
s required here, but it is good style
}//salesavitch to include it.

#endif //DISCOUNTSALE_H

ENSC 251: Lecture Set 8 62

Implementation of the derived class DiscountSale

//This is the implementation for the class DiscountSale.

#include “discountsale.h” ;
inclu 15countsale This is the file discountsale. cpp.

namespace salesavitch

{
DiscountSale: :DiscountSale() : Sale(), discount(0)

{1}

DiscountSale: :DiscountSale(double the_price, double the_discount)
: Sale (the_price), discount(the_discount)

{}

double DiscountSale::bill () const

{
double fraction = discount/100;

return (1 - fraction)*price;
}
}//salesavitch

Notice the different definition of the function bill from the base class Sale.

This new definition will be used when the member function savings or the
overloaded operator ‘<" are used with an object of the DiscountSale class.

Since the class Sale, with the function savings was compiled before the
derived class DiscountSale, late binding is needed to help the compiler link
the correct version of bill for execution.

ENSC 251: Lecture Set 8 63

Use of a Virtual Function:

//Demonstrates the performance of the virtual function bill.
#include <iostream>

#include “sale.h” //Not really needed, but safe due to ifndef.
#include “discountsale.h”

using namespace std;

using namespace salesavitch;

int main(Q)

{

Sale simp1e(10.00); //One item at $10.00.
DiscountSale discount(11.00, 10);//One item at $11.00 at 10% discount.

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

1t (discount < simple)

{
cout << “Discounted item is cheaper.\n”;
cout << “Savings is $”7 << simple.savings(discount) << endl;
}
else
cout << “Discounted item is not cheaper.\n”;
return 0;

ENSC 251: Lecture Set 8 64

Important technical details for using virtual functions in C++

If a function has a different definition in a derived class than in the base
class and you want it to be virtual, you add the keyword virtual to the
function declaration in the base class.

If a function is virtual in the base class, then it is automatically virtual in the
derived class.

* You do not need to add the reserved word virtual to the function
declaration in the derived class. However, it is a good idea to label the
function declaration in the derived class as virtual even though it is not
required.

The reserved word virtual is only added to the function declaration (and not
the function definition.

You do not have a virtual function (or the benefits of using a virtual function)
unless you use the keyword virtual.

ENSC 251: Lecture Set 8 65

Virtual Functions

Why don’t we make all member functions virtual?

« Virtual functions do not run as efficiently as static functions. The
compiler and run-time environment need to do much more work for
virtual functions (running extra code) making your program less efficient.

ENSC 251: Lecture Set 8 66

Overriding and Polymorphism:

When a virtual function definition is changed in a derived class,
programmers often say the function definition is overridden.

We distinguish between redefined and overridden functions.

Although both terms refer to changing the definition of the functionin a
derived class, they are treated quite differently by the compiler.

If a function is a virtual function, it’s called overriding (and uses late
binding).

If a function is not a virtual function, it's called redefining (and is done
statically at compile time).

Finally, although polymorphism conceptually means the ability to associate
multiple meanings to one function name, it specifically refers to the
mechanism of late binding.

« Thus people often talk of polymorphism, late binding and virtual
functions as the same topic.

ENSC 251: Lecture Set 8 67

Virtual Functions and Extended Type Compatibility:

There are some additional consequences to declaring a class member
function to be virtual.

C++ is a reasonably strongly typed language.

« The types of objects/variables/function parameters/etc. are always
checked and an error message/warning is issued if there is a type
mismatch (assuming there is no conversion that can be automatically
invoked).

This means that the value assigned to a variable generally needs to match
the type of the variable.

 However in a few well-defined cases, C++ will perform an automatic
type cast (called coercion) so that it appears that you can assign a value
of one type to a variable of another.

 For example, C++ allows you to assign a value of type char or int to a
variable of type double (but not the reverse).

ENSC 251: Lecture Set 8 68

Virtual Functions and Extended Type Compatibility:

Strong typing, however, interferes with the idea of inheritance in object-
oriented programming.

