
Digital System Design

by
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Slide Set: 2
Date: January 12, 2009

Simon Fraser UniversitySimon Fraser University

ENSC 350: Lecture Set 2 2

Slide Set Overview

• Sequential Circuits in VHDL

– Different constructs for describing sequential circuits in
VHDL

• For now, what are they and how are they used?

• Our next lecture set will focus on how to ensure your HDL is
synthesizable

– Different Finite State Machine (FSM) types

– Asynchronous vs Synchronous Sets and Resets

ENSC 350: Lecture Set 2 3

Sequential Circuits in VHDL

• Three ways to describe sequential circuits in VHDL:
– Structural: Define a system in terms of its components

• Can do this with the constructs we’ve already talked about

– Dataflow: Need a few more contructs: BLOCK, Guarded

– Behavioural: Need a new construct: PROCESS

• First talk about BLOCK and GUARDED, then talk
about PROCESS

ENSC 350: Lecture Set 2 4

Guarded and Block

• Often used to define small sequential
structures, like latches

– Consider a level sensitive latch:

– When EN = 1, changes on D appear on Q

– When EN = 0, Q does not change

ENSC 350: Lecture Set 2 5

A Level-sensitive latch

entity LSL is
port (D, EN : in STD_LOGIC;

Q : out STD_LOGIC);
end LSL;

architecture DATAFLOW of LSL is
begin

B1: BLOCK (EN=‘1’)
begin

Q <= GUARDED D;
end BLOCK B1;

end DATAFLOW;

ENSC 350: Lecture Set 2 6

Another Example

…
B1: BLOCK (CONTROL_SIGNAL=‘1’)
begin

X <= GUARDED A or B;
Y <= A and B;

end BLOCK B1;

In this example, the X assignment only occurs when the
CONTROL_SIGNAL is 1 (i.e. the block condition is true).
The Y assignment, however, occurs whenever A or B changes,
regardless of CONTROL_SIGNAL. This is because the Y
assignment does not have the keyword GUARDED.

ENSC 350: Lecture Set 2 7

Edge-Sensitive Behaviour

• Edge-sensitive flipflops change whenever the clock
changes from 0 to 1 (rising edge) or from 1 to 0 (falling
edge)

– To describe edge-sensitive behaviour, we need the attribute
‘STABLE

SIGNAL ‘STABLE: This a condition that is true whenever
SIGNAL has not changed during the
current simulation cycle.

Given, the condition:

CLK = ‘1’ and not (CLK ‘STABLE)

This is true when?

ENSC 350: Lecture Set 2 8

Example: Edge Sensitive Flipflop

entity DFF is
port (D, CLK : in STD_LOGIC;

Q : out STD_LOGIC);
end LSL;

architecture DATAFLOW of DFF is
begin

B1: BLOCK (CLK='1' and not (CLK'STABLE))
begin

Q <= GUARDED D;
end block B1;

end DATAFLOW;

ENSC 350: Lecture Set 2 9

Some VHDL Terminology

• Transaction:
• If an assignment is made to a signal at t, a transaction is said to

occur at time t. Note that the assignment may or may not
change the value of the signal (if you assign a ‘0’ to a signal
that is already ‘0’, the signal doesn’t change, but it is still a
transaction).

• Event:
• If a transaction does change the value of a signal, the

transaction is also called an event

• Question: Are all events transactions?

ENSC 350: Lecture Set 2 10

Other signal attributes

• SIG’STABLE:
• True when an event does not occur on SIG during the current

simulation cycle

• SIG’QUIET
• True when a transaction does not occur on SIG during the

current simulation cycle

• SIG’STABLE(T):
• True if SIG has been stable for at least T time units

• SIG’QUIET(T):
• True if SIG has been quiet for a least T time units

ENSC 350: Lecture Set 2 11

Other signal attributes

• SIG’ACTIVE:
• True if a transaction has occurred on SIG in the current

simulation cycle

• SIG’EVENT:
• True if an event has occurred on SIG in the current simulation

cycle

• SIG’LAST_ACTIVE:
• The amount of time since the last transaction on SIG

• SIG’LAST_EVENT:
• The amount of time since the last event on SIG

ENSC 350: Lecture Set 2 12

Other signal attributes

• SIG’DELAYED(T):
• A signal identical to SIG but delayed by time T

SIG

SIG’DELAYED(T)

