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Introduction to Slide Set 16

In this slide set, we will talk about Pipelining and 
give another datapath example.
To make it a bit more concrete, I will first present
a commercial embedded processor called 
MIPS, and then show how MIPS can be pipelined.

Note: pretty much any datapath
can be pipelined in this way, and 
it is one of the key ways to 
improve throughput of a system.
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The MIPS Processor:

• On the next few slides, I’ll show you the datapath of MIPS
– It should be a review of concepts from 250 applying what you’ve p pp y g y

learned in 350

• Simplified to contain only:
– memory-reference instructions:  lw, sw 
– arithmetic-logical instructions:  add, sub, and, or, slt
– control flow instructions:  beq, j

• Generic Implementation:

– use the program counter (PC) to supply instruction address
get the instruction from memory– get the instruction from memory

– read registers
– use the instruction to decide exactly what to do
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More Implementation Details

Simplified View:

Data

Register #

Registers

Register #

Data
memory

Address

Register #

PC Instruction ALU

Instruction
memory

Address

Data

g

Two types of functional units:
– elements that operate on data values (combinational)
– elements that contain state (sequential)
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elements that contain state (sequential)



Register File

Read register

Register 0

Register 1 M
u Read data 1

g
number 1

Register n – 1

Register n

u
x

Read data 1

Read register

M
u Read data 2

number 2

x
Read data 2
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Register File

Clock not shown.  Each register is clocked by the same clock, as in lab 3

Register 0
EN

D

Write
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Building the Datapath

Use multiplexers to stitch them together

PCSrc
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result
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Control
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Don’t worry about the details, I just wanted to show you that there 
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y , j y
is some control logic along with the datapath (as in the datapath 
lectures examples)



What is Pipelining?

• Ann, Brian, Cathy, Dave 
each have one load of clothes A B C Deach have one load of clothes 
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 30 minutesDryer takes 30 minutes

• It takes 30 minutes to fold clothesIt takes 30 minutes to fold clothes

• It takes 30 minutes
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Sequential Laundry

3030 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

30T
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A Time
30 30 3030 30 3030 30 30 3030 30 30 3030

s
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O

B

C
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d

D

• Sequential laundry takes 8 hours for 4 loads
• If they learned pipelining how long would laundry take?

e
r
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• If they learned pipelining, how long would  laundry take?



Pipelined Laundry: Start work ASAP

T

12 2 AM6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30T
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C
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e
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• Pipelined laundry takes 3 5 hours for 4 loads!

e
r
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Pipelined laundry takes 3.5 hours for 4 loads!



Pipelining Lessons

• Pipelining doesn’t help 
latency of single task, it 
helps throughput of entire 

kl d

6 PM 7 8 9
TimeT workload

• Multiple tasks operating 
simultaneously using 
different resourcesA

3030 30 3030 30 30
T
a
s

• Potential speedup = Number 
pipe stages

• Pipeline rate limited by 
slowest pipeline stage

B
C

A
k

O slowest pipeline stage
• Unbalanced lengths of pipe 

stages reduces speedup
• Time to “fill” pipeline and 

ti t “d i ” it d

C
D

O
r
d
e time to “drain” it reduces 

speedup
• Stall for Dependences

e
r
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Estimate fastest clock we can use:

• assume delay of mux = 2ns, delay of ALU=2ns
• assume it takes 2ns after rising clock edge to read a register from a 

register file (Tclk-Q) and that the setup time is 0.

Shortest clock 

cycle we can

get away with 

is _______ ns



Multi-Cycle Datapath:

We can use a shorter cycle time by dividing the job into three steps 

Step 1 (clock cycle 1)Step 1 (clock cycle 1)

Step 2 (clock cycle 2)p ( y )

Step 3 (clock cycle 3)

So each cycle can be done in 2 ns !   But we need three of themy

So what’s the advantage???  And what are we assuming???



Multi-Cycle Datapath:

Use Registers to hold values at stage boundaries: 

D
Q

D
Q

D
Q

D
Q



Splitting the MIPS datapath into 5 Stages:
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Five Execution Steps

• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Write-back step• Write-back step

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!
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Pipelining
Program

Instruction
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Ideal speedup is number of stages in the pipeline.  Do we achieve this?



Can pipelining get us into trouble?

structural hazards: attempt to use the same resource two different 
ways at the same time

• E g combined washer/dryer would be a structural hazard• E.g., combined washer/dryer would be a structural hazard

data hazards: attempt to use item before it is ready
• E g one sock of pair in dryer and one in washer; can’t fold• E.g., one sock of pair in dryer and one in washer; can t fold 

until get sock from washer through dryer
• instruction depends on result of prior instruction still in the 

pipelinepipeline

control hazards: try to make decision before condition is evaluated
• E.g., washing football uniforms and need to get properE.g., washing football uniforms and need to get proper 

detergent level; need to see after dryer before next load in
• branch instructions

Modified From: © D. Patterson, UCB, 1997



Data Hazards:

Consider the following instructions:

add $s0, $t0, $t1   -- This means add registers t0 and t1 and 
store the result in s0

add $t2, $s0, $t3   -- This means add registers s0 and t3 and
store the result in t2

Do you see a problem?

