
Digital System Design

by 
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Slide Set: 1
Date: January 12, 2009

Simon Fraser UniversitySimon Fraser University



ENSC 350: Lecture Set 1 2ENSC 350: Lecture Set 1 2

Slide Set Overview

• Review of Basic Combinational logic blocks

• Review of VHDL for combinational components

– Constructs in VHDL that help you describe 
combinational circuits

• Note: Arithmetic circuits are also combinational, 
but we’ll talk about those later



ENSC 350: Lecture Set 1 33

Slide Set Overview

• Initial Review of Sequential Logic

– We’ll go over the logic constructs in the next 
slide set



ENSC 350: Lecture Set 1 4ENSC 350: Lecture Set 1 4

Combinational Logic



ENSC 350: Lecture Set 1 5ENSC 350: Lecture Set 1 5

Combinational Logic

• A combinational logic block is one where the 
outputs depend only on the current inputs

• A combinational logic block can be implemented 
using simple gates, look-up tables or other 
techniques

COMB.
LOGIC
BLOCK



ENSC 350: Lecture Set 1 6ENSC 350: Lecture Set 1 6

Ways to describe combinational logic f(x)

1. English:
– The  function has an output of 1 when an even 

number of inputs are 1 (This can be ambiguous)

2. A Truth Table: a b c f 
0 0 0 1 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 



ENSC 350: Lecture Set 1 7ENSC 350: Lecture Set 1 7

Ways to describe combinational logic f(x)

3. A Boolean Equation:

f = a’b’c’ + a’bc + …

We can use a Karnaugh map to minimize an equation 
(i.e. produce an equivalent equation with fewer 
literals)

The simplified equation is:

f =



ENSC 350: Lecture Set 1 8ENSC 350: Lecture Set 1 8

What type of gate does this equation represent?



ENSC 350: Lecture Set 1 9ENSC 350: Lecture Set 1 9

Ways to describe combinational logic f(x)

4. VHDL or Verilog

4. We’ll talk about this soon

5. A schematic diagram



ENSC 350: Lecture Set 1 10ENSC 350: Lecture Set 1 10

5. A schematic diagram of function f



ENSC 350: Lecture Set 1 11ENSC 350: Lecture Set 1 11

Basic Combinational Building Blocks

• Multiplexers

– Choose one of two inputs based on a select signal

(a) Graphical symbol (b) Truth Table
*Note: You can make a multiplexer out of logic gates – How 
would you start?



ENSC 350: Lecture Set 1 12ENSC 350: Lecture Set 1 12

Basic Combinational Building Blocks

• Multiplexers

– Can make bigger multiplexers, e.g. 4-inputs

(a) Graphical symbol (b) Truth Table
– How would you build a 4-input mux using 2-input 

muxes?



ENSC 350: Lecture Set 1 13ENSC 350: Lecture Set 1 13

Basic Combinational Building Blocks

• Decoders
– n inputs generate 2n outputs
– The decoder asserts ONE of the  of the 2n output signals

• The asserted signal depends on the input value
• The other outputs are all ‘0’

Graphical symbol
– If enable is low, then all of the output lines are ‘0’



ENSC 350: Lecture Set 1 14ENSC 350: Lecture Set 1 14

Basic Combinational Building Blocks

• Truth table for a 2-bit decoder
Equivalent Logic Circuit:

Give an example of where we might use a decoder.



ENSC 350: Lecture Set 1 15ENSC 350: Lecture Set 1 15

Basic Combinational Building Blocks

• Encoders
– Performs the opposite operation of a decoder
– When one of the 2n input signals is asserted, the 

appropriate binary encoded output is generated using n 
outputs (indicates which of the input signals is high)

Graphical symbol



ENSC 350: Lecture Set 1 16ENSC 350: Lecture Set 1 16

Basic Combinational Building Blocks

• Priority Encoders
– A special case where if more than one input is ‘1’, the 

index of the “highest priority” input is returned:
• Normally multiple “1”s  are assumed to never happen and are 

thus “don’t care” patterns

Truth Table



ENSC 350: Lecture Set 1 17ENSC 350: Lecture Set 1 17

Hardware Design Languages



ENSC 350: Lecture Set 1 18ENSC 350: Lecture Set 1 18

What is VHDL?

• It is NOT a programming language!

