Software Design and Analysis for
Engineers

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc251

=@/ Simon Fraser University Slide Set: 9

=7 Date: October 26, 2015

What we're learning in this Slide Set:

» Exception Handling

ENSC 251: Lecture Set 9

Textbook Chapters:

Relevant to this slide set:
 Chapter 16

Coming soon:
 Chapter17 & 18

« Sets (Set theory)

ENSC 251: Lecture Set 9

“To err is human, to really foul things up
requires a computer.”

‘Senator Soaper’ (aka Bill Vaughan)

ENSC 251: Lecture Set 9 4

“Well the program works for most cases. | didn't
know it had to work for that case.”

Student Appealing a Grade

ENSC 251: Lecture Set 9 5

Exception Handling and Error Cases

When you write code, remember what | said at the
beginning:

“Programming today is a race between software engineers
striving to build bigger and better idiot-proof programs,
and the Universe trying to produce bigger and better
idiots. So far, the Universe is winning.

- Author Rick Cook, The Wizardry Compiled

As such, your code design needs to be robust, assuming
that the “evil” user will not use it correctly.

ENSC 251: Lecture Set 9 6

Exception Handling and Error Cases

Error Cases:

In this case, you are checking the user code for anticipated
errors that will not work. Depending on the situation, you
may choose for data reentry or termination (think of at least
one example of each situation).

Exception Handling:

In this case, you are generally trying handle “exceptional”
situations- things that might damage the system (e.g.
memory leaks ...)

ENSC 251: Lecture Set 9 7

General overview of Exception Handling

Either your user code or some software library provides a
mechanism that indicates when something unusual
happens.

 This is called throwing an exception.

A separate portion of code then deals with this “exceptional
case’

 This is called handling an exception.

By separating out the unusual behaviour from the typical
behaviour, your code ends up being cleaner

ENSC 251: Lecture Set 9

General overview of Exception Handling

Exceptions can also be viewed as “software interrupts” that
occur at the system-level

* You'll learn more about interrupts in ENSC 254.

Let's look at a simple example

ENSC 251: Lecture Set 9 9

cout << "Enter number of donuts:\n";
cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
dpg = donuts/static_cast<double>(milk);
cout << donuts << " donuts.\n"
<< milk << " glasses of milk.\n"
<< "You have " << dpg
<< " donuts for each glass of milk.\n";

Suppose that milk is important enough to people that they almost
never run out.

When they do, however, (milk = 0), we would like our code to
be robust enough to handle this situation (else dpg = ®)

ENSC 251: Lecture Set 9 10

cout << "Enter number of donuts:\n";
cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
dpg = donuts/static_cast<double>(milk);
cout << donuts << " donuts.\n"
<< milk << " glasses of milk.\n"
<< "You have " << dpg
<< " donuts for each glass of milk.\n";

Up until now, | would have expected you to solve this situation by
adding a test case to your code to ensure that you don't try to
divide by zero.

The next slide has that version of the code.

ENSC 251: Lecture Set 9 11

include <iostream>
using namespace std;

int main(Q)

{
int donuts, milk;
double dpg;
cout << "Enter number of donuts:\n";
cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
if (milk <= 0)
{
cout << donuts << " donuts, and No Milk!\n"
<< "Go buy some milk.\n";
}
Else
{
dpg = donuts/static_cast<double>(milk);
cout << donuts << " donuts.\n"
<< milk << " glasses of milk.\n"
<< "You have " << dpg
<< " donuts for each glass of milk.\n";
}
cout << "End of program.\n";
return 0;
}

12

Sample Output for program on previous slide:

Enter number of donuts:

12

Enter number of glasses of milk:
0

12 donuts, and No Milk!

Go buy some milk.

End of program.

ENSC 251: Lecture Set 9

13

Alternatively, we could write this same code using exception
handling to “catch” the error.

* In the code on the next slide, pay particular attention to the

“try”, “throw”, and “catch”

The main program is simpler (located in the “try” section of the
code).

« |f there is a problem it “throw”s and exception.

The “catch” section handles the exception if one occurs.