ENSC 350: Lecture Set 2 13

Problems with using GUARDED and BLOCK

• Problems with using GUARDED and BLOCK:
– Difficult to describe complex units

– Not supported by some synthesis tools (it is supported in
Quartus II)

• So we need a new method to describe sequential
behaviour:

– In fact, the method we will discuss is general enough to describe
any sort of behaviour!

• The “Process”:
– But first a summary of what sequential stuff we’ve covered so far …

ENSC 350: Lecture Set 2 14

Sequential circuits so far…

• We talked about flipflops (the fundamental building blocks
of sequential systems). Remember:

– Level sensitive vs Edge sensitive

– Rising edge vs Falling edge

• We’ve talked about setup and hold times
– This will matter when we talk about timing analysis

• Also talked about GUARDED and BLOCK in VHDL
– Rarely used

– Normally people use a “Process” , the focus of an upcoming slide
set

ENSC 350: Lecture Set 2 15

Processes

ENSC 350: Lecture Set 2 16

The Process

• The process construct allows us to describe the
function or behaviour of a circuit or subcircuit
without describing the actual hardware
– We have already seen some sorts of behavioural

descriptions:
X <= (B nand A) or C;

– This describes the behaviour of the circuit driving X, but
not necessarily the actual hardware implementation

• e.g. Nand and or, a few nands, or a few nors, or …

– But we can describe circuits at a much higher level than
this

ENSC 350: Lecture Set 2 17

How can we describe behaviour?

• Writing an “english” description would be nice
– But that would leave too much room for ambiguity

• We could create a new language that would
ensure no ambiguity

– But that would be a bit of a bother

• A better way: describe the behaviour using
something that looks like software

– Writing software is easy and …

– There’s no room for ambiguity

ENSC 350: Lecture Set 2 18

How can we describe behaviour?

• Note:

– This “software” or “behavioural” description
only describes the behaviour of the circuit,
not how the circuit is constructed

ENSC 350: Lecture Set 2 19

Fundamental difference between HW & SW

• Hardware: A number of hardware elements that
“operate” in parallel

• Software: A set of statements that are executed
sequentially

• This distinction will be important soon.

ENSC 350: Lecture Set 2 20

The Process

process (sensitivity_list)
begin

software-like statements that are executed sequentially
end process;

Each process describes the function of one piece of hardware.
-If the statements in the process are executed sequentially, the overall
result is the same as if the result was produced by hardware

Note: The algorithmic description in the process may have no bearing on
the actual hardware implementation. They only have the same
behaviour.

ENSC 350: Lecture Set 2 21

Dataflow method of describing an FSM

architecture DATALOW of FSM is
begin

q0 <= some function of q0 and q1;
q1 <= some function of q0 and q1;

end DATAFLOW

Problem: a pain if there are many state variables and/or inputs

S0
[00]

S1
[01]

S3
[11]

S2
[10]

ENSC 350: Lecture Set 2 22

An easier way to describe an FSM

architecture BEHAVIOURAL of FSM is
begin

process (clk)
variable PRESENT_STATE : bit_vector(1 downto 0) := "00";
begin

if ((clk = '1') and (clk’event)) then
case PRESENT_STATE is

when "00" => PRESENT_STATE := "01";
when "01" => PRESENT_STATE := "10";
when "10" => PRESENT_STATE := "11";
when "11" => PRESENT_STATE := "00";

end case;
Z <= PRESENT_STATE; -- update output Z

end if;
end process;

ENSC 350: Lecture Set 2 23

More details on processes

• process(clk)
• Define the start of a process that is executed whenever clk

changes

– Therefore, do we need the clk’event?

