
Digital System Design

by
Dr. Lesley Shannon

Email: lshannon@ensc.sfu.ca
Course Website: http://www.ensc.sfu.ca/~lshannon/courses/ensc350

Slide Set: 6
Date: February 2, 2009

Simon Fraser UniversitySimon Fraser University

ENSC 350: Lecture Set 6 2

Slide Set Overview

• How do we configure an FPGA

• How do CAD tools transform HDL into
configurations for FPGAs?

CAD TOOLS

VHDL Verilog Schematics

Custom
Chips Board-

Level
Design

FPGAs Gate
Arrays

Recall: the relationship between HDLs and Chips

3ENSC 350: Lecture Set 6

ENSC 350: Lecture Set 6 4

Recall: Synthesis (“HW Compilation”)

• Today’s definition of Synthesis:
– Automatically creating an optimized gate-level description from an

RTL-level description:

• Tomorrow’s definition of Synthesis:
– Automatically creating an optimized gate-level description from a

behavioural description

ENSC 350: Lecture Set 6 5

Design Flow

So far we’ve been talking
about:

Design Entry: How do you
write your HDL so that the
tools can synthesize it.

FPGA Architecture: Where
does our design finally end
up running

B&V: Figure 2.29. A typical CAD system.

Design
conception

VHDLSchematic
capture

DESIGN ENTRY

Design correct?

Functional simulation
No

Yes

No

Synthesis

Physical design

Chip configuration

Timing requirements met?

Timing simulation

ENSC 350: Lecture Set 6 6

Design Flow

This lecture: We’ll talk about
how the “magical”
transformation occurs

B&V: Figure 2.29. A typical CAD system.

Design
conception

VHDLSchematic
capture

DESIGN ENTRY

Design correct?

Functional simulation
No

Yes

No

Synthesis

Physical design

Chip configuration

Timing requirements met?

Timing simulation

ENSC 350: Lecture Set 6 7

Steps of Synthesis

1. Behavioural level Synthesis

2. Technology Mapping

3. Placement

4. Routing

ENSC 350: Lecture Set 6 8

Step 1: Behavioural level Synthesis

• Everybody writes HDL differently

• The HDL you have written needs to be
transformed into a more generic format
– Can you think of why?

ENSC 350: Lecture Set 6 9

Step 1: Behavioural level Synthesis

• In this phase, the parser looks for recognizable
constructs
– Remember the 3 forms of synthesizable processes

• Is each process a flipflop? Combinational logic?
Combination of the two?

• The flipflops will be mapped to flipflops, the
combinational logic will be mapped to LUTs

ENSC 350: Lecture Set 6 10

Step 1: Behavioural level Synthesis

• Final notes:
– Structural logic is easier to map than behavioural logic

(the synthesizer is more likely to “get it right”)
• The exception being flipflops – use processes the way we talked

about otherwise the tools won’t recognize the flipflops

– If you use any special embedded blocks (e.g. multipliers
BRAMs, etc.), they will not be mapped to LUTs,

• Don’t worry about it

– If you use library functions/IP cores, those are also
special cases

• Don’t worry about it

ENSC 350: Lecture Set 6 11

Step 2: Technology Mapping

• You now have a netlist of logic gates

• This needs to be mapped into the technology
available on your chip
– In the case of an FPGA, the majority of the logic is

implemented using logic tables

• Question:
– How many different functions can be implemented by

a 4-input lookup table?

ENSC 350: Lecture Set 6 12

Step 2: Technology Mapping

• You now have a netlist of logic gates

• This needs to be mapped into the technology
available on your chip
– In the case of an FPGA, the majority of the logic is

implemented using logic tables

• Question:
– How many different functions can be implemented by

a 4-input lookup table?
• Answer: 224 = 65 536

• WHY?

ENSC 350: Lecture Set 6 13

Step 2:The Technology Mapping Problem

• Input: A netlist of gates
• Output: A netlist of logic blocks that

implement the function

4-LUT

4-LUT

ENSC 350: Lecture Set 6 14

Step 2: Technology Mapping

• This also called “packing” as we try to fit (pack)
as many gates as possible into one LUT
– Why do we want to pack as much logic as possible

into one LUT?
• Hint: Think about how this affects circuit delay

• How many logic gates can you fit into one
LUT?

• Answer: It’s not the number of gates, it’s the number of logic
equation inputs

ENSC 350: Lecture Set 6 15

Step 2: Technology Mapping Example

• Example: consider packing into 3-input
lookup tables

Start with “root” (output)

Two inputs, so
this gate can be
implemented in
one LUT

ENSC 350: Lecture Set 6 16

Step 2: Technology Mapping Example

• Example: consider packing into 3-input
lookup tables

Consider each input

Three inputs, so
AND gate can be
implemented in
same LUT

ENSC 350: Lecture Set 6 17

Step 2: Technology Mapping Example

• Example: consider packing into 3-input
lookup tables

Consider each input

Three inputs, so
Inverter can be
implemented in
same LUT

ENSC 350: Lecture Set 6 18

Step 2: Technology Mapping Example

• Example: consider packing into 3-input
lookup tables

Consider each input

Three inputs, so
Inverter can be
implemented in
same LUT

ENSC 350: Lecture Set 6 19

Step 2: Technology Mapping Example

• Example: consider packing into 3-input
lookup tables

Consider each input

Four Inputs, so we
cannot pack this
AND gate

ENSC 350: Lecture Set 6 20

Step 2: Technology Mapping Example

• Example: consider packing into 3-input
lookup tables

Go back, and start
with AND gate

3-LUT

3-LUT

ENSC 350: Lecture Set 6 21

Step 2: Technology Mapping

• The good news:
– We can do a good job of this

• We can get Delay optimal mapping without having to wait
forever

– In other words, this is not the hard part

– Caveat, other types of embedded blocks make this a
harder problem

ENSC 350: Lecture Set 6 22

Step 3: Placement

• Now we have a set of LUTs, flipflops, etc
– Where do we put them on the chip?