ENSC 251: Lecture Set 9 14

#include <iostream>
using namespace std;

int main()
{
int donuts, milk;
double dpg;
try
{

cout << "Enter number of donuts:\n";

cin >> donuts;

cout << "Enter number of glasses of milk:\n";
cin >> milk;

1 (milk <= 0)
throw donuts;

dpg = donuts/static_cast<double>(milk);
cout << donuts << " donuts.\n"
<< milk << " glasses of milk.\n"
<< "You have " << dpg
<< " donuts for each glass of milk.\n";

}
catch(int e)
{
cout << e << " donuts, and No Milk!\n"
<< "Go buy some milk.\n";
}

cout << "End of program.\n";
return 0; 15

Sample output for program with exception handling:

Ver 1:

Ver 2:

Enter number of donuts:

12

Enter number of glasses of milk:

6

12 donuts.

6 glasses of milk.

You have 2 donuts for each glass of milk.

Enter number of donuts:
12
Enter number of glasses of milk:
0
12 donuts, and No Milk!
Go buy some milk.
End of program.
ENSC 251: Lecture Set 9

16

Looking between the “try” and “catch statements:

* As you can see, the exception handling code is largely the
same as the original version

However, the if-else statement is much smaller:
1 (milk <= 0)

{
cout << donuts << " donuts, and No Milk!\n"
<< "Go buy some milk.\n";
} if (milk <= 0)
f?se Versus throw donuts;

dpg = donuts/static_cast<double>(milk);
cout << donuts << " donuts.\n"
<< milk << " glasses of milk.\n"
<< "You have " << dpg

<< " donuts for each glass of milk.\n";
}) 17

The new if statement says that if there is no milk, “throw” an
exception: e
throw donuts;

When the exception is thrown, the code execution jumps to the
handler.

This handler is found in the “catch” section:

* |t is designed to “handle” the “exceptional” situation.

ENSC 251: Lecture Set 9

18

The basic structure for handling exceptions in C++ consists of
the three components:

1. try
2. throw
3. catch

ENSC 251: Lecture Set 9

19

Try:

A try block has the syntax: EW

Some Code

}

The try block contains the code for the basic algorithm (when
everything is normal).

It's called a “try” block because it may not work, so you want to
“‘give it a try”

If something does go wrong, we want to throw an exception.

ENSC 251: Lecture Set 9

20

Throw:

A try block with a throw
statement has the syntax:

Let's go back to our example

try
{

Code_To_Try
Possibly_Throw_An_Exception
More_Code

ENSC 251: Lecture Set 9 21

try

cout << "Enter number of donuts:\n";
cin >> donuts;

Throw: cout << "Enter number of glasses of milk:\n";

cin >> milk;
i (milk <= 0)
throw donuts;
dpg = donuts/static_cast<double>(milk);
cout << donuts << " donuts.\n"
<< milk << " glasses of milk.\n"
<< "You have " << dpg
<< " donuts for each glass of milk.\n";

}

In this case, we “throw” the int value donuts: throw donuts:

Other notes:

The value thrown (in this case donuts) is sometimes called an
exception.

The execution of a throw statement is called “throwing an
exception.

The value thrown can be of any type
ENSC 251: Lecture Set 9 22

Summary of the Throw statement:

throw Statement

SYNTAX

throw Expression_for_Value_to_Be_Thrown;

When the throwstatement is executed, the execution of the enclosing
try block is stopped. If the try block is followed by a suitable catch
block, then flow of control is transferred to the catch block. A throw
statement is almost always embedded in a branching statement, such as
anif statement. The value thrown can be of any type.

EXAMPLE

if (milk <= 0)
throw donuts;

ENSC 251: Lecture Set 9

23

Catch:

In the case of C++, what we are throwing to the catch statement
IS:

 Execution control, and

 The exception value (e.g. donuts)

When we throw an exception, the try block stops executing and
the catch block begins execution.

« Execution of this block is called catching the exception or
handling the exception.

Remember, if we are going to throw an exception, it should be
caught by some catch block.

ENSC 251: Lecture Set 9 24

Catch:

In our example, the catch block immediately follow the try block:
catch(int e)

{
cout << e << " donuts, and No Milk!\n"
<< "Go buy some milk.\n";

}

The catch block resembles a function definition with a parameter
of type int.

* [t is not a function definition, but it is similar:

— It is a separate piece of code that is only executed when the
throw some int code is executed.

« This means that the throw call is similar to a function call, but
instead of calling a function it “calls” the catch block.