Suppose class A and class B and objects aa and bb of these respective
types.

You cannot always assign between objects of these types.

ENSC 251: Lecture Set 8 69

Virtual Functions and Extended Type Compatibility:

For example: c7ass pet

{
public:
virtual void print(Q);
string name;
};
class Dog : public Pet
{
public:
virtual void print(); //Keyword virtual not needed, but 1is
//put here for clarity. (It is also good style!)
string breed;
};
Dog vdog;
Pet vpet;

Anything that is a Dog is also a Pet.

Thus, it would seem to make sense to allow programs to consider values of
type Dog to also be of type Pet.

ENSC 251: Lecture Set 8 70

Virtual Functions and Extended Type Compatibility:

For example: ci7ass Pet

{
public:
virtual void print(Q);
string name;
s
class Dog : public Pet
{
public:
virtual void print(); //Keyword virtual not needed, but is
//put here for clarity. (It is also good style!)
string breed;
s
Dog vdog;
Pet vpet;
Hence, the following should be allowed: | ;0 e = «piny:
vdog.breed = “Great Dane”;
vpet = vdog;

ENSC 251: Lecture Set 8 71

Virtual Functions and Extended Type Compatibility:

As discussed previously, C++ does allow this: vdog.name = “Tiny”;
vdog.breed = “Great Dane”;
vpet = vdog;

You are able to assign a value of a derived class to a variable of a parent
type.

 However, you cannot perform the assignment in reverse.

Note that while this is allowed, the value that is assigned to the variable
vpet loses its breed field.

« Thisis called the slicing problem and will result in the following
attempted access producing an error message

cout << vpet.breed; //Illegal: class Pet has no member named breed

Arguably this makes sense, since once a Dog is moved to a variable of

type Pet, it should be treated like any other Pet and have any properties
particular to Dogs.

ENSC 251: Lecture Set 8 72

Virtual Functions and Extended Type Compatibility:

However, the dog, Tiny, is still a Great Dane and it would be good to still be
able to refer to its breed, even if we treated it as a Pet somewhere along
the line.

C++ offers a solution, allowing us to treat a Dog as a Pet, without throwing
away the name of the breed.

To do this, we use pointers to dynamic object instances, such as:
Pet *ppet;
Dog *pdog;
If we use pointers and dynamic variables, we can treat Tiny as a Pet
without losing his breed as the following is allowed:

pdog = new Dog;

pdog->name = “Tiny”;
pdog->breed = “Great Dane”;
ppet = pdog;

ENSC 251: Lecture Set 8 73

Virtual Functions and Extended Type Compatibility:

Given: Pet *ppet; and pdog = new Dog;
Dog *pdog; pdog->name = “Tiny”;
pdog->breed = “Great Dane”;
ppet = pdog;

we can still access the breed field of the node pointed to by ppet.

//uses iostream
void Dog::print()
{

Suppose the following definition:

cout << “name: “ << name << endl;
cout << “breed: “ << breed << endl;

}
The statement: ppet->print();

prints the following to the screen: name: Tiny
breed: Great Dane

by virtue of the fact that print() is a virtual member function.

ENSC 251: Lecture Set 8 74

Recall the Pet and Dog class definitions:

//Program to 1illustrate use of a virtual function
//to defeat the slicing problem.

#include <string>
#include <iostream>
using namespace std;

class Pet

{

public:
virtual void print();
string name;

};
class Dog : public Pet

{

public:
virtual void print(); //Keyword virtual not needed, but put

//here for clarity. (It is also good style!)

string breed;

s

ENSC 251: Lecture Set 8 75

Recall the Pet and Dog class definitions:

void Dog::print()

{
cout << “name: “ << name << endl;
cout << “breed: “ << breed << endl;
}
void Pet::print()
{
cout << “name: “ << endl;//Note no breed mentioned
}

ENSC 251: Lecture Set 8

76

An application using these classes, could look like:

int main()