• variable PRESENT_STATE ...
• Defines a variable PRESENT_STATE of type BIT_VECTOR(2

bits) and initializes it to “00”. Note: In this case,
PRESENT_STATE has a clear meaning with respect to the final
circuit. In general, however, variables are used only as an aid
to describe the behaviour algorithmically

ENSC 350: Lecture Set 2 24

More details on processes

• If ((clk =‘1’) and (clk’event)) then …
• The process will only execute when clk changes (see previous

slide). But, when we want the state variables to change only
when clk changes from 0 to 1 (when clk changes from 1 to 0,
we want to do nothing)

• Case PRESENT_STATE is …
• This is like a case statement in any other HLL. The value of the

variable PRESENT_STATE is set depending on the old value

• Z <= PRESENT_STATE;
• Z (an output of the architecture) is updated to be the current

value of the variable PRESENT_STATE

ENSC 350: Lecture Set 2 25

More Details on VHDL

• Enumerated types make code more readable
type state_types is (StateLive, StateWait, StateSample,

StateDisplay);

variable CURRENT_STATE: state_types;

• Here we have defined a variable called
CURRENT_STATE that can take on one of four
values: StateLive, StateWait, StateSimple,
StateDisplay

ENSC 350: Lecture Set 2 26

More Details on VHDL

• Here we have defined a variable called
CURRENT_STATE that can take on one of four
values: StateLive, StateWait, StateSimple,
StateDisplay

• We can then use this variable as before, in a case
statement

case PRESENT_STATE is
when StateLive => …
….
when StateWait => …

etc…

ENSC 350: Lecture Set 2 27

Recall a Moore Machine

ENSC 350: Lecture Set 2 28

An FSM example: A Moore Machine

Sa
[0]

Sb
[1]

Sc
[1]

Sd
[0]

1

0 0

1

1

0

0

1

ENSC 350: Lecture Set 2 29

Moore FSM sample code

entity FSM2 is
port (INPUT, CLK : in bit;

Z : out bit);
end FSM2;
architecture BEHAVIOURAL of FSM2 is
begin

process(CLK)
type state_types is (Sa, Sb, Sc, Sd);
variable PRESENT_STATE : state_types := Sa;
variable NEXT_STATE : state_types;

…. Continued on next slide

ENSC 350: Lecture Set 2 30

Moore FSM sample code

begin
if (clk = '1') then

case PRESENT_STATE is
when Sa => if (INPUT = '0') then

NEXT_STATE := Sa;
else

NEXT_STATE := Sb;
end if;

when Sb => if (INPUT = '0') then
NEXT_STATE := Sb;

else
NEXT_STATE := Sc;

end if;
… same for states Sc and Sd
end case;

ENSC 350: Lecture Set 2 31

Moore FSM sample code

--architecture
--begin

--if (clk = '1') then

PRESENT_STATE := NEXT_STATE;

case PRESENT_STATE is
when Sa => Z<='0';
when Sb => Z<='1';
when Sc => Z<='1';
when Sd => Z<='0';

end case;
end if;

end process;
end BEHAVIOURAL;

ENSC 350: Lecture Set 2 32

Another way to describe a Moore FSM

architecture behavioural of FSM is
begin

--next state combinational logic --present state register logic
process (Sel, A, B, C, D) process(clk)
begin begin

if (Sel="00") then if (clk =‘1’ and rst =‘1’)
next_state <= A; pres_state<= A;

elsif (Sel="01") then else
next_state <= B; pres_state <= next_state;

elsif (Sel="10") then end if;
next_state <= C; end process;

else end behavioural;
next state <= D;

end if;
end process;

ENSC 350: Lecture Set 2 33

Recall a Mealy Machine

ENSC 350: Lecture Set 2 34

One Hot Encoding

ENSC 350: Lecture Set 2 35

Gray Encoding

ENSC 350: Lecture Set 2 36

Processes can also be used to define combinational logic

entity simple_mux is
port (Sel : in bit_vector(1 downto 0);

A, B, C, D : in bit;
Y : out bit);

end simple_mux;

