
Digital System Design

byby
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Si F U i iSi F U i i Slide Set: 13
Date: March 16, 2009

Simon Fraser UniversitySimon Fraser University
ENSC350: Lecture Set 13

Slide Set Overview

• Floating point• Floating point

• Asynchronous Circuits• Asynchronous Circuits

ENSC350: Lecture Set 13 Page 2

Floating Point Numbers

• Single Precision Floating point• Single Precision Floating point
– Sign Bit

• 1 bit• 1 bit
– Exponent

8 bits• 8 bits
• Exponent bias 127

M ti– Mantissa
• 23 bits

ENSC350: Lecture Set 13 Page 3

The cost of Floating Point Numbers

• Resources for complex 32-bit operations
Add– Add
• Fixed Point: 116 Flipflops, 106 LUTs

Floating Point: 1182 Flipflops 1160 LUTs• Floating Point: 1182 Flipflops, 1160 LUTs
– Subtract

Fi d P i t 116 Fli fl 106 LUT• Fixed Point: 116 Flipflops, 106 LUTs
• Floating Point: 1182 Flipflops, 1160 LUTs

– Multiply
• Fixed Point: 170 Flipflops, 154 LUTs
• Floating Point: 1732 Flipflops, 1530 LUTs

ENSC350: Lecture Set 13 Page 4

The cost of Floating Point Numbers

• Floating point is not only bigger, it’s slower
• Anywhere from 2 to 4 times slower• Anywhere from 2 to 4 times slower
• The point is that Floating point comes at a cost

So make sure you need it– So make sure you need it
• The dynamic range should be a necessity
• This will typically only apply to highThis will typically only apply to high

performance/scientific computing
• FYI Double precision is:

– 1 sign bit
– 11 exponent bits
– 52 mantissa bits

ENSC350: Lecture Set 13 Page 5

Intro to Asynchronous Circuits

Most real digital systems are purely synchronous, that is, they operate
on a single clock. These are easy to design, but have some
disadvantages It is also possible to design a circuit that does notdisadvantages. It is also possible to design a circuit that does not
depend on a clock. In this slide set, we will
talk about such circuits. Even though you

t h t th t imay not see a huge system that is
entirely asynchronous any time in the near
future, you will likely come across small
asynchronous circuits, so it is important
that you have seen them before.

ENSC350: Lecture Set 13 Page 6

Problems with Synchronous Design:

1. In Synchronous design, clock period is dictated by the
longest path

“in the MIPS R10000, there was a single long path in the
processor’s instruction fetch hardware. This long path was
limiting the achievable clock frequency, but the engineers
couldn’t find it! They finally found it and shortened it forcouldn’t find it! They finally found it and shortened it for
the MIPS R12000”.

2. Since everything happens on the clock edge, instantaneous
power is a problem

3. Excessive noise at the frequency of the clock

4 In large chips distributing the clock is difficult4. In large chips, distributing the clock is difficult

ENSC350: Lecture Set 13 Page 7

Asynchronous State Machines

Exactly the same as a synchronous state machine except there are no
flip-flops The value of the next state wires indicate the stateflip flops. The value of the next_state wires indicate the state

ENSC350: Lecture Set 13 Page 8

Simple Example

Start with Y=y=S=R=0. Then,
What happens if R changes to 1?
What happens if S now changes to 1?
What happens if R then changes to 0?What happens if R then changes to 0?

ENSC350: Lecture Set 13 Page 9

Designing Asynchronous State Machines

Starting from a State Diagram, you design an asynchronous state
machine exactly as you did a Synchronous State Machine.

The main difference is that you don’t have flip-flops to hold your
current state (use wires instead)current state (use wires instead)

ENSC350: Lecture Set 13 Page 10

This the state machine for a Muller C Element (this is important when
we talk about Asynchronous Datapaths):

ENSC350: Lecture Set 13 Page 11

In the previous example, we can see that the machine is:

Stable when one of the following is true:
we are in state S1 and AB=00, 01, or 10
we are in state S2 and AB=01, 10, or 11we are in state S2 and AB 01, 10, or 11

Unstable when one of the following is true:
i t t S1 d AB 11we are in state S1 and AB=11

we are in state S2 and AB=00

Why is this? When we are in state S1, and we get a 11, we
immediately go to S2. Once we reach S2, we are stable again.