A Catch block is often referred to as an exception handler.
ENSC 251: Lecture Set 9 25

Catch:

What is the identifier ‘e’ in the first line of the catch block?

catch(int e)

{

cout << e << " donuts, and No Milk!\n"
<< "Go buy some milk.\n";

}

It looks like a parameter (and behaves like one); the text calls it
the catch-block parameter (but the catch block is not a function).

This parameter does two things:

* |t is preceded by a type name that specifies what kind of
thrown value the catch block can catch/handle.

* |t gives you a name for the thrown value that can be used in
the code written for the catch block that wants to manipulate

the thrown value.

ENSC 251: Lecture Set 9 26

Catch:

You can use any legal identifier for the catch block parameter,

but people catch(int e)

commonly use {
‘e’ cout << e << " donuts, and No Milk!\n"

<< "Go buy some milk.\n";

}
Our example catch statement can only catch int values.

It only gets executed when the value of milk is zero (or less than
Zero).

 When this happens, the value of donuts is thrown and
plugged into the catch-block parameter e.

If the value of milk is positive, the catch block is not executed.
The complete try block is executed and the statement(s) after
the catch block are then executed.

ENSC 251: Lecture Set 9 27

The try-throw-catch setup is very similar to an if-else statement,
except that the if-else statement cannot throw a value.

The ability to throw a value lets the try-throw-catch mechanism

act like an if-else statement with the added ability to send a
message to one of the branches.

* This can be very useful.
A couple other notes:

 When an exception is thrown, the rest of the code in the try
block is ignored.

« A catch block applies only to an immediately preceding try
block.

« |If an exception is thrown, the value of the exception object is
assigned to the catch-block parameter.

ENSC 251: Lecture Set 9 28

Note: If no exception is thrown in the try block, then once the try
block code is completed, program execution continues with the
code after the catch block (it is ignored).

 This should reflect normal execution.

Summary:

try-throw-catch

This is the basic mechanism for throwing and catching exceptions.

The throw statement throws the exception (a value). The catch block
catches the exception (the value). When an exception is thrown, the try
block ends and then the code in the catch block is executed. After the
catch block is completed, the code after the catch block(s) is executed
(provided the catch block has not ended the program or performed
some other special action).

If no exception is thrown in the try block, then after the try block is
completed, program execution continues with the code after the catch
block(s). (In other words, if no exception is thrown, then the catch
block(s) are ignored.)

ENSC 251: Lecture Set 9 29

Syntax Review: try

{
Some_Statements
< Either some code with a throw statement or a
function invocation that might throw an
exception>
Some_More_Statements
}
catch(Type_Name e)
{
< Code to be performed if a value of the
catch-block parameter type is thrown in the
try block>
}

Notes: This is a high-level language perspective of exception
handling.

This done considerably differently in Assembly language and in
C (there are more details to worry about) particularly when you
use an OS.

ENSC 251: Lecture Set 9 30

Defining your own Exception Classes:
Recall that a throw statement can throw a value of any type.

Often people define a class whose objects can carry the precise
kind of information you want thrown to the catch block.

* This lets you throw more than one value to an exception
handler.

 More importantly, it lets you specialize the exception class so
that you can use different types to identify each possible kind
of exception.

— This is particularly valuable if all of your exceptions throw ints.

ENSC 251: Lecture Set 9 31

Defining your own Exception Classes:
Exception classes are classes like any other.
What makes it an exception class is how it's used.

You should also pay attention to the Name (so it makes sense)
and other details.

In the example on the next slide, the exception handling class is
NoMilk and the throw statement is:

throw NoM1ilk(donuts);

Note that the part NoMilk(donuts) is an invocation of a
constructor for the class NoMilk with one int argument (to store
the value of donuts).

After the object is created, the object is thrown to the handler.

ENSC 251: Lecture Set 9 32

Our Exception Class:

#include <iostream>

using namespace std; This is just a toy example to learn C++ syntax.
CTace NoMiTk Dfo not tai'ke itas a'n example of good typical use
{ of exception handling.
public:

NoMilk();

NoMilk(7nt how_many);
int get_donuts();

private:
int count;
s
NoMiTk: :NoMilk()
{}
NoMilk::NoMilk(7nt how_many) : count(Chow_many)
{}
int NoMilk::get_donuts() The sample dialogues are the same as in
{ Display 16.2.

return count;

}
ENSC 251: Lecture Set 9 33

The main
program:

int main(Q)

