
Digital System Design

by
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Slide Set: 10
Date: March 4, 2009

Simon Fraser UniversitySimon Fraser University

ENSC 350: Lecture Set 10 2

Slide Set Overview

• Midterm

– Results

– Answers

ENSC 350: Lecture Set 10 3

• 53.5 18%

• 47.5 16%

• 41.5 14%

• 35.5 12%

• 29.5 10%

• 24 8%

• 18 6%

• 12 4%

• 6 2%

What your marks mean in terms of your final mark

ENSC 350: Lecture Set 10 4

How did everyone do

• The “bad” questions:
– 1. & 4. were the worst
– 2. & 3. weren’t great =(

• Average
– Mean: 38.22 (Std Dev: 11.53)
– Median: 40
– Mode: 41
– Maximum: 60.5
– Minimum: 15

ENSC 350: Lecture Set 10 5

How did everyone do

Midterm Marks

0
1
2
3
4
5
6
7
8
9

10

0-4 5-9 10-
14

15-
19

20-
24

25-
29

30-
34

35-
39

40-
44

45-
49

50-
54

55-
60

Number
in Range

ENSC 350: Lecture Set 10 6

Answers 1.

• Simulated Annealing:
– A Placement algorithm
– Minimizes: WIRE LENGTH (accepted cost and area this time only)
– A Heuristic; Completes in non-polynomial time

• Flowmap:
– A Technology Mapping algorithm
– Minimizes: DELAY
– An Optimal Algorithm; Completes in polynomial time

• Pathfinder:
– A Routing algorithm

ENSC 350: Lecture Set 10 7

Answers 2.

• A: Routing Channel
• B: Switch Block

– Enables between vertical
and horizontal tracks

• C: CLB/ I/O Pad
– Implements circuit logic

(LUTs and Flipflops)
– Provides connection with off-

chip I/O supporting different
transmission standards

• D: Connection Block
– Enables I/O connections

with CLBs to routing tracks

B

C

D

A

ENSC 350: Lecture Set 10 8

Answers 2. (cont’d)

• Other FPGA components
– Embedded memory, Multipliers/DSP, Dedicated Clock

circuitry/DCMs/PLLs, CPUs, High Speed I/Os

• Specific Component consuming the most silicon area
– Switch Blocks: 31% of Area

ENSC 350: Lecture Set 10 9

Answers 3.

• When do processes execute?
– Processes don’t ‘execute’ in hardware: they are only a behavioural

description of the circuit to be implemented on the chip

OR
– Processes execute in a simulator when an event occurs on one of

the signals in the sensitivity list; if there is no sensitivity list, a
process executes continuously

• Different statements that specify a rising clock edge
– (clk = 1) and (clk’event)
– (clk = 1) and (not (clk’stable))
– rising_edge(clk) *** This may not be synthesizable depending on the

tools***

ENSC 350: Lecture Set 10 10

Answers 3.

• The difference between combinational and sequential logic:
– Combinational logic: Has no memory; Outputs are only a function of

the current inputs
– Sequential logic: Has memory (aka “state”) such that the outputs are

a function of historical information

ENSC 350: Lecture Set 10 11

Answers 4.(i)

entity adder_subtractor is
port(in1, in2: IN STD_LOGIC_VECTOR (3 DOWNTO 0);

sub_not_add: IN STD_LOGIC;
result: OUT STD_LOGIC_VECTOR (4 DOWNTO 0));

end unknown;

architecture structural of adder_subtractor is
signal cin: STD_LOGIC_VECTOR (4 DOWNTO 0); -- ripple carry

-- signal
in2_m: STD_LOGIC_VECTOR (3 DOWNTO 0); -- “muxed”

-- in2/in2_bar

component full_adder is
port(a, b, cin: IN STD_LOGIC;

cout, sum: OUT STD_LOGIC);
end component;

ENSC 350: Lecture Set 10 12

Answers 4.(i)

begin
in2_m(0) <= in2(0) xor sub_not_add; --Use sub_not_add signal to
in2_m(1) <= in2(1) xor sub_not_add; --decide whether the in2 vector
in2_m(2) <= in2(2) xor sub_not_add; --should or should not be inverted
in2_m(3) <= in2(3) xor sub_not_add; --Invert when sub_not_add = 1

--Generate the Full Adder chain using your Full Adder component:
FA0: full_adder port map (in1(0), in2_m(0), cin(0), cin(1), result(0));
FA1: full_adder port map (in1(1), in2_m(1), cin(1), cin(2), result(1));
FA2: full_adder port map (in1(2), in2_m(2), cin(2), cin(3), result(2));
FA3: full_adder port map (in1(3), in2_m(3), cin(3), cin(4), result(3));
-- Initialize the cin to the adder/subtractor; provides the additional “plus one”
-- required for twos complement

cin(0) <= sub_not_add;
-- The final carry out bit provides the “sign bit” for the 2’s complement
-- number:

result <= cin(4);
end architecture;

ENSC 350: Lecture Set 10 13

Answers 4.(i)

entity full_adder is
port(a, b, cin: IN STD_LOGIC;

cout, sum: OUT STD_LOGIC);
end full_adder;

architecture structural of adder_subtractor is
begin
sum <= a xor b xor cin; --sum is high for an odd number of ‘1’s
cout <= (a and b) or (a and cin) or (b and cin); -- carry is high when

-- more than 1 (>1)
-- input is high

end structural;

ENSC 350: Lecture Set 10 14

Answers 4.(i) Marking Scheme

-1 adder entity
-1 sum
-1 carry
-1 architecture
-1 COMMENTS

-1 component
-1 cin assignment for bit 0
-4 Full Adder instantiations
-1 in2 inversion
-1 in2 multiplexing
-2 comments

ENSC 350: Lecture Set 10 15

Answers 4.(ii) Marking Scheme

-1 sum
-2 carry
-1 a’s connection
-1 b’s connection

-1 in1
-1 invert in2
-2 mux in2/inv_in2
-1 mux select
-1 cin(0) = sub_not_add
-1 result
-1 cout = cin chain
-1 replication
-1 labels

+1 result(4) = cout(3)

ENSC 350: Lecture Set 10 16

Answers 4.(ii)

SEE BOARD WORK FOR CIRCUIT SOLUTION