• It is an IEEE standard method of describing 
hardware

• VHDL = VHSIC Hardware Design Language
– VHSIC = Very High Speed Integrated Circuits

– VLSI = Very Large Scale Integration

• LSI  = Large Scale Integration 100 to 1000 devices on a chip

• SSI  = Small Scale Integration up to 10 devices on a chip



ENSC 350: Lecture Set 1 19

CAD TOOLS

VHDL Verilog Schematics

Custom
Chips Board-

Level
Design

FPGAs Gate
Arrays

The relationship between HDLs and Chips



ENSC 350: Lecture Set 1 20ENSC 350: Lecture Set 1 20

Why use a HDL to describe hardware?

• What is wrong with using schematics?

• With HDLs, you can specify hardware in two ways:

– Structurally: what the hardware looks (like schematics)

– Behaviourally: what the hardware does

• HDLs:
– Let you combine structural and behavioural descriptions 

in the same design (very powerful)
– Provides a higher level of abstraction (facilitates the 

representation of complex circuits)



ENSC 350: Lecture Set 1 21ENSC 350: Lecture Set 1 21

Entirely behavioural description of a processor

• You could write a single piece of VHDL code that 
describes exactly what the processor will do

– Why you might do this:

• Eliminates misunderstandings among designers as to what the 
processor will do

• You can simulate the design to make sure there is nothing that 
you haven’t thought of (e.g. did you forget the carry bit)

• You can send off another team of software engineers to create a 
compiler (they will have a complete functional model of the 
design to work with).

Note: at this stage, you have NOT done the hardware design 
yet.  You have specified what the hardware will do.



ENSC 350: Lecture Set 1 22ENSC 350: Lecture Set 1 22

Behavioural/Structural description of a processor

• Behavioural Functional Units:  
– You might divide the design into major functional units, and 

then write behavioural code to specify what each block does.  
Then, you can write structural code to specify how the blocks 
are connected.  You might do this to:

• Allow you to farm out work to individual designers (each designer 
will know exactly what his/her block is to do)

• Allow you to experiment with different architectural decisions 
(how wide should the bus be, should we have a separate floating 
point unit, etc.)

• Allow you to swap in/out detailed designs for each module as 
they are completed.

Note: at this stage, you have NOT done the hardware design 
yet.  You have broken the design into major functional units 
and made major architectural decisions.



ENSC 350: Lecture Set 1 23ENSC 350: Lecture Set 1 23

Register-Transfer-Level (RTL) Design

• For each functional unit, specify what the hardware 
looks like, in terms of basic building blocks (i.e. mux, 
combinational blocks, state machines, etc.)
– Why you might do this:

• It allows you to determine exactly what the hardware will look 
like.  You can simulate the design to make sure it matches the 
behavioural code created earlier, or if you did not create the 
behavioural code, you can make sure it matches your 
understanding of the design.

• You can simulate it with descriptions of the other functional units 
(either behavioural or RTL versions) to make sure there are no 
unintended interactions

• You can accurately estimate how fast/big your chip will be
• This description can serve as a source for synthesis (more on 

this later)



ENSC 350: Lecture Set 1 24ENSC 350: Lecture Set 1 24

Gate-Level Design

• Can specify your design in terms of individual gates.  Often 
this is created automatically from the RTL description (more 
on this later) but you might want to specify:
– Exactly how certain blocks should be constructed (i.e. if you 

think you can do a better job at state assignment that the 
synthesis tool, if you think you can implement the circuit in 
some clever, tricky way that the synthesis tool might no figure 
out)

– In most cases, humans are smarter than synthesis tools!
• At least, today that is often the case
• A few years from now, if researchers have their way, that might 

not be the case
So, the fact that you can specify hardware at all these different 
levels is why VHDL is becoming so popular



ENSC 350: Lecture Set 1 25ENSC 350: Lecture Set 1 25

VHDL: A source for synthesis

• Today’s definition of Synthesis:
– Automatically creating an optimized gate-level description from an 

RTL-level description:

• Tomorrow’s definition of Synthesis:
– Automatically creating an optimized gate-level description from a 

behavioural description



ENSC 350: Lecture Set 1 26ENSC 350: Lecture Set 1 26

Design Flow

1. Describe the system 
– Flow chart, requirements

2. Think about the hardware 
you want to build
– What are the building 

blocks?

