
Digital System Design

by

Digital System Design

y
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www ensc sfu ca/ lshannon/courses/ensc350Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Si F U i iSi F U i i Slide Set: 14
Date: March 23, 2009

Simon Fraser UniversitySimon Fraser University

Introduction to Slide Set 16

In this slide set, we will talk about Pipelining and
give another datapath example.
To make it a bit more concrete, I will first present
a commercial embedded processor called
MIPS, and then show how MIPS can be pipelined.

Note: pretty much any datapath
can be pipelined in this way, and
it is one of the key ways to
improve throughput of a system.

Slide Set 14, Page 2
modified from 1998 Morgan Kaufmann Publishers

The MIPS Processor:

• On the next few slides, I’ll show you the datapath of MIPS
– It should be a review of concepts from 250 applying what you’ve p pp y g y

learned in 350

• Simplified to contain only:
– memory-reference instructions: lw, sw
– arithmetic-logical instructions: add, sub, and, or, slt
– control flow instructions: beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
get the instruction from memory– get the instruction from memory

– read registers
– use the instruction to decide exactly what to do

Slide Set 14, Page 3
modified from 1998 Morgan Kaufmann Publishers

More Implementation Details

Simplified View:

Data

Register #

Registers

Register #

Data
memory

Address

Register #

PC Instruction ALU

Instruction
memory

Address

Data

g

Two types of functional units:
– elements that operate on data values (combinational)
– elements that contain state (sequential)

Slide Set 14, Page 4
modified from 1998 Morgan Kaufmann Publishers

elements that contain state (sequential)

Register File

Read register

Register 0

Register 1 M
u Read data 1

g
number 1

Register n – 1

Register n

u
x

Read data 1

Read register

M
u Read data 2

number 2

x
Read data 2

Slide Set 14, Page 5
modified from 1998 Morgan Kaufmann Publishers

Register File

Clock not shown. Each register is clocked by the same clock, as in lab 3

Register 0
EN

D

Write

0
1

n-to -1
decoder Register 1

EN

D

Reg ister num ber

n – 1

n

Register n – 1
EN

EN

D

Registe r n
D

Registe r n
Register data

Slide Set 14, Page 6
modified from 1998 Morgan Kaufmann Publishers

Building the Datapath

Use multiplexers to stitch them together

PCSrc

Add ALU
result

M
u
x

Shift

4

Add

PC Read
address

Registers

Read
d t 1

Read
register 1
Read

Shift
left 2

ALU operation3 MemWrite
ALUSrc

M t R

Instruction
memory

address

Instruction
Write
register
Write
data

data 1

Read
data 2

Read
register 2

M
u
x

MemtoReg

ALU
result

Zero
ALU

Data

Address Read
data M

u
x

16 32

data
RegWrite

MemRead

memoryWrite
data

Sign
extend

Slide Set 14, Page 7
modified from 1998 Morgan Kaufmann Publishers

Control

Add

Add ALU�
result

M�
u�
x

0

1

Shift�

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31– 26]

4

Control

left 2

PC

Instruction�
memory

Read�
address

Instruction�
[31– 0]

Instruction [20– 16]

Instruction [25– 21]

RegWrite

0M�
u�
x

0 Registers
Write�
register

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

M�
u�

ALU�
result

Zero

Read�
data

M�
1

ALU
Address

memory

16 32Instruction [15– 0]

0

x
1 Write�

data

Sign�
extend

u�
x

1
Data�

memory
Write�
data

u�
x

Instruction [15– 11]

ALU�
control

Instruction [5– 0]

Don’t worry about the details, I just wanted to show you that there

Slide Set 14, Page 8
modified from 1998 Morgan Kaufmann Publishers

y , j y
is some control logic along with the datapath (as in the datapath
lectures examples)

What is Pipelining?

• Ann, Brian, Cathy, Dave
each have one load of clothes A B C Deach have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 30 minutesDryer takes 30 minutes

• It takes 30 minutes to fold clothesIt takes 30 minutes to fold clothes

• It takes 30 minutes

Slide Set 14, Page 9
modified from 1998 Morgan Kaufmann Publishers

to put clothes into drawers

Sequential Laundry

3030 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

30T
a
s

A Time
30 30 3030 30 3030 30 30 3030 30 30 3030

s
k

O

B

C
O
r
d

D

• Sequential laundry takes 8 hours for 4 loads
• If they learned pipelining how long would laundry take?

e
r

Slide Set 14, Page 10
modified from 1998 Morgan Kaufmann Publishers

• If they learned pipelining, how long would laundry take?

Pipelined Laundry: Start work ASAP

T

12 2 AM6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30T
a
s

B

A
3030 30 3030 30 30

k

O

B
C
DO

r
d
e

D

• Pipelined laundry takes 3 5 hours for 4 loads!

e
r

Slide Set 14, Page 11
modified from 1998 Morgan Kaufmann Publishers

Pipelined laundry takes 3.5 hours for 4 loads!