• This is the “placement” problem and it is a VERY hard
problem

– 4N!

– This is called an NP-complete problem (Cannot be
completed in polynomial time)

– We can’t guarantee that we’ll get the “right” (optimal)
answer here

ENSC 350: Lecture Set 6 23

Step 3: Placement

• For example, say we have a 5x4 placement problem
– An exhaustive search would require checking 20! solutions and

choosing the best

• If finding each solution took 1ms, then it would take 77 million
years to find the solution

– ~10 million years before the last dinosaur

• So if the dinosaurs started their computer to try and solve this
placement problem, we would just be getting the final solution

• We have to place 10s to 100s of thousands of LUTs
– Obviously, this would take way too long to search for the

optimal solution

ENSC 350: Lecture Set 6 24

Step 3: Placement

• Instead we use heuristics:
– A computational method that uses trial and error

methods to approximate a solution for computationally
difficult problems

– The solution graph is very “hilly”

– We’ll make good guesses (low points) and bad guesses (climb the
hill)

ENSC 350: Lecture Set 6 25

Step 3: Placement

• A popular heuristic is Simulated Annealing:
– Annealing is a process by which method is slowly

cooled over time allowing atomic structures to settle
into low energy states (strong but not brittle)

– At high “temperatures”, we can make bad decisions
• Gets us out of local minima so we can explore more of the

graph

• At low temperatures, we make mostly good choices and try
and settle on a good choice

– Note: This is a good choice and not necessarily the best
choice

ENSC 350: Lecture Set 6 26

Step 3: Placement

• Summary:

– We try to get a good placement because the
closer the LUTs are to each other, the shorter
the wire length

• The shorter wire length means shorter circuit
delays and better clock rates

• We aren’t doing a good job
– Normalized for increased computing power and gate

density, our ability to place and route a circuit is 11x
slower than it was about a decade ago

– This is an area of active research: we’re trying to do
better

ENSC 350: Lecture Set 6 27

Step 4: Routing

• All the logic components (LUTs, etc) have been
placed on the fabric

• Now we need to wire up the connections
between the blocks
– In other words, we need to route wires on the

available routing tracks

– Want to use the shortest possible path between LUTs

• Sometimes this will cause congestion (if lots of
blocks are placed close together that need to
connect to each other)

ENSC 350: Lecture Set 6 28

Step 4: Routing

• The algorithm Pathfinder does a good job of
finding ways to route wires around the
congestion by keeping track of the congestion
at a node
– If there is too much congestion at a node (ie if you run

out of wiring tracks), it rips up the routing and tries
again

• On this second try, it makes the over used routing tracks
more expensive to use. This forces the router to use a
different path for some of the connections to relieve
congestion

ENSC 350: Lecture Set 6 29

Step 4: Routing Congestion Example
• Pathfinder detects congestion from sources S1,S2 and S3 through

routing resource B to destinations D1, D2, and D3
– In other words, all 3 paths want to use wire segment B

ENSC 350: Lecture Set 6 30

Step 4: Routing Congestion Example
• Pathfinder Rips up all of the nets, and tries to route again

ENSC 350: Lecture Set 6 31

Step 4: Routing Congestion Example
• Pathfinder will keep trying until it successfully routes the paths or until

some defined expiry time is reached at which point it will return a
“failure to route”

ENSC 350: Lecture Set 6 32

Bitstream Generation- the final phase

• Bitstream generation is not considered part of
synthesis
– After a circuit has been routed, its location and

connectivity are defined

– Bitstream generation translates this map into the
necessary configuration bits to activate/deactivate the
appropriate switches and LUT values that will
implement this circuit

• This bitstream is what is loaded onto the FPGA when you
download your circuit

ENSC 350: Lecture Set 6 33

Bitstream Generation- the final phase

• This is the really easy part
– There’s a one-to-one mapping between the placed

and routed circuit and the final bitstream

– The analogy is the translation of assembly code into
machine code

• Remember:
– Bitstreams are device specific

– If you want to download the same circuit onto a
different part, you have to generate a new bitstream
for a new placement and routing for that new device

ENSC 350: Lecture Set 6 34

Questions

• What is the first step in synthesis called?

• What does the first step do?

ENSC 350: Lecture Set 6 35

Questions

• What is the second step in synthesis called?

• What does the second step do?

ENSC 350: Lecture Set 6 36

Questions

• What is the third step in synthesis called?

• What does the third step do?

ENSC 350: Lecture Set 6 37

Questions

• What is the fourth step in synthesis called?

• What does the fourth step do?

ENSC 350: Lecture Set 6 38

Questions

• What is the easiest step in the synthesis process?

• What is the hardest step in the synthesis process?

ENSC 350: Lecture Set 6 39

Questions

• After we’ve completed synthesis, what’s left before
we can download the circuit?

• Is this hard (ie time consuming)?

