
Digital System Design

by
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Slide Set: 11
Date: March 9, 2009

Simon Fraser UniversitySimon Fraser University

ENSC 350: Lecture Set 11 2

Slide Set Overview

• Datapath Circuits

– Large digital systems are more than state machines and
combinational logic. Generally these systems can be
divided into two parts:

• Control

• Datapath

– We’ll use examples to understand how to do this:

• There is no real “recipe” for designing these things, but with
experience, you get to be good at it.

ENSC 350: Lecture Set 11 3

Real Systems

• All but the simplest systems have two parts:

Exponent

4ENSC 350: Lecture Set 11

• Suppose we want to build a circuit to calculate X3

• X is an n-bit input, and assume that the result also fits in
n-bits for now

• This is a relatively simple circuit

ENSC 350: Lecture Set 11 5

Exponent: A bit more complicated

• What if we want to compute XA where X and A are both
inputs?

• If A was fixed, we could figure out how many multipliers we
need (as in the previous example)

• But, during the operation of this circuit, suppose A can
change. How do we know how many hardware units to put
down?

ENSC 350: Lecture Set 11 6

Exponent: A bit more complicated
The algorithm to be implemented in this block:

P = 1; CNT = A;
while (CNT > 0) do

P = P * X;
CNT = CNT – 1;

end while;

Note 1: this isn’t VHDL or
C, it just is pseudo-code
to illustrate the algorithm.

Note 2: We could write
this in VHDL, but it would
not be synthesizable.
So, we have to design it
using smaller processes
(each one synthesizable)

Rule that has never mattered before: A synthesizable process can only
describe what happens in one clock cycle. This would take more than
one clock cycle. So, it would not be synthesizable

ENSC 350: Lecture Set 11 7

Exponent: A bit more complicated
Consider this simple datapath

If we let this run for A+1 clock cycles, we will produce the desired result.

This will work for any value of A

Need a way to initialize P to 1 at the start:

First cycle, set sel to 1, and this will initialize P to 1
ENSC 350: Lecture Set 11

9

We have to let this run for A cycles. We need some sort of counter to
keep track of this.

ENSC 350: Lecture Set 11

10

But we are not there yet. What we really want is:

So to implement this, we need a controller that:
when s goes high:

set sel and selA to 1 for one cycle
wait until z goes high
when it does, assert done, and go back to the start

ENSC 350: Lecture Set 11

11

• Here is a simple controller that does that:

ENSC 350: Lecture Set 11

12

• Now combine the state machine and the
datapath into one circuit:

Controller
(State Machine)

Datapath
A

s done

P
n

X
n

ENSC 350: Lecture Set 11

13

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity top is
port(A, X : in std_logic_vector(7 downto 0);

s, clk : in std_logic;
P : out std_logic_vector(7 downto 0);
done : out std_logic);

end top ;

architecture behavioural of top is

signal curr_state: std_logic_vector(1 downto 0) := "00";
signal z, sel, selA : std_logic;
signal P_int: std_logic_vector(7 downto 0);
signal cnt: std_logic_vector(7 downto 0);
….

ENSC 350: Lecture Set 11

14

begin
-- Datapath

process(clk)
variable tmp_mul_result : std_logic_vector(15 downto 0);
begin

if (clk = '1') then
if (sel = '1') then

P_int <= "00000001";
else

tmp_mul_result := X * P_int;
P_int <= tmp_mul_result(7 downto 0);

end if;
end if;

end process;
P <= P_int;

--NOTE THIS STILL ISN’T SYNTHESIZABLE BECAUSE MULTIPLICATION
IS NOT SYNTHESIZABLE (BUT YOU CAN SIMULATE IT)

…..

ENSC 350: Lecture Set 11

15

process(clk)
begin

if (clk = '1') then
if (selA = '1') then

cnt <= A;
else

cnt <= cnt - 1;
end if;

end if;
end process;

process(cnt)
begin

if (cnt = "00000000") then
z <= '1';

else
z <= '0';

end if;
end process;

ENSC 350: Lecture Set 11

-- Controller

process(clk)
begin

if (clk = '1') then
case curr_state is

when "00" =>
if (s = '0') then

curr_state <= "00";
else

curr_state <= "01";
end if;

when "01" =>
if (z = '0') then

curr_state <= "01";
else

curr_state <= "10";
end if;

when others =>
if (s = '0') then

curr_state <= "00";
else

curr_state <= "10";
end if;

end case;
end if;

end process;
16

process(curr_state)
begin

case curr_state is
when "00" =>

sel <= '1'; selA <= '1'; done <= '0';
when "01" =>

sel <= '0'; selA <= '0'; done <= '0';
when others =>

sel <= '0'; selA <= '0'; done <= '1';
end case;

end process;
end behavioural;

ENSC 350: Lecture Set 11

17ENSC 350: Lecture Set 11

Consider simulating this description to see the
circuit’s behaviour in Altera’s waveform
viewer.