When we are in state S2, and we get a 00, we immediately go to S1.
Once we reach S1, we are stable again.

ENSC350: Lecture Set 13 Page 12

This is a fundamental difference between a synchronous and
h t t hiasynchronous state machine:

In a synchronous machine, when the “next state” is not the same as the
“current state”, we wait until the next rising clock edge to actually
change state.

In an asychronous machine, when the “next state” is not the same as
the “current state”, we immediately make a transition to the next state.

Th t t t l t b t bl i th t ld- The next state may also not be stable, in that case, we would
calculate a new next state, and immediately make a transition
there, and so on….

- To be useful, we have to eventually reach a stable state.

ENSC350: Lecture Set 13 Page 13

Two more differences between an asynchronous and synchronous
machine:machine:

1. Need to watch out for “hazards” (glitches)

ENSC350: Lecture Set 13 Page 14

If we add an extra “cover”, this eliminates the glitch

Glitches were never a problem for synchronous circuits; as long as they
stabalized by the next rising clock edge we were fine Here if thestabalized by the next rising clock edge, we were fine. Here, if the
output goes low even for a short time, this may cause us to go into
an unexpected state.

Moral: Make sure your next state logic and output logic is glitch-free!
ENSC350: Lecture Set 13 Page 15

2. In a synchronous machine, a transition from any state to any other
state is allowed. But in an asynchronous state machine, a state
transition from Sa to Sb is only allowed if Sa and Sb are “adjacent”
(the state encodings differ in exactly one bit).

So, we can transition from
000 -> 010

But we can not make a direct transition from:
000 > 011000 -> 011

Why not? The following example will make it clear.

ENSC350: Lecture Set 13 Page 16

This is what would happen if we chose the “bad” state assignment:

Problem occurs when current state = D (bottom row) and w changes to 0
In that case, y2y1 is supposed to change from 11 to 00
But, it is unlikely that y2 and y1 will change at exactly the same time

ENSC350: Lecture Set 13 Page 17

This is what would happen if we chose the “bad” state assignment:

Suppose y1 changes first:
For a short time, we would enter state y2y1=10
But since w=0, we would stay there

Suppose y2 changes first:
For a short time we would enter state y2y1=01For a short time we would enter state y2y1=01
But since w=0, we would go to 10 and stay there

“Race Condition” ENSC350: Lecture Set 13 Page 18

Rule: All state transitions must involve only one change in variableRule: All state transitions must involve only one change in variable
In other words, the Hamming Distance between present state and
next state must be 1

If you can’t find an appropriate state assignment, you have to add
extra states!

ENSC350: Lecture Set 13 Page 19

Implicit in the previous example was the assumption that both inputs
don’t change at exactly the same time.

Another way of saying this is that inputs operate in fundamental modeAnother way of saying this is that inputs operate in fundamental mode
- This makes it easy to analyze and design asynch. state machines
and in practice is always true.
W ill ll i t t i f d t l d- We will assume all inputs operate in fundamental mode

ENSC350: Lecture Set 13 Page 20

Another design example we will do on the board: Design an arbiter!

ENSC350: Lecture Set 13 Page 21

Asynchronous Logic in VHDL

Two alternatives:
process(r1, r2)

variable y2,y1 : std_logic;
begin

y2 := ((not r1) and r2 and (not y1)) or (y2 and r2);
y1 := r1 and not y2;y1 := r1 and not y2;
g2 <= y2;
g1 <= y1;

end process;p ;

Or (not in a process):

y2 <= ((not r1) and r2 and (not y1)) or (y2 and r2);
y1 <= r1 and not y2;
g2 <= y2;
g1 <= y1;g1 <= y1;

ENSC350: Lecture Set 13 Page 22

Are these synthesizable?