{

int donuts,
double dpg;
try

{

cout <<

milk;

"Enter number of donuts:\n";

cin >> donuts;

cout <<

"Enter number of glasses of milk:\n";

cin >> milk;
i (milk <= 0)

throw NoMilk(donuts);

dpg = donuts/static_cast<double>(milk);

donuts << " donuts.\n"

milk << " glasses of milk.\n"
"You have " << dpg
" donuts for each glass of milk.\n";

e.get_donuts() << " donuts, and No Milk!\n"
"Go buy some milk.\n";

cout <<
<<
<<
<<
}
catch(NoMilk e)
{
cout <<
<<
}

cout << "End of program.";

return 0;

ENSC 251: Lecture Set 9 34

Multiple Throws and Catches:

A try block can throw multiple exception values of the same or
different types

 However, in any given execution of a try block, only one
exception can be thrown (remember it ends the execution of
the try block).

Since each catch block can only catch values of one type, you
simply add additional catch blocks to catch the exception values
of differing types.

Our next example has two catch blocks after the try block.

* Note that the catch block DivideByZero has no parameter:

— This is fine, you do not need a parameter and can simply list the
type with no parameter.

ENSC 251: Lecture Set 9 35

Our Exception Classes and their implementation:

#include <iostreams Although not done here, exception classes can
#include <string> have their own interface and implementation
using namespace std; files and can be put in a namespace.

This is another toy example.
class NegativeNumber

{
public:
NegativeNumber();
NegativeNumber(string take_me_to_your_catch_block);
string get_message();
private:
string message;

}s

class DivideByZero

{};

NegativeNumber: :NegativeNumber()

{}

NegativeNumber: :NegativeNumber(string take_me_to_your_catch_block)
: message(take_me_to_your_catch_block)

{}

string NegativeNumber::get_message()

{
}

return message;

36

The main
program
and try
block:

int main()

{
int jem_hadar, klingons;
double portion;
try
{
cout << "Enter number of JemHadar warriors:\n";
cin >> jem_hadar;
1t (jem_hadar< 0)
throw NegativeNumber("JemHadar");
cout << "How many Klingon warriors do you have?\n";
cin >> klingons;
1t (k1ingons< 0)
throw NegativeNumber("Klingons");
it (klingons != 0)
portion = jem_hadar/static_cast<double>(klingons);
else
throw DivideByZero();
cout << "Each Klingon must fight "
<< portion << " JemHadar.\n";
}

ENSC 251: Lecture Set 9

37

The main program catch blocks:

catch(NegativeNumber e)

{
cout << "Cannot have a negative number of "
<< e.get_message() << endl;
}
catch (DivideByZero)
{
cout << "Send for help.\n";
}

cout << "End of program.\n";
return 0;

ENSC 251: Lecture Set 9

38

Sample Outputs from the program:

Enter number of JemHadar warriors:
1000

How many Klingon warriors do you have?
500

Each Klingon must fight 2.0 JemHadar.
End of program

Version 1:

Enter number of JemHadar warriors:
-10

Version 2: Cannot have a negative number of JemHadar
End of program.

Enter number of JemHadar warriors:
1000
How many Klingon warriors do you have?

Version 3:

Send for help.
End of program.

ENSC 251: Lecture Set 9

39

Multiple Throws and Catches:

When catching multiple exceptions, the order of the catch blocks
can be important.

When an exception value is thrown in a try block, the catch
blocks are tried in order and the first one that matches the type

of the exception thrown is executed.

For example, the following is a special kind of catch block that
will catch a thrown value of any type:
catch(...)

{

<Place whatever you want in here>

}

Note: You actually type the three dots into your program. Since
this can catch any type, it makes a good default catch block, but
it should be placed after all other catch blocks.

ENSC 251: Lecture Set 9 40

Multiple Throws and Catches with a default catch block:

For examp|e this is good: catch(NegativeNumber e)
{

cout << "Cannot have a negative number of "
<< e.get_message() <<endl;

}
catch(DivideByZero)
{
cout<< "Send for help.\n";
}
catch(...)
{
cout << "Unexplained exception.\n";
}

ENSC 251: Lecture Set 9 41

Multiple Throws and Catches with a default catch block:

For example this is bad: catch(NegativeNumber e)

{
cout << "Cannot have a negative number of "
<< e.get_message() <<endl;
}
catch(...)
{
cout << "Unexplained exception.\n";
}
catch(DivideByZero)
{
cout << "Send for help.\n";
}

When a DivideByZero value is thrown, it will be caught by the
“default” catch block as catch(...) can catch any value.