ENSC 350: Lecture Set 2 37

Processes can also be used to define combinational logic

architecture behavioural of simple_mux is
begin

process (Sel, A, B, C, D)
begin

if (Sel="00") then
Y <= A;

elsif (Sel="01") then
Y <= B;

elsif (Sel="10") then
Y <= C;

else
Y <= D;

end if;
end process;

end behavioural;

ENSC 350: Lecture Set 2 38

Can use a process to define something more complex

• Operation is as follows:
– If Reset is 1, the value in the register is set to 0, regardless of clock

(asynchronously)
– Otherwise, on each rising edge of the clock if load is 1, load in value

from D into register otherwise, rotate value in register one bit to the
right

reset
clk

load

D

Q

8

8

Rst Clk Load Action
 1 - - reset contents to 0
 0 rising 1 load value from D into register
 0 rising 1 rotate one bit to the right

ENSC 350: Lecture Set 2 39

Implementing the parallel-load resetable rotator

1. We could draw the circuit containing a multiplexor and eight
flip-flops. This could then be described structurally or using
dataflow techniques.

2. We could use a single process to define the behaviour of
the entire unit.

ENSC 350: Lecture Set 2 40

Implementing the parallel-load resetable rotator

entity rotate is
port(clk, reset, load : in std_logic;

d : in std_logic_vector(7 downto 0);
q : out std_logic_vector(7 downto 0));

end rotate;

ENSC 350: Lecture Set 2 41

Implementing the parallel-load resetable rotator

architecture behavioural of rotate is
begin

process (reset, clk)
variable int_value : std_logic_vector (7 downto 0);
begin

if (reset = '1') then
int_value := "00000000";

elsif (clk='1' and clk'event) then
if (load='1') then

int_value := d;
else

int_value := int_value(0) & int_value(7 downto 1);
end if; --else int_value := int_value;

end if;
q <= int_value;

end process;
end behavioural;

ENSC 350: Lecture Set 2 42

Concurrent Statements

• Note: any concurrent statements not inside a process are considered a
process themselves:

entity COMB_BLOCK is
port (A, B,C,D : in BIT;

X,Y,Z : out BIT);
end COMB_BLOCK;

architecture MY_DEFN of COMB_BLOCK is
begin

X <= A and B and C;
Y <= C and not D;
Z <= A xor B xor D;

end MY_DEFN;

Three processes

ENSC 350: Lecture Set 2 43

Is your whole design a single process?

• A design is usually a collection of processes:
– Each process is a single combinational or sequential

block
• More precise definition in the next slide set

• Each process is “compiled” independently (in most
tools)

• One entity can have several processes.

ENSC 350: Lecture Set 2 44

Is your whole design a single process?

• Normal design process: divide your design into
small blocks, and write a process for each one.

We will see this
design later in the
course. Each block
is implemented as a
“process”

ENSC 350: Lecture Set 2 45

Variable versus Signal

• Signals: Used to transmit data between processes
• Variables: Used within a process to help describe behaviour

• Warning:
– There are things called “shared variables” but don’t use them.

• If you want to communicate between processes, use a signal
• Makes the intent a lot clearer, and makes your design more

portable

Controller
(State Machine)

Datapath
A

s done

P
n

X
n

These are signals

Any communication within a single
process is done using a variable

ENSC 350: Lecture Set 2 46

NOTE: All inputs and outputs of a process are signals

ENSC 350: Lecture Set 2 47

An example from earlier

The variable PRESENT_STATE could not be accessed outside this
process. But Z could be accessed from outside the process.
architecture BEHAVIOURAL of FSM is
begin

process (clk)
variable PRESENT_STATE : bit_vector(1 downto 0) := "00";
begin

if (clk = '1') then
case PRESENT_STATE is

when "00" => PRESENT_STATE := "01";
when "01" => PRESENT_STATE := "10";
when "10" => PRESENT_STATE := "11";
when "11" => PRESENT_STATE := "00";

end case;
Z <= PRESENT_STATE; -- update output Z

end if;
end process;

ENSC 350: Lecture Set 2 48

Now let’s talk about how variables and signals are “updated”:

Note: in this discussion, we will pretend that we are “executing the
VHDL” code, but of course, what really happens is that the code is

translated to hardware with the same behaviour.