{

Dog vdog;
Pet vpet;

vdog.name = “Tiny”;
vdog.breed = “Great Dane”;
vpet = vdog;

//vpet.breed; is illegal since class Pet has no member named breed

Dog *pdog;

pdog = new Dog;

pdog->name = “Tiny”;
pdog->breed = “Great Dane”;

Pet *ppet;

ppet = pdog;

ppet->print(); // These two print the same output:
pdog->print(); // name: Tiny breed: Great Dane

//The following, which accesses member variables directly
//rather than via virtual functions, would produce an error:
//cout << “name: " << ppet->name << “ breed: “

// << ppet->breed << endl;

//generates an error message: ‘class Pet’ has no member
//named ‘breed’ .

//See Pitfall section “Not Using Virtual Member Functions”
//for more discussion on this.

return 0;

77

An example of the output from this program:

name: Tiny
breed: Great Dane
name: Tiny
breed: Great Dane

In summary:

The slicing problem refers to the situation where a derived class object is
assigned to a base class variable.

Although the assignment is legal, any data members in the derived class
object that are not also in the base class object will be lost in the
assignment.

Similarly, any member functions that are not defined in the base class will
also be unavailable to the resulting base class object.

Dog vdog;
Pet vpet;

This means that vpet cannot be a calling object for any member function
introduced in the class Dog. Let's see what this means...

From our example:

ENSC 251: Lecture Set 8 78

Details on why we need virtual member functions :

What if we hadn’t used the member function: ppet->print(Q);

and instead had done the following cout << “name: “ << ppet->name
<< “ breed: “ << ppet->breed << endl;

This code would have generated an error message as *ppet has its type
determined by the pointer type of ppet (i.e. a pointer to type Pet) and type
Pet has no field named breed.

However, since print () was declared virtual by the Pet base class,
when the compiler sees: ppet->print();

it checks the “virtual” table for classes Pet and Dog and sees that ppet
points to an object of type Dog. So it uses the code generated for:

Dog::print() instead of Pet::print()

ENSC 251: Lecture Set 8 79

Rules for using dynamic variables in object-oriented programming:

1. If the domain type of the pointer p _ancestoris a base class for
the domain type of the pointer p_ descendant, the the following
assignment of pointers is allowed:

p ancestor = p descendant;

In the case of the above assignment, none of the data members or
member functions of the dynamic variable pointed to by
p_descendant will be lost.

2. Although all the extra fields of the dynamic variable are there, you
need to use virtual member functions to access them.

ENSC 251: Lecture Set 8 80

Attempting to compile class definitions without definitions for every
virtual member function:

In this course, | have recommended agile software design, allowing you
to develop code incrementally.

However, if you try to compile classes with virtual member functions, but
do not implement each member, you may see some difficult to
understand error messages (even if you do not call the undefined
member functions).

Any virtual member functions that are not implemented before
compilation will generate compilation error messages like:

“undefined reference to Class_ Name virtual table.”

Even if there is no derived class and there is only one virtual member,

this type of message still occurs if that function does not have a
definition.

ENSC 251: Lecture Set 8 81

Attempting to compile class definitions without definitions for every
virtual member function:

The reason why this error message may be hard to decipher is that
without definitions for the functions declared virtual, there may be
additional error messages complaining about an undefined reference to
default constructors, even if these constructors are already defined.

As such, be sure to include stubs in your class definition that define
these functions.

ENSC 251: Lecture Set 8 82

Why make destructors virtual?

It is often a good idea to always make destructors virtual.

Consider the following code where SomeClass is a class with destructor

thatis not virtual: SomeClass *p = new SomeClass;

delete p,

When delete is invoked, the destructor of the class SomeClass is
automatically invoked.

What happens when a destructor is marked virtual?

ENSC 251: Lecture Set 8 83

Why make destructors virtual?

What happens if we have a Derived class derived from Base class
and have the following code: Base *pBase = new Derived:

delete pBase;

Which destructor should be called (Base or Derived)?