* This means that the DivideByZero catch block can never be
reached. (Luckily many compilers will warn you of this

mistake).
ENSC 251: Lecture Set 9 42

Exception Classes:

Exception classes can be trivial (with no member variables and
no member functions (other than the default constructor).

« They have nothing but a name, but this is sufficient to
uniquely identify them for cases when you want to throw
multiple exceptions.

When using a trivial exception class, you won’t be able to do
anything with the value thrown (the exception) once it is caught
by the catch block.

* Infact all it can do is uniquely identify the correct catch block
(so you can omit the catch block parameter).

— Even if the exception type is not trivial, you can still omit the
catch-block parameter anytime you do not need it.

ENSC 251: Lecture Set 9 43

Throwing an Exception in a Function:

If you throw an exception in a function, you may wish to catch it
in the main program or any function that calls this function.

* You might do this because different programs should behave
differently if the exception is thrown (e.g. termination versus
initialization to default values...)

To make this work, you place the function call in the try block and
catch the exception following the try block.

 However, you throw the exception inside your function.

Note, even though there is no throw statement visible in the try

block, from the perspective of program execution, the function
call happens inside of the try block.

ENSC 251: Lecture Set 9 44

Our Exception Class, the function prototype and the beginning of

main:

#include <iostream>
#include <cstdlib>
using namespace std;

class DivideByZero

{};

double safe_divide(int top, 7nt bottom) throw (DivideByZero);

int main()

{

int numerator;

int denominator;

double quotient;

cout << "Enter numerator:\n";
cin >> numerator;

cout << "Enter denominator:\n";
cin >> denominator;

ENSC 251: Lecture Set 9

45

The try-throw-catch mechanism:

try
{

quotient = safe_divide(numerator, denominator);
}
catch(DivideByZero)
{

cout << "Error: Division by zero!\n"

<< "Program aborting.\n";

exit(0);

}

cout << numerator << "/" << denominator

<< " =" << quotient <<endl;

cout << "End of program.\n";
return 0;

double safe_divide(int top, int bottom) throw (DivideByZero)

{
if (bottom == 0)
throw DivideByZero();
return top/static_cast<double>(bottom);
}

ENSC 251: Lecture Set 9

Throwing an Exception in a Function:

If a function might throw an exception in its definition, but does
not catch its exception, it should warn programmers that any
invocation of the function might possibly throw an exception.

Those exception types should be listed in an exception
specification:

double safe_divide(int top, 7int bottom) throw (DivideByZero);

This exception specification should appear in both the function
declaration and the function definition (as shown in our
example).

ENSC 251: Lecture Set 9 47

Throwing an Exception in a Function:

If a function has more than one function declaration (i.e.
overloaded), then all function declarations must have identical
exception specifications.

The exception specification is sometimes called the throw list.

If there is more than one possible exception that can be thrown
in the function definition, then the exception types are separated
by commas:

void some_function() throw (DivideByZero, OtherException);

If there is no exception specification (no throw list) at all (not
even an empty one), then it is the same as if all possible
exception types were listed in the exception specification,
enabling any exception that is thrown to be treated normally.

* Akin to an empty sensitivity list in VHDL.

ENSC 251: Lecture Set 9 48

Throwing an Exception in a Function:

When an exception is thrown in a function, but is not listed in the
exception specification (i.e. it is excluded from the throw list and
is not caught inside the function), the program ends.

* In this case, the function has indicated a throw list (even if it is
an empty one) and this exception wasn’t on it.

 That means that it will not be caught by any catch block so
your program will end

ENSC 251: Lecture Set 9 49

Throwing an Exception in a Function:

Remember, the exception specification is for exceptions that “get
outside” the function.

 If you catch the exception inside the function, then it does not
belong in the exception specification.

« |If they get outside the function, then they belong in the exception
specification no matter where they originate.

— For example if a function definition (fooA) includes an invocation of
another function (fooB) and that other function (fooB) can throw an
exception that is not caught, then the type of the exception should be
placed in the exception specification of this function (fooA) as well.