Depends on your tools For the latest version of Quartus II (which weDepends on your tools. For the latest version of Quartus II (which we
are using), the answer is YES!

- But, you get a warning:
W i Ti i A l i i l iWarning: Timing Analysis is analyzing one or more

combinational loops as latches

Other tools: some would be able to synthesize this and some
wouldn’t. To be the most portable, use explicit equations rather
than a processthan a process.

ENSC350: Lecture Set 13 Page 23

Datapaths

In a synchronous system, signals must arrive before “the next rising
clock edge”. It is up to the user to make sure the clock speed is slow
enough that all signals “make it” in timeenough that all signals make it in time.

In an asynchronous datapath, we don’t have a clock.
E h l t f ti d d 2 thi t- Each element performs an operation and sends 2 things to
its neighbour:

- The result of the operation
- An indication that it is done

Two options to do this: ready/ack and transition signalingTwo options to do this: ready/ack and transition signaling

ENSC350: Lecture Set 13 Page 24

Option 1:

When data is produced, ready is toggled. When receiver sees ready, it
accepts the data and toggles to ack to indicate that it has accepted
datadata

Data could be a bus, and you only need a single ready wire and a
single ack wire

ENSC350: Lecture Set 13 Page 25

Problem with this option: What if the ready wire is faster than
the data wire(s)?

- data will be read before it becomes valid

S l tiSolutions:
a) route data, ready, ack parallel to each other on the chip
b) intentionally add delay to the ready line

ENSC350: Lecture Set 13 Page 26

Option 2: Transition Signaling:

When transmitter wants to send a 0, it toggles data0
When transmitter wants to send a 1, it toggles data1, gg
Receiver listens for a change in either data0 or data1

This works independently of wiring delays!This works independently of wiring delays!

Problem: need 2 wires for each bit to be transmitted

ENSC350: Lecture Set 13 Page 27

Micro-pipelines

A structured way to implement asynchronous datapathsA structured way to implement asynchronous datapaths
(uses request and ack lines)

Thi h b d i l d b bl i th tThis has been used in large processors, and probably is the most
straight-forward way to achieve asynchronous datapaths.

ENSC350: Lecture Set 13 Page 28

Define a new “clockless register”

Transition on P (1 to 0 or 0 to 1) puts register in “propagate” mode
- in propagate mode, value in D is propagated to Q

Transition on C (1 to 0 or 0 to 1) puts register in “hold” modeTransition on C (1 to 0 or 0 to 1) puts register in hold mode
- in hold mode, Q holds its value

Cd is a delayed version of C

Pd is a delayed version of P
ENSC350: Lecture Set 13 Page 29

A Muller C-Element:

OUT is 0 if all inputs are 0
1 if all inputs are 1
unchanged otherwiseunchanged otherwise

A transition on the output occurs after a transition on all inputs
(we showed this earlier in this slide set)()

ENSC350: Lecture Set 13 Page 30

We will put these together to form a datapath.

But first just a reminder of a synchronous datapath:But first, just a reminder of a synchronous datapath:

ENSC350: Lecture Set 13 Page 31

Asynchronous version:

One Stage looks like this:

ENSC350: Lecture Set 13 Page 32

Operation of Micro-pipeline Stage:Operation of Micro pipeline Stage:

1. Previous stage drives data and toggles ready. Assume an event
(toggle) has already occurred on Pd (at the end of the previous(toggle) has already occurred on Pd (at the end of the previous
transfer)

2. Since an event has occurred on both C-element inputs, the C-
element output toggles This causes latch to hold (“latch-in”) theelement output toggles. This causes latch to hold (latch-in) the
current input data.

3. A short time later, Cd toggles, which returns an event on ack to the
previous stageprevious stage.

4. Td later, the output data is valid.
5. Some time later, the output ready signal (to the next stage) toggles
6 Th t t l t h d th d t Wh it h St 36. The next stage latches and uses the data. When it reaches Step 3,

our ack is toggled, causing our register to go back into propagate
mode.