When the destructor in the class Base is marked virtual and the object
pointed to is of type Derived, the destructor for the class Derived is
called (which in turns calls the destructor for class Base).

If the destructor in the class Base is not declared as virtual, then only
the destructorin the class Base is called.

« This can lead to a memory leak if the Derived class has additional
data members (Remember what could happen if these additional
data members are dynamic variables).

Another point to remember is that when a destructoris marked as
virtual, all destructors of all derived classes are automatically virtual
(whether or not they are marked as virtual).

ENSC 251: Lecture Set 8 84

Why make destructors virtual?

So why make all destructors virtual?

* It ensures that any dynamic variables are properly returned to the
freestore when an object is destroyed, meaning there will be no
memory leaks.

« Given that you may not know all of the derived classes from a base
class at design time, this keeps your class libraries safe for future
usage when they include dynamic variables.

« Alternately, you should avoid the following types of assignments:

Base *pBase = new Derived;
delete pBase;

From an engineering perspective, depending on the application, we
may wish to avoid late binding (virtual functions) to reduce runtime
overhead.

As such, although this is a safe software design practice it may be
impractical for performance critical software — meaning that you should
not use virtual functions at all.

ENSC 251: Lecture Set 8 85

Review Questions for Slide Set 8

Do derived classes include all the member variables and
functions of the base class?

Can derived classes have additional member functions and/or
variables that are specific to the derived class?

Can a derived class redefine or override a base class
function?

Are derived classes allowed to directly access all member
variables and functions?

Do objects of derived classes have the private member
variables of the base class?

What happens if you declare a function in a derived class that
has already been declared in the base class?

ENSC 251: Lecture Set 8 86

Review Questions for Slide Set 8

What is the name for a parent of a parent of a parent class?
If A'is a child of B is a child of C, then Ais a of C.

Which functions are not ordinarily inherited by a derived
class?

What does redefining a function mean”? How is it different
from overloading a function?

Can you invoke a constructor from a base class in a derived
class?

If you don’t explicitly invoke a constructor from the base class
in the derived class, what happens?

Where does the allocation for the inherited member variables
occur?

ENSC 251: Lecture Set 8 87

Review Questions for Slide Set 8

When is the base class constructor called in the derived
class?

If A is a derived class from class B, which is a derived class
from class C, when an object of class A is created, what is the
order of the constructor calls?

What does it mean when | say that “objects of derived classes
have more than one type”?

What does the protected qualifier do?

Are protected members only accessible in the direct child of a
parent class or all descendent classes?

What are the pros and cons of using the protected qualifier to
label member variables?

ENSC 251: Lecture Set 8 88

Review Questions for Slide Set 8

If you redefine a function, can you use the original function
defined in the base class?

If you overload the assignment operator in the base class and
not in the derived class, what assignment operator is used
with the derived class object(s)?

Why does the Base class destructor not need to be explicitly
called in the Derived class destructor? What should be in your
Derived class destructor?

What is the order of destructor calls, if class A is derived from
class B, which is derived from class C?

What does Polymorphism mean? What does it generally refer
to?

ENSC 251: Lecture Set 8 89

Review Questions for Slide Set 8

What is late binding? What is another name for late binding?
What is a virtual function?

What is the difference between redefining functions and
overridden functions? What are the similarities?

Why don’t we make all member functions virtual?
What is coercion?

What happens when you assign a derived class object (or
pointer) to a base class object (or pointer)?

What is the “slicing problem”?

What are the rules for using dynamic variables with
iInheritance in object-oriented programming?

ENSC 251: Lecture Set 8 90

Review Questions for Slide Set 8

Why do you include stubs defining virtual functions in the
base class?

Why might you want to make destructors virtual? Be able to
give a concrete example of what might happen if they aren't
virtual and explain how being virtual fixes them.

If the destructor of a Base class is marked as virtual, how
does this effect the derived classes?

ENSC 251: Lecture Set 8

91