3. Only then write VHDL!!

Challenge: If you do step 3 
without/before the other 
two, you are (very likely) 
going to end up with a poor 
quality circuit

B&V: Figure 2.29.   A typical CAD system.

Design 
conception 

VHDLSchematic 
capture 

DESIGN ENTRY

Design correct? 

Functional simulation 
No

Yes 

No

Synthesis 

Physical design 

Chip configuration 

Timing requirements met?

Timing simulation



ENSC 350: Lecture Set 1 27ENSC 350: Lecture Set 1 27

What is Verilog?

• Verilog is another Hardware Description Language
– Can be used to generate hardware circuits

• Verilog and VHDL are about equally common
– Who will win?  Remember VHS vs Beta?
– Verilog in Europe and VHDL in North America

• Once you learn VHDL you will easily be able to pick up 
Verilog quickly.



ENSC 350: Lecture Set 1 28ENSC 350: Lecture Set 1 28

Things to remember:
-VHDL was not meant as a hardware 

DESIGN language, but a hardware 
DESCRIPTION Language

-There are many things that we can describe, 
but cannot build

-Do not expect all VHDL code to be 
“synthesizable”



ENSC 350: Lecture Set 1 29ENSC 350: Lecture Set 1 29

Combinational Logic in VHDL

• The basic construct for modelling a digital 
system in VHDL is called a design entity.  Each 
hardware block is described in one design entity

• A VHDL Design Entity consists of two parts:
– An Interface Description:

• Describes the inputs and outputs of the block
• In VHDL, denoted by the keyword entity

– A Body:
• Describes either what the block does and/or what it is 

composed of
• In VHDL, denoted by the keyword architecture



ENSC 350: Lecture Set 1 30ENSC 350: Lecture Set 1 30

A VHDL Description of an XOR Gate

entity XOR_GATE is
port ( A, B : in BIT;

Z : out BIT);
end XOR_GATE;

architecture MY_DEFN of XOR_GATE is
begin

Z <= A xor B;
end MY_DEFN;



ENSC 350: Lecture Set 1 31ENSC 350: Lecture Set 1 31

A VHDL Description of a more complex gate

entity BIG_GATE is
port ( A, B, C : in BIT;

Z : out BIT);
end BIG_GATE;

architecture MY_DEFN of BIG_GATE is
begin

Z <= (not A and B) or (B and not C);
end MY_DEFN;



ENSC 350: Lecture Set 1 32ENSC 350: Lecture Set 1 32

Things to note about the entity part

• Ports are signals that flow into/out of the design
• The direction of flow is called the mode of the 

port
– E.g. in, out, inout, linkage, buffer

• Type information (e.g. BIT) declares a set of 
legal values for the port.  A signal of type BIT 
can be either a ‘1’ or ‘0’.  Other types are 
possible 
– More on this later



ENSC 350: Lecture Set 1 33ENSC 350: Lecture Set 1 33

Things to note about the architecture part

• Each entity might have several architectures
– One behavioural, one structural for example

• Therefore, must name each architecture
– E.g. MY_DEFN

• Common names are:
– Behavioural
– Structural
– Dataflow
– Etc.



ENSC 350: Lecture Set 1 34ENSC 350: Lecture Set 1 34

A VHDL Description of a block with several outputs

entity COMB_BLOCK is
port (A, B, C, D  : in BIT;

X, Y, Z        : out BIT);
end COMB_BLOCK;

architecture MY_DEFN of COMB_BLOCK is
begin

X <= A and B and C;
Y <= C and not D;
Z <= A xor B xor D;

end MY_DEFN;

What does the circuit look like?
Note: The assignments are performed concurrently



ENSC 350: Lecture Set 1 35ENSC 350: Lecture Set 1 35

A VHDL Description of a mystery block

entity MYSTERY is
port ( IN1, IN2, IN3  : in BIT;

OUT1, OUT2 : out BIT);
end MYSTERY;

architecture MY_DEFN of MYSTERY is
begin

OUT1 <= IN1 xor IN2 xor IN3;
OUT2 <= (IN1 and IN2) or (IN1 and IN3) or (IN2 

and IN3);
end MY_DEFN;

What is this Block?