ENSC 350: Lecture Set 2 49

Variables are updated immediately

architecture BEHAVIOURAL of FSM is
begin

process (clk)
variable PRESENT_STATE : bit_vector(1 downto 0) := "00";
begin

if (clk = '1') then
case PRESENT_STATE is

when "00" => PRESENT_STATE := "01";
when "01" => PRESENT_STATE := "10";
when "10" => PRESENT_STATE := "11";
when "11" => PRESENT_STATE := "00";

end case;
Z <= PRESENT_STATE; -- update output Z

end if;
end process;

As soon as one of
these is “executed”,
PRESENT_STATE
is updated

So this uses the updated value of
PRESENT_STATE

ENSC 350: Lecture Set 2 50

Signals are updated at the end of the process

architecture BEHAVIOURAL of FSM is
begin

process (clk)
variable PRESENT_STATE : bit_vector(1 downto 0) := "00";
begin

if (clk = '1') then
case PRESENT_STATE is

when "00" => PRESENT_STATE := "01";
when "01" => PRESENT_STATE := "10";
when "10" => PRESENT_STATE := "11";
when "11" => PRESENT_STATE := "00";

end case;
Z <= PRESENT_STATE; -- update output Z

end if;
end process;

Z is updated once we finish the process (in this
case, it is the last statement in the process)

ENSC 350: Lecture Set 2 51

Updating Signals

signal x, y, z, w: std_logic;

process(x,y)
begin

z <= x and y;
w <= x or y;

end process;

Signals z and w get updated at the same time, at
the end of the process

ENSC 350: Lecture Set 2 52

Updating Signals

signal x, y, z, w: std_logic;

process(x,y)
begin

z <= x and y;
w <= z and y; -- w <= z_old and y

end process;

This is strange: the assignment to w uses the old value
of z, not the new value! That is because z is not
updated until the end of the process.

ENSC 350: Lecture Set 2 53

If z were a variable

signal x, y, w: std_logic;

process(x,y)
variable z: std_logic;
begin

z := x and y;
w <= z and y;

end process;

In this case, w would use the “new” value of z

ENSC 350: Lecture Set 2 54

A common error

What happens in our previous example if we used signal instead of
variable for PRESENT_STATE?

signal variable PRESENT_STATE : bit_vector(1 downto 0);
architecture BEHAVIOURAL of FSM is

begin
process (clk)
begin

if (clk = '1') then
case PRESENT_STATE is

when "00" => PRESENT_STATE <= "01";
when "01" => PRESENT_STATE <= "10";
when "10" => PRESENT_STATE <= "11";
when "11" => PRESENT_STATE <= "00";

end case;
Z <= PRESENT_STATE; -- update output Z

end if;
end process;

Uses old value of
PRESENT_STATE! Probably
not what was intended

ENSC 350: Lecture Set 2 55

Moral: Don’t use a signal to communicate within a
process!!

ENSC 350: Lecture Set 2 56

Asynchronous vs Synchronous Sets and Resets

• A flip-flop can have either a synchronous or asynchronous
reset
– Technically, it could have both, but this is never done

• Asynchronous Reset: When the reset signal is high, the flip-
flop is reset (forced to ‘0’) immediately, regardless of the
clock.

• Synchronous Reset: On a rising clock edge, if the reset
signal is high. The flip-flop is reset (forced to ‘0’).

• The difference: with a synchronous reset, the flip-flop is not
reset until the next rising clock edge. With an asynchronous
reset, it is reset immediately.