« To say that a function should not throw any exceptions that are
not caught inside the function, you use an empty exception

SpeCiﬁcation- void some_function() throw ();

ENSC 251: Lecture Set 9 50

Throwing an Exception in a Function:

In summary:

void some_function() throw (DivideByZero, OtherException);
//Exceptions of type DivideByZero or OtherException are
//treated normally. All other exceptions end the program
//1f not caught in the function body.

void some_function() throw ();
//Empty exception list; all exceptions end the
//program if thrown but not caught in the function body.

void some_function();
//Al1l exceptions of all types treated normally.

ENSC 251: Lecture Set 9 51

Notes about type matching for exceptions:

Keep in mind that an object of a derived class is also an object of its
base class.

« So if derived class D from base class B is in the exception
specification, then a thrown object of class D will be treated
normally since it is an object of class B type and B is in the
exception specification

No type automatic type conversions are done for exceptions:

« If a double is in the exception specification, that does not account
for throwing an int value. You need to include both int and
doubles in the exception specification.

ENSC 251: Lecture Set 9 52

Notes about the exception specification:

Not all compilers treat the exception specification the same (some
treat it as a comment),

Always including it makes your code more readable and consistent
(as long as you do not fail to anticipate an exception that your
function might throw in the exceptions specification which will cause
program termination).

Obviously, this is a runtime behaviour, but it does depend on your
compiler.

ENSC 251: Lecture Set 9 53

Notes about the exception specification for derived classes:

If you redefine or override a function definition in a derived class, it
should have the same exception specification a it had in the base
class.

« Or it should have an exception specification whose exceptions
are a subset of those in the base class exception specification.

In other words, when you override/redefine a function, you cannot
add any exceptions to the exception specification but you can delete
some if you want.

« Remember this is because an object of a derived class can be
used anywhere than an object of the base class can be used, so
redefining/overwriting functions must fit any code written for an
object of the base class.

ENSC 251: Lecture Set 9 54

When to throw an exception in C++:

You should reserve use of the try-catch-throw mechanism for
situations where the way the exceptional condition is handled
depends on how and where the situation occurs.

« Generally, it is best to let the programmer who invokes the
function handle the exception.

« Otherwise if you can easily handle the problem in some other
way, it is best to avoid throwing exceptions.

Generally, you will want to separate throwing the exception and
catching the exception into separate functions.

In most cases, you should include any throw statement within a
function definition, list the exception in the exception specification for
that function and then place the catch clause in a different function.

ENSC 251: Lecture Set 9 55

When to throw an exception in C++:

This means that you have your exception thrown and its
specification included in one function:

void functionA() throw (MyException)
{

throw MyException(<Maybe an argument>);

ENSC 251: Lecture Set 9

56

When to throw an exception in C++:

Then in another function (that may even be in another file, you have:
void functionB()
{

try

functionA(Q);

}
catch(MyException e)

{

<Handle exception.>

}

Other notes on exceptions:

Every exception that is thrown by your code should be caught
someplace in your code.

« Otherwise the program ends (and it is not good style).

Exceptions allow you to write programs whose flow of control is so
involved that it is difficult to impossible to understand the program.

* |t is not hard to do and allows you to transfer flow of control of

your program from anyplace in your program to almost anyplace
else in your program.

— This sort of unrestricted flow was supported using goto statements
(back when dinosaurs roamed the earth).

— However, unrestricted flow is very difficult to read/follow and very
poor programming style.

— Since catch-throw statements allow you to revert to this, you should
only use them when you have no other choice that produces
reasonable code.

ENSC 251: Lecture Set 9 58

Other notes on exceptions:

You also can place a try block and following catch block(s) inside a
larger try block or inside a larger catch block.

* In rare cases this may be useful, but if you are thinking of doing
this, there is likely a better way to organize your program.

* |t is almost always better to place the inner try-catch blocks inside
a function definition and place an invocation of the function in the
outer try or catch block.

« |deally, it would be better to just eliminate one or more of the
nested try/catch blocks completely

* If you have a try-catch block nested inside a larger try block,
when an exception is thrown inside the inner try block, but not
caught in the inner catch block(s), then the exception is throw to
the outer try block for processing an might be caught there.

ENSC 251: Lecture Set 9 59

Exception Class Hierarchies:

Exception Class hierarchies assume that it is useful to have a base
exception class (e.g. Arithmetic Error) from which you might wish to

define derived classes. (e.g. DivideByZeroError).