ENSC 350: Lecture Set 1 36ENSC 350: Lecture Set 1 36

An XOR gate using internal signals

entity XOR_GATE is
port (A, B  : in BIT;

Z       : out BIT);
end XOR_GATE;

architecture ALT_DEF of XOR_GATE is
signal INT1, INT2 : BIT;

begin
INT1 <= A and not B;
INT2 <= not A and B;
Z <= INT1 or INT2;

end ALT_DEF;
-This is the same as the “xor” function
-We have defined two INTERNAL signals.  Sometimes this results in

simpler definitions (not in this case, though)

Two Internal Signals



ENSC 350: Lecture Set 1 37ENSC 350: Lecture Set 1 37

Bad assignment

entity BAD_MODEL is
port (A, B, C, D : in BIT;

X, Y_BAR  : out BIT);
end BAD_MODEL;
architecture EXAMPLE of BAD_MODEL is
begin

X <= (A and B) or C;
Y_BAR <= X nand D;

end EXAMPLE;
• Ports can be in, out, or inout.
• Rules:

– Signals that are in can not be written to (can not appear on the 
left side 

– Signals that are out cannot appear on the right side (cannot be 
read from)

What’s the mistake in this 
example?



ENSC 350: Lecture Set 1 38ENSC 350: Lecture Set 1 38

Good assignment- internal signal solution

entity GOOD_MODEL is
port (A, B, C, D : in BIT;

X, Y_BAR  : out BIT);
end GOOD_MODEL;

architecture EXAMPLE of GOOD_MODEL is
signal INT_SIG : BIT;
begin

INT_SIG <= (A and B) or C;
X <= INT_SIG;
Y_BAR <= INT_SIG nand D;

end EXAMPLE;

• Note: ports that are declared as inout do not have these restrictions



ENSC 350: Lecture Set 1 39ENSC 350: Lecture Set 1 39

A recipe for specifying combinational logic in VHDL

1. Write a boolean expression for each output

2. Include each boolean expression as a signal 
assignment within an architecture description 
(as shown in an earlier example)

• This will work and you can follow it.  However, 
there are more efficient and easier ways to do 
this.



ENSC 350: Lecture Set 1 40ENSC 350: Lecture Set 1 40

Basic Things to Remember about VHDL

• VHDL is case – insensitive, and spaces and new 
lines can appear anywhere (except in the middle 
of a keyword)

• Comments can appear anywhere, using two 
dashes
-- The rest of this line is a comment

• In your assignments/projects (and any VHDL 
code you might write in the “real” world), please 
use LOTS of comments!



ENSC 350: Lecture Set 1 4141

Onto more Complex HDL



ENSC 350: Lecture Set 1 4242

Structural Specifications

• One of the important concepts in VHDL is hierarchy
– That is specifying a circuit as a composition of smaller 

circuits
• Such a specification is called a structural specification

• Structural Specification can take on many forms:
– A circuit composed of individual gates -> gate level rep.

– A circuit composed of RTL components -> RTL rep.

– A circuit composed of higher level blocks (decoders, etc.)

– A circuit composed of only one top-level block



ENSC 350: Lecture Set 1 4343

In general, there will be many levels of hierarchy



ENSC 350: Lecture Set 1 4444

A Really Simple example

1. Start by describing each component

entity NAND_GATE is entity INV_GATE is
port ( A, B : in BIT; port ( A : in BIT;

Z : out BIT); Z : out BIT);
end NAND_GATE; end INV_GATE;

architecture MY_DEFN of architecture MY_DEFN of 
NAND_GATE is INV_GATE is

begin begin
Z <= A nand B; Z <= not A;

end MY_DEFN; end MY_DEFN;



ENSC 350: Lecture Set 1 4545

A Really Simple example

entity AND_GATE is architecture structural of AND_GATE is
port ( IN1, IN2 : in BIT; component NAND_GATE

OUT1 : out BIT); port (A,B: in BIT;
end AND_GATE; Z: out BIT);

end component;
component INV_GATE

port(A: in BIT;
Z: out BIT);

end component;
signal X: BIT;
begin

u0: NAND_GATE 
port map(IN1, IN2, X);

u1: INV_GATE port map(X, OUT1);
end STRUCTURAL;



ENSC 350: Lecture Set 1 4646

Positional vs Named Notation

• In the previous example, we used Positional 
notation in the port map statements:

port map (IN1, IN2, X);

– This means that IN1 is connected to the first port in the 
entity definition and IN2 is connected to the second port 
in the entity definition, etc.