ENSC350: Lecture Set 13 Page 33

Illustrated example of what is on the previous slide:

Assume a toggle has already
happened here (previous
t f)transfer)

ENSC350: Lecture Set 13 Page 34

Step 1: data and ready comes from previous stage

Assume a toggle has already
happened here (previous
t f)transfer)

ENSC350: Lecture Set 13 Page 35

Step 2: Output of C element toggles, latch goes into “hold” mode

HOLD

ENSC350: Lecture Set 13 Page 36

Step 3: A short time later, Cd toggles, sending ack back to predecessor

HOLD

ENSC350: Lecture Set 13 Page 37

Step 4: Td later, output data is valid

HOLD

ENSC350: Lecture Set 13 Page 38

Step 5: A little bit later, ready output toggles

HOLD

ENSC350: Lecture Set 13 Page 39

Step 6:The next stage now sees ready go high, so it starts with Step 1,
latching in data Eventually it reaches Step 3 sending us back alatching in data. Eventually, it reaches Step 3, sending us back a
toggle on the ack signal

And we’re back where we started, ready for the next transfer
ENSC350: Lecture Set 13 Page 40

Steps 1 to 6 can be thought of as a “clock cycle”

But notice that there is no global clockBut, notice that there is no global clock
- The speed is limited by the delay of the logic stage

I th t d t t if th l i t ll l (l dIn the steady state, if the logic stages are all equal (rarely does
this happen), we won’t run any faster than a synchronous system with a
well-tuned clock

ENSC350: Lecture Set 13 Page 41

Thi i th A l tThis is the Amulet
Microprocessor

Built with Micropipeline
techniques

58,000 Transistors

ENSC350: Lecture Set 13 Page 42

Globally Asynchronous Locally Synchronous (GALS)

Each sub-block on a chip is designed as a synchronous circuit
- But, each operates on its own clock

When you connect these together, the subcircuits are asynchronous
with respect to each other.

A bit tricky:
- Need to worry about interface between two synchronous blocks

- Need some clever circuit design (what if the producer and
consumer run at slightly different speeds?)

- Metastability is a concern: as far as any given subcircuit isMetastability is a concern: as far as any given subcircuit is
concerned, the signals from other subcircuits could happen any
time.

ENSC350: Lecture Set 13 Page 43

Summary of this Slide Set

Asynchronous State Machines
- Like normal state machine design, but no clock and no registers

- State is held in feedback wires- State is held in feedback wires
- A few things to be careful of:

- Avoid glitches
N t t t h ld b dj t- Next states should be adjacent

- The level of support in modern CAD tools varies

Asynchronous Datapaths: Micropipelines

Globally Asynchronous Locally Synchronous (GALS)Globally Asynchronous Locally Synchronous (GALS)

ENSC350: Lecture Set 13 Page 44

Questions

• What does GALS stand for?

When is it sed?• When is it used?

ENSC350: Lecture Set 13 Page 45

Questions

• What is a Muller C element? What does the
state machine look like?state machine look like?

• What would the circuit look like?• What would the circuit look like?

ENSC350: Lecture Set 13 Page 46

Questions

• What is a Race condition

• What is a hazard?

ENSC350: Lecture Set 13 Page 47

Questions

• How do micropipeline stages work?

• How does a “clockless register” work?

ENSC350: Lecture Set 13 Page 48

Questions

• You should be able to draw the state machine
and corresponding circuit for an asynchronousand corresponding circuit for an asynchronous
circuit (Think of slide 9 as an example).

• In an asynchronous datapath, what 2 thingsIn an asynchronous datapath, what 2 things
does a module have to send its neighbour?

ENSC350: Lecture Set 13 Page 49

Questions

• Give two options for successful data transfers in
asynchronous datapaths.asynchronous datapaths.

ENSC350: Lecture Set 13 Page 50