18

Serial Multiplier

How do you implement a multiplier (multiply two numbers)

Decimal Binary

13 1 1 0 1
x 11 x 1 0 1 1

13 1 1 0 1
13 1 1 0 1
143 0 0 0 0

1 1 0 1
1 0 0 0 1 1 1 1

ENSC 350: Lecture Set 11

19

Serial Multiplier Algorithm

1 1 0 1
x 1 0 1 1

1 1 0 1
1 1 0 1

0 0 0 0
1 1 0 1

1 0 0 0 1 1 1 1

Inputs A and B, Output P:

P=0
for (i=0 to n-1)

if (B(i) = 1) then
P = P + A

end if;
left shift A

end for;

As before, we could implement this psuedo-code using VHDL. But, it
would not be synthesizable. So, we have to break it into smaller
processes (a.k.a. design the hardware)

ENSC 350: Lecture Set 11

Top level diagram of what we will build:

When s goes high, a new n-bit values available on A and B. The
machine then multiplies, and when it is finished, asserts done and
puts the result on P.

20ENSC 350: Lecture Set 11

21ENSC 350: Lecture Set 11

22

• State Machine:

ENSC 350: Lecture Set 11

23

Together, the state machine and datapath
implement the serial multiply. The state
machine is a Mealy Machine, so you
would need two processes to describe it.
The datapath can be described using
simple components.

ENSC 350: Lecture Set 11

Suppose we want to count the number of ‘1’s in a word.
Algorithm to do this:

B=0
while (A ≠ 0) do

if (a0 = 1) then
B = B + 1

end if
Right shift A

end while

24

Bit Counting Circuit

Note 1: this isn’t VHDL or
C, it just is pseudo-code
to illustrate the algorithm.

Note 2: We could write
this in VHDL, but it would
not be synthesizable. So,
we have to design it using
smaller processes (each
one synthesizable)

ENSC 350: Lecture Set 11

Top level diagram of what we will build:

When s goes high, a new n-bit value is available on A. The machine
then counts the bits, and when it is finished, asserts done and puts the
result on B.

25

0

ENSC 350: Lecture Set 11

26

Datapath:

ENSC 350: Lecture Set 11

27

• State Machine:

ENSC 350: Lecture Set 11

28

Together, the state machine and datapath implement the bit-
counting operation. The state machine is a Mealy
Machine, so you would need two processes to describe it.
The datapath can be described using simple components.

For practice you can try writing the HDL from this description

ENSC 350: Lecture Set 11

29

How would you design a divider?

ENSC 350: Lecture Set 11

31

32

n

n

n

n

ENSC 350: Lecture Set 11

16-Bit Remainder Register

Shift/No Shift

16

16-bit 3-to-1 Mux

16

dividendin
(8 bits) 8

168
16

8-Bit Add/Subtract

Bit 7
8

8

clk

8-Bit Divisor
Register

divisorin
(7 bits)

110110

Bits(15:8)
Bits(7:0)

16

8
8

8

16

1

load

add

sel
(2 bits)

shift

inbit

clk

8"00000000"
16

'0' 8

sign

2

quotient
(bits 7:0)

remainder
(bits 15:9) 33

34

10

1
0

1

35

01

0

0

36

11

1
1

37

01

1

1

0

38ENSC 350: Lecture Set 11

39

So both Lab 2 and Lab 3
have datapaths!

Yes, but Lab 2 was only the DES
datapath and Lab 3 allows a Master to
configure (provide a different key) and
obtain the status of the datapath …

ENSC 350: Lecture Set 11

40

Sorting

Sorting is the type thing that really makes sense
to do in software (since it is so sequential).
That being said, there may be times that you
want to do it in hardware. Let’s look at a
fairly complex datapath that will perform
sorting.