• Can also use named notation:
port map (A=> IN1, B=> IN2, Z=> X);

– This means that IN1 is connected to A in the entity defn, 
etc.



ENSC 350: Lecture Set 1 4747

Quick reminder: Packages and Libraries

• A package is a collection of:
– Component declarations
– Types, subtypes, and constants
– Procedures and function delcarations

• A library is a collection of packages



ENSC 350: Lecture Set 1 4848

Quick reminder: Packages and Libraries

• Example of how to use stuff from packages in your 
code:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
– This indicates that you want to use the library called 

IEEE

– Within the IEEE library, you want to use packages:
• STD_LOGIC_1164 and STD_LOGIC_ARITH



ENSC 350: Lecture Set 1 4949

Describing Buses

• Type “BIT” maps nicely to one wire, but also need 
buses (sets of parallel wires)

signal x: BIT_VECTOR (2 downto 0);

– This example defines x as a bus with 3 parallel wires.  
This is like an array in a programming language.  Each 
element of the array is of type BIT.

– BIT_VECTOR signals can also be used as input/output 
signals of design entities



ENSC 350: Lecture Set 1 5050

Describing Buses

• The size of a bit-vector and the element numbers 
are assigned when the signal is defined:

signal x: bit_vector(0 to 7); --8 elements accessed using indices 0-7
signal y: bit_vector(8 to 15); --8 elements accessed using indices 8-15
signal z: bit_vector(7 downto 0); --8 elements indexed 7 -0

– Remember you can assign values to all elements in an 
array at once

x <= “00011100”;

– You can copy one bus to another

out_bus <= in_bus; -- both must be declared identically



ENSC 350: Lecture Set 1 5151

Describing Buses

– You can access individual elements of bit_vectors
signal x: BIT;
signal bus: BIT_VECTOR(15 downto 0);
x <= bus(6); --copy element 6 to x

– You can access “slices” of vectors:
signal main_bus: bit_vector (31 downto 0);
signal opcode: bit_vector (3 downto 0);
opcode <= main_bus(31 downto 28); -- 4 bits



ENSC 350: Lecture Set 1 5252

Describing Buses

– You can concatenate short vectors to produce longer 
vectors

signal main_bus: bit_vector(7 downto 0);
signal short_bus: bit_vector(2 downto 0);

– The following assignments are legal:
main_bus <= “0000” & “1111”;
main_bus <= “01011” & short_bus;
main_bus <= ‘0’ & “0001111”;
main_bus <= ‘0’ & ‘0’ & ’0’ & ‘0’ & ‘1’ & ’1’ & ‘1’ & ’1’;



ENSC 350: Lecture Set 1 5353

Describing Buses

– You can operate on entire bit vectors
signal sigA, sigB, sigC: bit_vector(7 downto 0);

sigC <= sigA and sigB;  --This is a bitwise and if 
--sigA = 0x85 & sigB = 0x97,
--what is sigC

– You can make 2-D arrays:
Type REGARRAY is array (3 downto 0) of 

bit_vector ( 7 downto 0);
signal R: REGARRAY;



ENSC 350: Lecture Set 1 5454

Look into predefined attributes, generics and 
parameters to see how you can avoid hard-coding 

numbers



ENSC 350: Lecture Set 1 5555

Review STD_LOGIC and STD_LOGIC_VECTORS

• STD_LOGIC
– Like BIT, but signals of STD_LOGIC can take values 

other than ‘0’ or ‘1’ (like BIT), also:
• ‘Z’ high impedance ( a signal no one is driving)
• ‘X’ unknown (a signal who’s value is unknown)
• ‘U’ uninitialized (a signal that has not been initialized)

• STD_LOGIC_VECTOR

– Array of STD_LOGIC elements (analogous to 
bit_vector)

• Use STD_LOGIC(_VECTOR) not BIT type for all of your 
designs (my advice)



ENSC 350: Lecture Set 1 5656

Readable logic equations: WITH and WHEN

SIGNAL x1, x2, sel, f: STD_LOGIC;

WITH sel SELECT
f <= x1 WHEN ‘0’, 

x2 WHEN OTHERS

• This is the same as:

f <= (x1 and …



ENSC 350: Lecture Set 1 5757

Readable logic equations: WITH and WHEN

SIGNAL x1, x2, f: STD_LOGIC;

f <= ‘1’ WHEN x1= x2, 
ELSE ‘0’;