...

Instruction
Reg ALU

Data
Reg

T im e

Add $s0, $t0, $t1
fetch

Reg ALU
access

Reg

Instruction

fetch
Reg ALU

Data

access
RegAdd $t2, $s0, $t3
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Data Hazards:

One Solution: Compiler could add no-op instructions

add $s0, $t0, $t1
nop
nopp
nop
add $t2, $s0, $t3

...

But this really slows us down.
Can re-order instructions (perhaps we can get some useful work done 

instead of executing no-ops).
- but this is tricky to deal with in a compiler
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Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6 r1 r7and r6, r1 ,r7

or   r8, r1 ,r9

xor r10, r1 ,r11

Modified From: © D. Patterson, UCB, 1997



• Dependencies backwards in time are hazards
Data Hazard on r1:

• Dependencies backwards in time are hazards

Time (clock cycles)
I ID/R E ME W

I
n

add r1,r2,r3
I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg

A

s
t
r.

sub r4,r1,r3

and r6 r1 r7
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

O
r
d

and r6,r1,r7

or   r8,r1,r9

U

Im

A
L

UReg Dm Reg

e
r xor r10,r1,r11

A
L

UIm Reg Dm Reg
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• “Forward” result from one stage to another
Data Hazard Solution:

• “Forward” result from one stage to another

Time (clock cycles)
I ID/R E ME W
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n

add r1,r2,r3
I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg
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L
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Forwarding (or Bypassing): What about Loads

• Dependencies backwards in time are hazards

lw r1,0(r2)
I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg( )

sub r4,r1,r3
A

L
UIm Reg Dm Reg

• Can’t solve with forwarding:Can t solve with forwarding: 
• Must delay/stall instruction dependent on loads
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Single Memory is a Structural Hazard
Time (clock cycles)

I
n
s
t

Load

Instr 1

A
L

UMem Reg Mem Reg

A
LMem Reg Mem Regt

r.
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Instr 1

Instr 2

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg
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r
d
e
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Instr 3

A
L

UReg Mem Reg

Ar
Instr 4

A
L

UMem Reg Mem Reg
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Control Hazards:

Another problem:  What happens when we execute a branch?  

- we don’t know if we will be taking the branch until the last step

- but by then, other instructions are in the pipeline!y , p p

- need to flush pipeline whenever we take a branch
...

Some processors have “delay slots”
- the next instruction after a branch is always execute
- rely on compiler to “fill” the slot with something usefuly p g

Most processors have h/w to predict if a branch will be taken
- after a branch, load pipeline with most-likely next instruction
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a te a b a c , oad p pe e t ost e y e t st uct o
- if we are wrong, we still have to flush



Control Hazard Solutions
Stall: wait until decision is clear

– Its possible to move up decision to 2nd stage by adding 
hardware to check registers as being read

I
n
s

Time (clock cycles)

Add

A
L

UMem Reg Mem Reg
t
r.

O

Add

Beq

U

A
L

UMem Reg Mem Reg

O
r
d
e

Load

A
L

UReg Mem RegMem

Impact: 1 or 2 clock cycles per branch instruction 
=> slow

r

=> slow
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Control Hazard Solutions

• Predict: guess one direction then back up if wrong
– Predict not taken

I
n
s

Time (clock cycles)

Add

A
L

UMem Reg Mem Reg
t
r.

O

Add

Beq

U

A
L

UMem Reg Mem Reg

O
r
d
e

Load Mem
A

L
UReg Mem Reg

• Impact: 1 clock cycles per branch instruction if right, 2 if wrong 
(right 50% of time)

r

(right - 50% of time)
• More dynamic scheme: history of 1 branch (- 90%)
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Control Hazard Solutions

• Redefine branch behavior (takes place after next instruction) 
“delayed branch”

I
n
s

Time (clock cycles)

Add

A
L

UMem Reg Mem Reg
t
r.

O

Add

Beq

U

A
L

UMem Reg Mem Reg

O
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e

Misc Mem
A

L
UReg Mem Reg

Load Mem

A
LReg Mem Regr Load Mem L

UReg Mem Reg
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Summary:

Datapaths can be pipelined, executing several instructions at once

Need to worry about control and data hazards:
- Can be taken care of by hardware or compiler or both!

Superscalar machines have an additional twist: there are several 
functional units (eg. ALUs)

- can have several instructions in each stage at once

...

g
- hardware or compiler decides which instruction will be 

assigned to which functional unit
- in this case, we have to worry about “structural hazards”, y

- don’t assign two instructions to the same ALU at a time

Slide Set 14, Page 31
modified from 1998 Morgan Kaufmann Publishers