ENSC 350: Lecture Set 2 57

Circuit with an Asynchronous Reset (and preset)

Q

Q

D

Clock

Preset

Clear

ENSC 350: Lecture Set 2 58

Asynchronous Reset in VHDL

architecture behavioural of DFF is
begin

process (clk, reset)
begin

if (reset = '1') then
Q <= '0';

elsif (clk='1' and clk'event) then
Q <= D;

else
Q <= Q; -- implied

end if;
end process;

end behavioural;

ENSC 350: Lecture Set 2 59

Circuit with a Synchronous Reset

D

Clock Q

Q
Clear

D Q

Q

ENSC 350: Lecture Set 2 60

Synchronous Reset in VHDL

architecture behavioural of DFF is
begin

process (clk)
begin

if (clk='1' and clk'event) then
if (reset = '1') then

Q <= '0';
else

Q <= D;
end if;

end if;
end process;

end behavioural;

ENSC 350: Lecture Set 2 61

Recall the sensitivity list

process(A, B, C)
begin

….
end process;

– means that the process is executed whenever A, B, or C changes

• But what if there is no sensitivity list?

process
begin

….
end process;

• As soon as process finishes, it re-executes from the top
– like an infinite loop in software!
– surely this doesn't correspond to any real piece of hardware

ENSC 350: Lecture Set 2 62

The WAIT statement

• Consider a process with signal A in its sensitivity list:
•

process(A)
begin

….
end process;

• An equivalent definition:

process
begin

wait until A'event;
….

end process;

• The WAIT statement waits until there is an event on A

ENSC 350: Lecture Set 2 63

A common use of the WAIT statement for a synchronous
system

process
begin

….
wait until (clk'event and clk='1');

end process;

• Can do something like:
process
begin

…. do something for cycle 1
wait until (clk'event and clk='1');
…. do something for cycle 2
wait until (clk'event and clk='1');
…. do something for cycle 3
wait until (clk'event and clk='1');

etc...

ENSC 350: Lecture Set 2 64

Note: A process may have either a WAIT statement or
a sensitivity list, but never both!

Also Note: Most patterns with WAIT are not
synthesizable. Need to be very careful. We'll talk
more about synthesizable code next.

ENSC 350: Lecture Set 2 65

The highlights

We talked about “Process”: the most important concept in VHDL.

Each “piece of hardware” corresponds to a process
- Use signals to communicate values between processes
- Within a process, you can use variables to store temporary results

Variables only have lifetime within a process. Signals are only used to
communicate between processes.

Most important thing: When you are describing hardware in VHDL,
you are only describing the behaviour. The actual circuit will be
synthesized (by the tools, eg. Quartus II) to gates. The FPGA
then implements the gates. The FPGA does NOT execute the VHDL
code directly!!!!

ENSC 350: Lecture Set 2 66

Questions

• Are all transactions events?

• What are three ways we can describe sequential
circuits in HDL?

ENSC 350: Lecture Set 2 67

Questions

• What are the problems with using GUARDED and
Blocked:

1.

2.

ENSC 350: Lecture Set 2 68

Questions

• What is the architecture (circuit) described below?
B1: BLOCK (SIG_X=‘1’)

begin
OUTA <= GUARDED (A xor B xor C);
OUTB <=(A and B) or (A and C) or (B and C);
OUTC <=GUARDED (OUTA xor D xor E);
OUTD <=(E and OUTA) or (D and OUTA) or

(D and E)
end BLOCK B1;

ENSC 350: Lecture Set 2 69

Questions

• What does SIG’EVENT mean?

ENSC 350: Lecture Set 2 70

Questions

• When are variables updated in a process?

• When are signals updated in a process?

ENSC 350: Lecture Set 2 71

Questions

• You should not use variables to communicate between
processes. Why?

• What does it mean when there are no signals in the
sensitivity list?

ENSC 350: Lecture Set 2 72

Questions

• When using a WAIT statement, what do you need to worry
about?

• What’s the difference between Moore and Mealy FSMs?

ENSC 350: Lecture Set 2 73

Questions

• What type of construct is a process (i.e. dataflow?,
structural?)?

• Can processes be used to implement combinational logic?

ENSC 350: Lecture Set 2 74

Questions

• What is one-hot encoding?

• What is the difference between a synchronous and
asynchronous reset?