We will consider two approaches:
- Fully parallel (big)
- Serial (slow, but smaller)

The serial version is described in the textbook in great detail.
ENSC 350: Lecture Set 11

41

Fully-Parallel Sorting
• First consider designing a block that sorts two input numbers:

• Note that this is purely combinational (no clock required)
ENSC 350: Lecture Set 11

42

Now build a network of these building blocks:

This will sort four numbers of any bit-width in one cycle

Problems:
- Gets big of there are more numbers to sort

Best known: O (n log n) blocks for n inputs
- Can’t use this if n is arbitrary (not known when the chip is
designed)

ENSC 350: Lecture Set 11

43

Suppose we want to sort k numbers:

for (i=0 to k-2) do
A = Ri;
for (j=i+1 to k-1) do

B = Rj
if (B < A) then

Ri = B
Rj = A
A = Ri

end if;
end for;

end for;

ENSC 350: Lecture Set 11

selRegister R0
CLK

Load0
Register R1

CLK
Load1

Register R2
CLK

Load2
Register R3

CLK
Load3

Register A
CLK

LoadA
Register B

CLK
LoadB

<

BltA

A B
Bout

WrInit

DataIn

Imux

DataOut

ABmux

44ENSC 350: Lecture Set 11

45

2 bit Counter i
CLK
Loadi
Counti

2 bit Counter j
CLK
Loadj
Countj

= k -1= k -2

load0
load1
load2
load3

2-4 decoder

en

w
WrInit

Wr

Int

Radd

Csel

zi zj

0

2

2
2

2
Imux

ENSC 350: Lecture Set 11

46

S1

S2
S3

S4

S5

S6

S7

S8
S9

ENSC 350: Lecture Set 11

47

Assume that the values to be sorted are in Registers R1 to R4 (circuitry
is provided to do this, but assume it has already been done)

State S1: Initialize i (outer loop) to zero

2 bit Counter i
CLK
Loadi
Counti

2 bit Counter j
CLK
Loadj
Countj

= k -1= k -2

load0
load1
load2
load3

2-4 decoder

en

w
WrInit

Wr

Int

Radd

Csel

zi zj

0

2

2
2

2

1

0

Imux

ENSC 350: Lecture Set 11

48

State S2: Load Register A with Ri and initialize j to value of i

selRegister R0
CLK

Load0
Register R1

CLK
Load1

Register R2
CLK

Load2
Register R3

CLK
Load3

Register A
CLK

LoadA
Register B

CLK
LoadB

<

BltA

A B
Bout

WrInit

DataIn

Imux

DataOut

ABmux

1

0

ENSC 350: Lecture Set 11

49

State S2: Load Register A with Ri and initialize j to value of i

2 bit Counter i
CLK
Loadi
Counti

2 bit Counter j
CLK
Loadj
Countj

= k -1= k -2

load0
load1
load2
load3

2-4 decoder

en

w
WrInit

Wr

Int

Radd

Csel

zi zj

0

2

2
2

2

1

Imux

ENSC 350: Lecture Set 11

50

State S3: Increment j so it equals i+1

2 bit Counter i
CLK
Loadi
Counti

2 bit Counter j
CLK
Loadj
Countj

= k -1= k -2

load0
load1
load2
load3

2-4 decoder

en

w
WrInit

Wr

Int

Radd

Csel

zi zj

0

2

2
2

2

1

Imux

ENSC 350: Lecture Set 11

51

State S4: Load value of Rj into B

selRegister R0
CLK

Load0
Register R1

CLK
Load1

Register R2
CLK

Load2
Register R3

CLK
Load3

Register A
CLK

LoadA
Register B

CLK
LoadB

<

BltA

A B
Bout

WrInit

DataIn

Imux

DataOut

ABmux

1

ENSC 350: Lecture Set 11

52

Where does Imux come from in S4?