• The above statement is equivalent to:

f <= 



ENSC 350: Lecture Set 1 5858

Readable logic equations: WITH and WHEN

ENTITY priority IS
PORT(req1, req2, req3: IN STD_LOGIC:

f: OUT STD_LOGIC_VECTOR(1 downto 0));
END priority;
ARCHITECTURE behavioural OF priority iS
BEGIN

f <= “01” WHEN req1 = ‘1’ ELSE
“10” WHEN req2 = ‘1’ ELSE
“11” WHEN req3 = ‘1’ ELSE 
“00”;

END behavioural;
This is equivalent to:
f(0) <=

f(1) <=



ENSC 350: Lecture Set 1 5959

Sequential Logic



ENSC 350: Lecture Set 1 6060

Sequential Circuits

• Two types of circuit building blocks that are 
Sequential:

1. State Machines: You saw these in ensc250?
• From a black box view, like a combinational block, except that 

outputs depend on previous inputs and current outputs
• “memory” or “state” is stored in flip-flops

2. Datapaths: You’ll see more of these in this course
• The part of the circuit that actually does the work
• Usually contains flip-flops

– During this course, we will talk about both state 
machines and datapaths, but first we will review the 
basic flip-flop types.



ENSC 350: Lecture Set 1 6161

A simple example of a sequential circuit

B&V: Figure 7.1.   Control of an alarm system.

Memory

element 
Alarm 

Sensor

Reset 

Set 

On Off / 

Spec: Alarm stays on after sensor “set” pulse until “reset” is 
asserted.

NOTE: Can’t satisfy this specification with combinational logic!



ENSC 350: Lecture Set 1 6262

Step by step flipflop creation

• First we start with a set/reset latch

– Try doing a practice table with S,R, Qa (old), 
Qb(old) to create Qa (new) and Qb(new)

Qa

Qb

R

S



ENSC 350: Lecture Set 1 6363

Step by step flipflop creation

• Remember for a set/reset latch
– If set goes high, Qa goes to 1
– If reset goes high, Qa goes to 0
– If neither set nor reset goes high, the output maintains its 

value

• What about if S and R are high at the same time?
– Would not normally use an S-R latch this way



ENSC 350: Lecture Set 1 6464

Step by step flipflop creation

• Second, we transform it into a gated set-reset latch

– When clk is high, it operates like a normal S-R Latch
– When clk is low, the latch maintains its value regardless 

of R and S
– This called level-sensitive as operation depends on the 

level of the clk signal



ENSC 350: Lecture Set 1 6565

Step by step flipflop creation

• Another gated set-reset latch implementation:

– Why should you care?  
• It turns out it uses fewer transistors (you should learn about this if 

you take an advanced digital electronics course)

S 

R 

Clk

Q 

Q 



ENSC 350: Lecture Set 1 6666

Step by step flipflop creation

• Third, we create a gated D-Latch:

– If clk is high, Q becomes equal to D
– If clk is low, Q maintains its value (regardless of D)
– This is also level-sensitive



ENSC 350: Lecture Set 1 6767

Level-Sensitive D-Latch

• The Symbol for the level-sensitive D-latch:

D Q 

Q Clk



ENSC 350: Lecture Set 1 6868

D-Latch Setup and Hold Times

D value must be “stable” (not changing) when Clk goes from 1 to 0.
If you don’t do this…. METASTABILITY!!!   (I’ll tell you what this is 

later, but for now, trust 
me, it is bad).

B&V: Figure 7.9.   Setup and hold times.

t su
t h 

Clk

D 

Q 



ENSC 350: Lecture Set 1 6969

Final Step: Edge Triggered D-Flipflop

• This is also called the Master-Slave flip-flop

D Q 

Q 

Master Slave 

D 

Clock 

Q 

Q 

D Q 

Q 

Q m Q s 

ClkClk



ENSC 350: Lecture Set 1 7070

Timing Diagram for Edge triggered D-flipflop

Clock

D

Qm

Qs

• Is this a rising or falling edge flipflop?