This means that every catch block for an ArithmeticError will also
catch a DivideByZeroError.

Also, if you list ArithmeticError in an exception specification, then
you have in effect also added DivideByZeroError to the exception
specification (along with any other derived classes from
ArithmeticError), whether or not you list DivideByZeroError by name.

ENSC 251: Lecture Set 9 60

Testing for Available Memory:

Remember when we created new dynamic variables with code such
as. struct Node

{

int data;
Node *1ink;
s
typedef Node* NodePtr;

NodePtr pointer = new Node;

As long as there is sufficient memory available to create the node, it
is fine.

However, when there is insufficient memory, then new will throw a
bad alloc exception.

« This is part of the C++ language so you do not need to define it.

ENSC 251: Lecture Set 9 61

Testing for Available Memory:

Since new will throw a bad alloc exception, you can use it to
check if you are running out of memory::

try
{
NodePtr pointer = new Node;
}
catch (bad_alloc)
{
cout << "Ran out of memory!";
}

Obviously, you can do other things besides giving a warning
message, but the details of how you would handle this situation
depend on the programming situation.

ENSC 251: Lecture Set 9

Rethrowing an Exception:
It is legal to throw an exception within a catch block.

You (rarely) may want to catch an exception and then (depending on
the details) decide to throw the same or a different exception for
handling it farther up the chain of exception-handling blocks.

Final summary:

You won’t have much cause to use this mechanism in our class
because the code is too simple.

However, it is an important abstraction for larger programs (e.g.
operating systems, databases), so you need to know about it.

ENSC 251: Lecture Set 9 63

Review Questions for Slide Set 9

When an error occurs in a program, sometimes you may want
to terminate and sometimes you may wish to choose for data
re-entry. Give an example for each situation.

What is the difference between error handling and exception
handling? Give an example of each situation”?

Why do you need to have exception handling? Give examples
of when you might need exception handling?

Explain when and why you might want to throw an exception.
Explain why and how you would handle an exception.

) 1]

What are the functions of “try”, “catch”, and “throw” in
exception handling?

ENSC 251: Lecture Set 9 64

Review Questions for Slide Set 9

What is the name for the thrown value?

What is the term for executing a throw statement?
Do thrown values have to be of a specific type?
What do you throw to a catch statement in C++?
What is execution of the catch block called?

What happens if you throw an exception and there is no catch
block?

Is the catch block a function? Be able to compare and
contrast a catch block and function definition

Compare and contrast a throw call and a function call.
What is another name for an exception handler?

ENSC 251: Lecture Set 9 65

Review Questions for Slide Set 9

What does the catch-block parameter do?

When an exception is thrown, is the rest of the code in the try
block executed?

Does a catch block apply to any try block?
If no exception is thrown, does the catch block execute?

Since an exception can only throw one value, how do you
work around this?

Can you call a constructor when you throw an exception?

Can a try throw block throw multiple different exceptions with
the same or different types of exception values?

During the execution of a try block, how many different
exceptions can be thrown? Explain why?

ENSC 251: Lecture Set 9 66

Review Questions for Slide Set 9

How many different types of values can a single catch block
catch?

Is it legal to have a catch block with a type but no parameter?
Does the order of catch blocks matter?

What is the structure of a catch statement that can catch a
thrown value of any type?

Can you throw an exception in a function? If yes, do you have
to catch it in the same function? If not, how do you warn
programmers that if the function is invoked, it might throw an
exception?

What is an exception specification?

What needs to happen with the exception specification if a
function is overloaded?
ENSC 251: Lecture Set9 67

Review Questions for Slide Set 9

What is another name for the exception specification?
Can a function throw more than one type of exception?
What if a function has no exception specification?

What happens when an exception is thrown in a function, but
Is not listed in the exception specification?

If you catch an exception inside of a function, does it need to
be in the exception specification list?

How do you indicate that a function should not throw any
exceptions that are not caught inside the function?

Do exceptions support automatic type conversions?

When redefining/overriding a function from the base class,
can you add or remove exceptions from the exception
specification? Why?

ENSC 251: Lecture Set 9 68

Review Questions for Slide Set 9

When should you throw an exception in C++7

What happens if you throw an exception and it isn't caught?
Can you nest try/catch blocks?

Can you rethrow exceptions?

ENSC 251: Lecture Set 9

69