2 bit Counter i
CLK
Loadi
Counti

2 bit Counter j
CLK
Loadj
Countj

= k -1= k -2

load0
load1
load2
load3

2-4 decoder

en

w
WrInit

Wr

Int

Radd

Csel

zi zj

0

2

2
2

2

1

1 Imux

ENSC 350: Lecture Set 11

53

State S5: A and B are compared, and if B<A, goes into State 6

selRegister R0
CLK

Load0
Register R1

CLK
Load1

Register R2
CLK

Load2
Register R3

CLK
Load3

Register A
CLK

LoadA
Register B

CLK
LoadB

<

BltA

A B
Bout

WrInit

DataIn

Imux

DataOut

ABmux

ENSC 350: Lecture Set 11

54

State S5: A and B are compared, and if B<A, goes into State 6

S1

S2
S3

S4

S5

S6

S7

S8
S9

55

State 6: Swap Ri and Rj (part 1)

selRegister R0
CLK

Load0
Register R1

CLK
Load1

Register R2
CLK

Load2
Register R3

CLK
Load3

Register A
CLK

LoadA
Register B

CLK
LoadB

<

BltA

A B
Bout

WrInit

DataIn

Imux

DataOut

ABmux

0

1

ENSC 350: Lecture Set 11

56

How did it know which loadj to assert?

2 bit Counter i
CLK
Loadi
Counti

2 bit Counter j
CLK
Loadj
Countj

= k -1= k -2

load0
load1
load2
load3

2-4 decoder

en

w
WrInit

Wr

Int

Radd

Csel

zi zj

0

2

2
2

2

Imux

1

1

ENSC 350: Lecture Set 11

57

State S7: Swap Ri and Rj (part 2)

selRegister R0
CLK

Load0
Register R1

CLK
Load1

Register R2
CLK

Load2
Register R3

CLK
Load3

Register A
CLK

LoadA
Register B

CLK
LoadB

<

BltA

A B
Bout

WrInit

DataIn

Imux

DataOut

ABmux

1

1

ENSC 350: Lecture Set 11

58

How did it know which loadi to assert?

2 bit Counter i
CLK
Loadi
Counti

2 bit Counter j
CLK
Loadj
Countj

= k -1= k -2

load0
load1
load2
load3

2-4 decoder

en

w
WrInit

Wr

Int

Radd

Csel

zi zj

0

2

2
2

2

Imux

0

1

ENSC 350: Lecture Set 11

59

State S8: Load A from Ri

selRegister R0
CLK

Load0
Register R1

CLK
Load1

Register R2
CLK

Load2
Register R3

CLK
Load3

Register A
CLK

LoadA
Register B

CLK
LoadB

<

BltA

A B
Bout

WrInit

DataIn

Imux

DataOut

ABmux

1

0

ENSC 350: Lecture Set 11

60

State S8: This was being done all the time, but now we will use zi and zj

2 bit Counter i
CLK
Loadi
Counti

2 bit Counter j
CLK
Loadj
Countj

= k -1= k -2

load0
load1
load2
load3

2-4 decoder

en

w
WrInit

Wr

Int

Radd

Csel

zi zj

0

2

2
2

2

ENSC 350: Lecture Set 11

61

State S8:

S1

S2
S3

S4

S5

S7

S8
S9

ENSC 350: Lecture Set 11

62

An alternative datapath: Tri-state buffer based datapath

selRegister R0CLK
Load0

Register R1
CLK

Load1
Register R2

CLK
Load2

Register R3
CLK

Load3

Register A
CLK

LoadA
Register B

CLK
LoadB

<

BltA

A B

WrInit

DataIn

Rout1 Rout2 Rout3Rout0

BoutAout

ENSC 350: Lecture Set 11

63

Area vs. Speed
In this example, we saw two implementations:

Big and Fast
Small and Slow

In general, you can trade off area for speed. Ideally, if you double
the number of functional units, then you can reduce the number of
cycles by half. Rarely can you achieve this.

Which is the right implementation? Depends on how fast you need the
circuit to produce results. Larger circuits cost more (more chip area,
more power, higher prob. of defects), so if you don’t need the speed, a
small implementation is probably better.

There is no general rule: as an engineer, it is up to you to choose a
good implementation based on the specs you are designing to

ENSC 350: Lecture Set 11

64

Summary of this long Slide Set

We saw a lot of examples of datapath and
control circuits

Do you need to regurgitate all the details
of any of these examples on a test?

No, but you might be asked to design a
simple system that contains both a datapath
and controller. But, if you understand these
examples, you’ll be in a good position to do
the design on a test, and more importantly, in the real world

once you graduate (or go on co-op)

ENSC 350: Lecture Set 11

ENSC 350: Lecture Set 11 65

Summary of this slide set

• All of these examples – except the divider -
can be found in this textbook (pages 673-712)

• They use ASM charts
as opposed to FSMs

• There are no review
questions for this slide
set, just these examples
to guide your thought
process