Pipelining Lessons

• Pipelining doesn’t help
latency of single task, it
helps throughput of entire

kl d

6 PM 7 8 9
TimeT workload

• Multiple tasks operating
simultaneously using
different resourcesA

3030 30 3030 30 30
T
a
s

• Potential speedup = Number
pipe stages

• Pipeline rate limited by
slowest pipeline stage

B
C

A
k

O slowest pipeline stage
• Unbalanced lengths of pipe

stages reduces speedup
• Time to “fill” pipeline and

ti t “d i ” it d

C
D

O
r
d
e time to “drain” it reduces

speedup
• Stall for Dependences

e
r

Slide Set 14, Page 12
modified from 1998 Morgan Kaufmann Publishers

Estimate fastest clock we can use:

• assume delay of mux = 2ns, delay of ALU=2ns
• assume it takes 2ns after rising clock edge to read a register from a

register file (Tclk-Q) and that the setup time is 0.

Shortest clock

cycle we can

get away with

is _______ ns

Multi-Cycle Datapath:

We can use a shorter cycle time by dividing the job into three steps

Step 1 (clock cycle 1)Step 1 (clock cycle 1)

Step 2 (clock cycle 2)p (y)

Step 3 (clock cycle 3)

So each cycle can be done in 2 ns ! But we need three of themy

So what’s the advantage??? And what are we assuming???

Multi-Cycle Datapath:

Use Registers to hold values at stage boundaries:

D
Q

D
Q

D
Q

D
Q

Splitting the MIPS datapath into 5 Stages:

M
u
0

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

x
1

Add

Address

4 A dd Add
res ult

S hif t
left 2

I t ti

PC

R i t

Read
data 1

R ead
re gis ter 1

R ea d
re gis ter 2

A LU
Zero

Instruction
memory

32

0
Ins truction

0
Write
data

M
u
x

1
R eg iste rs Read

data 2

16
Sign

extend

W rite
re gis ter

W rite
data

R ead
data

Address

Data
memory

1

A LU
res ult

M
u
x

A LU

Slide Set 14, Page 16
modified from 1998 Morgan Kaufmann Publishers

Five Execution Steps

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!

Slide Set 14, Page 17
modified from 1998 Morgan Kaufmann Publishers

Pipelining
Program

Instruction
fetch

Reg ALU Data
access

Reg

Time

lw $1, 100($0)

2 4 6 8 10 12 14 16 18
Program
execution
order
(in instructions)

8 ns
Instruction

fetch
Reg ALU Data

access
Reg

8 ns
Instruction

fetch

lw $2, 200($0)

lw $3, 300($0)

. . .

8 ns

2 4 6 8 10 12 14
Time

Program
execution
order
(i i t ti)

Instruction
fetch

Reg ALU
Data

access
Reglw $1, 100($0)

lw $2, 200($0) 2 ns
Instruction

fetch
Reg ALU Data

access
Reg

(in instructions)

lw $3, 300($0) 2 ns
Instruction

fetch Reg ALU
Data

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Slide Set 14, Page 18
modified from 1998 Morgan Kaufmann Publishers

Ideal speedup is number of stages in the pipeline. Do we achieve this?

Can pipelining get us into trouble?

structural hazards: attempt to use the same resource two different
ways at the same time

• E g combined washer/dryer would be a structural hazard• E.g., combined washer/dryer would be a structural hazard

data hazards: attempt to use item before it is ready
• E g one sock of pair in dryer and one in washer; can’t fold• E.g., one sock of pair in dryer and one in washer; can t fold

until get sock from washer through dryer
• instruction depends on result of prior instruction still in the

pipelinepipeline

control hazards: try to make decision before condition is evaluated
• E.g., washing football uniforms and need to get properE.g., washing football uniforms and need to get proper

detergent level; need to see after dryer before next load in
• branch instructions

Modified From: © D. Patterson, UCB, 1997

Data Hazards:

Consider the following instructions:

add $s0, $t0, $t1 -- This means add registers t0 and t1 and
store the result in s0

add $t2, $s0, $t3 -- This means add registers s0 and t3 and
store the result in t2

Do you see a problem?

...

Instruction
Reg ALU

Data
Reg

T im e

Add $s0, $t0, $t1
fetch

Reg ALU
access

Reg

Instruction

fetch
Reg ALU

Data

access
RegAdd $t2, $s0, $t3

Slide Set 14, Page 20
modified from 1998 Morgan Kaufmann Publishers

Data Hazards:

One Solution: Compiler could add no-op instructions

add $s0, $t0, $t1
nop
nopp
nop
add $t2, $s0, $t3

...