ENSC 350: Lecture Set 1 7171

Edge-Triggered D-flip flop Notes

• When Clk changes from 1 to 0, the value on D is 
copied to Q (“snapshot”)

• At all other times, Q maintains its value
• Note that Q only changes when clk falls from  1 to 0

– This is called negative edge triggered flip-flop
– We can also have a positive edge triggered flip-flop



ENSC 350: Lecture Set 1 7272

Positive edge triggered D-flipflop

• AKA the Master-Slave flip-flop

When Clk changes from 0 to 1, the value on D is copied to 
Q (“snapshot”), otherwise Q maintains its value

D Q 

Q 

Master Slave 

D 

Clock 

Q 

Q 

D Q 

Q 

Q m Q s 

ClkClk



ENSC 350: Lecture Set 1 7373

Edge triggered flipflop symbols

Negative Edge Triggered Positive Edge Triggered

D Q 

Q 

D Q 

Q 



ENSC 350: Lecture Set 1 7474

D-Latch, rising and falling edge D-flipflops

D Q 

Q 

D Q 

Q 

D Q 

Q 

D 

Clock Q a 

Q b 

Q c 

Q c 

Q b 

Q a 

(a) Circuit 

Clk
D 

Clock 

Q a 
Q b 

(b) Timing diagram

Q c 



ENSC 350: Lecture Set 1 7575

Flipflop Notes

• You can also find references to T Flipflops and J-K 
Flipflops in books, etc

• In modern design, these aren’t really important
• In most digital designs people use only edge-

triggered D flipflops
• An important part of any discussion on FlipFlops is 

synchronous versus asynchronous resets
– It’s coming soon



ENSC 350: Lecture Set 1 7676

Flipflop Notes

• Now that we have created a single bit memory 
device with reset capabilities (to be discussed later)
– How do we create registers and larger memory units

• An n-bit piece of data can be stored in a register 
made of n parallel flipflops:



ENSC 350: Lecture Set 1 7777

Flipflop Notes

• Multiple D flipflops can also be cascaded to form a 
serial shift register

• The output of each stage is delayed by one clock 
cycle from its input
– This can be used to pipeline data
– Typically part of encryption algorithms where the shifted 

data is accessed in parallel



ENSC 350: Lecture Set 1 78ENSC 350: Lecture Set 1 78

Summary

• We went over combinational logic
• We talked about what VHDL is and why we use it

– Originally a method of specifying the behaviour of a circuit
– Now, also a source for synthesis

• We went over the implementation of some simple 
combinational logic circuits using VHDL

• We also went over latches and flipflops, i.e. sequential 
circuit fundamentals

• Next we’ll go over implementing sequential circuits in VHDL



ENSC 350: Lecture Set 1 79ENSC 350: Lecture Set 1 79

Questions

• What does VHDL stand for?

• Is VHDL a programming language?



ENSC 350: Lecture Set 1 80ENSC 350: Lecture Set 1 80

Questions

• Convert the following numbers to decimal:
– 1001
– 0xA
– 1010
– 1100
– 0xC
– 1111
– 0x9



ENSC 350: Lecture Set 1 81ENSC 350: Lecture Set 1 81

Questions

• Convert the following numbers to hexadecimal:
– 1001 1100
– 1010 0011
– 1010 1111
– 1101  0101
– 0100 1000
– 1111 1011
– 0001 0111



ENSC 350: Lecture Set 1 82ENSC 350: Lecture Set 1 82

Questions

• What’s the difference between structural and 
behavioural VHDL?

• What is synthesis?



ENSC 350: Lecture Set 1 83ENSC 350: Lecture Set 1 83

Questions

• Is all HDL code synthesizable?

• What is the difference between an encoder and a 
priority encoder?



ENSC 350: Lecture Set 1 8484

Questions

• How do you use “components”?

• What is the relationship between packages and 
libraries?



ENSC 350: Lecture Set 1 8585

Questions

• SigA (8 downto 0) vs SigB (1 to 9) – what are the 
MSBs for SigA and SigB?

• What’s the difference between “and” and ‘&’?



ENSC 350: Lecture Set 1 8686

Questions

• What’s the difference between a (normal) register 
and a shift register?

• What’s the difference between a latch and a 
flipflop?



ENSC 350: Lecture Set 1 8787

Questions

• Why do setup and hold time matter?

• What’s a Master-Slave flipflop?



ENSC 350: Lecture Set 1 8888

Questions

• Why do we care about how a circuit is 
implemented (e.g. how should you choose your 
implementation of a set-reset latch)?