But this really slows us down.
Can re-order instructions (perhaps we can get some useful work done

instead of executing no-ops).
- but this is tricky to deal with in a compiler

Slide Set 14, Page 21
modified from 1998 Morgan Kaufmann Publishers

Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6 r1 r7and r6, r1 ,r7

or r8, r1 ,r9

xor r10, r1 ,r11

Modified From: © D. Patterson, UCB, 1997

• Dependencies backwards in time are hazards
Data Hazard on r1:

• Dependencies backwards in time are hazards

Time (clock cycles)
I ID/R E ME W

I
n

add r1,r2,r3
I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg

A

s
t
r.

sub r4,r1,r3

and r6 r1 r7
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

O
r
d

and r6,r1,r7

or r8,r1,r9

U

Im

A
L

UReg Dm Reg

e
r xor r10,r1,r11

A
L

UIm Reg Dm Reg

Modified From: © D. Patterson, UCB, 1997

• “Forward” result from one stage to another
Data Hazard Solution:

• “Forward” result from one stage to another

Time (clock cycles)
I ID/R E ME W

I
n

add r1,r2,r3
I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg

A

s
t
r.

sub r4,r1,r3

and r6 r1 r7
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

O
r
d

and r6,r1,r7

or r8,r1,r9

U

Im

A
L

UReg Dm Reg

e
r xor r10,r1,r11

A
L

UIm Reg Dm Reg

Modified From: © D. Patterson, UCB, 1997

Forwarding (or Bypassing): What about Loads

• Dependencies backwards in time are hazards

lw r1,0(r2)
I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg()

sub r4,r1,r3
A

L
UIm Reg Dm Reg

• Can’t solve with forwarding:Can t solve with forwarding:
• Must delay/stall instruction dependent on loads

Modified From: © D. Patterson, UCB, 1997

Single Memory is a Structural Hazard
Time (clock cycles)

I
n
s
t

Load

Instr 1

A
L

UMem Reg Mem Reg

A
LMem Reg Mem Regt

r.

O

Instr 1

Instr 2

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem
r
d
e
r

Instr 3

A
L

UReg Mem Reg

Ar
Instr 4

A
L

UMem Reg Mem Reg

Modified From: © D. Patterson, UCB, 1997

Control Hazards:

Another problem: What happens when we execute a branch?

- we don’t know if we will be taking the branch until the last step

- but by then, other instructions are in the pipeline!y , p p

- need to flush pipeline whenever we take a branch
...

Some processors have “delay slots”
- the next instruction after a branch is always execute
- rely on compiler to “fill” the slot with something usefuly p g

Most processors have h/w to predict if a branch will be taken
- after a branch, load pipeline with most-likely next instruction

Slide Set 14, Page 27
modified from 1998 Morgan Kaufmann Publishers

a te a b a c , oad p pe e t ost e y e t st uct o
- if we are wrong, we still have to flush

Control Hazard Solutions
Stall: wait until decision is clear

– Its possible to move up decision to 2nd stage by adding
hardware to check registers as being read

I
n
s

Time (clock cycles)

Add

A
L

UMem Reg Mem Reg
t
r.

O

Add

Beq

U

A
L

UMem Reg Mem Reg

O
r
d
e

Load

A
L

UReg Mem RegMem

Impact: 1 or 2 clock cycles per branch instruction
=> slow

r

=> slow

Modified From: © D. Patterson, UCB, 1997

Control Hazard Solutions

• Predict: guess one direction then back up if wrong
– Predict not taken

I
n
s

Time (clock cycles)

Add

A
L

UMem Reg Mem Reg
t
r.

O

Add

Beq

U

A
L

UMem Reg Mem Reg

O
r
d
e

Load Mem
A

L
UReg Mem Reg

• Impact: 1 clock cycles per branch instruction if right, 2 if wrong
(right 50% of time)

r

(right - 50% of time)
• More dynamic scheme: history of 1 branch (- 90%)

Modified From: © D. Patterson, UCB, 1997

Control Hazard Solutions

• Redefine branch behavior (takes place after next instruction)
“delayed branch”

I
n
s

Time (clock cycles)

Add

A
L

UMem Reg Mem Reg
t
r.

O

Add

Beq

U

A
L

UMem Reg Mem Reg

O
r
d
e

Misc Mem
A

L
UReg Mem Reg

Load Mem

A
LReg Mem Regr Load Mem L

UReg Mem Reg

Modified From: © D. Patterson, UCB, 1997

Summary:

Datapaths can be pipelined, executing several instructions at once

Need to worry about control and data hazards:
- Can be taken care of by hardware or compiler or both!

Superscalar machines have an additional twist: there are several
functional units (eg. ALUs)

- can have several instructions in each stage at once

...

g
- hardware or compiler decides which instruction will be

assigned to which functional unit
- in this case, we have to worry about “structural hazards”, y

- don’t assign two instructions to the same ALU at a time

Slide Set 14, Page 31
modified from 1998 Morgan Kaufmann Publishers

