

SIMON FRASER UNIVERSITY

SCHOOL OF ENGINEERING SCIENCE

ENSC 350: Digital System Design
Spring 2009

Lab 3

Due the Week of March 23rd, 2009

For this lab you will update your DES datapath core from Lab 2 into an Avalon Memory-Mapped (Avalon-
MM) bus slave on the DE2 board. It will be used to allow an Avalon-MM bus master to write input data to
and read output data from your DES decryption circuit. You will need to use a mixture of structural
datapath and behavioral state machine techniques in order to build your slave and generate the correct
Avalon-MM slave communication protocols. Although you will reuse the DES block you designed from
Lab 2 for the datapath portion of the slave, the focus of this lab will be on implementing valid slave
responses to traffic on the Avalon System Interconnect Fabric.

As for the previous lab, you will be required to demonstrate that your design functions on the DE2-70
board with a sequence of bus operations and input data we provide to you on the day of your demo. You
will also be required to provide a report (the details of which will be provided later in this document).
There is significant documentation available on the web for the Avalon specification. Of particular note is
the following document from the Altera website:

http://www.altera.com/literature/manual/mnl_avalon_spec.pdf.

You are responsible for reading this document and understanding the protocol to implement this lab.
Understanding and implementing a design specification is an extremely important design skill, so it will be
good practice for working in industry. The good news is that this is a relatively simple design specification
to implement. The next section will detail which portions of the Avalon-MM Slave support you will be
required to incorporate into your DES Slave core (henceforth referred to as the DES Slave).

Avalon-MM DES Slave (DES Slave)

Avalon Slave Interface Requirements
Table 1 shows the mapping between the ports used in your Avalon-MM slave interface and those described
in the Altera Avalon Interface Specification. All of the DES Slave’s ports are Avalon-MM slave interface
ports. Input signals use the prefix ‘i_slave’ while output signals are denoted by ‘o_slave’. All of the ports
in Table 1 are mandatory for your slave implementation, although they may not be required for every
Avalon-MM slave.

Table 1: DES Slave Ports

Port Avalon-MM signal Size (bits)
Clk Clk 1
reset Reset 1
i_slave_read Read 1
i_slave_write Write 1
i_slave_address Address 2
i_slave_byteenable Byteenable 8
i_slave_writedata Writedata 64
o_slave_readdatavalid Readdatavalid 1
o_slave_waitrequest Waitrequest 1
o_slave_readdata Readdata 64

The slave must support: 1) peripheral-controlled waitrequest reads and writes, and 2) pipelined reads with
variable latency.

Section 3.5.1 and Figure 3.3 of the Avalon Interface Specification describe in detail the slave protocol for
peripheral controlled waitrequest. Note that the optional begintransfer signal is not used for your DES
Slave.

Section 3.5.3.1 of the Avalon Interface Specification describes slave pipelined read transfers with variable
latency. Figure 3.5 of the Avalon Interface Specification shows the specific timing protocol for variable
latency pipelined reads with n=2 maximum pending read transfers. Your slave interface must support at
least 1 pending read transfer. This number is a property of the interface and affects the master/slave system
performance but not the design of the bus master accessing the slave. It is the slave’s responsibility to
prevent the number of pending reads from exceeding this maximum with the use of the
o_slave_waitrequest signal. The slave state information included in this document refers to a slave
interface with a maximum of 1 pending read transfer. For a 10% Bonus, you can attempt to implement a
slave interface supporting 2 pending transfers. [Note that for 2 pending read transfers the read data
must always be returned in the order it was requested.]

The DES slave will support accesses of both 32 and 64 bits. The size of the access will be controlled by the
value on the i_slave_byteenable signal. This feature allows 32-bit masters to access the DES Slave.
Your slave only needs to support 4 values for i_slave_byteenable shown in Table 2 (other values can be
ignored).

Table 2: Byte Enable Values for DES Slave

i_slave_byteenables(7 downto 0) Access Size (bits) Valid bytes
“11111111” 64 0,1,2,3,4,5,6,7
“11110000” 32 (MSW) 4,5,6,7
“00001111” 32 (LSW) 0,1,2,3
“00000000” 0 None

DES Slave Top Level (des_slave.vhd)

The block diagram shown in Figure 1 is a suggested architecture for your design. It shows the flow of data
through the DES Slave but does not include control and status signals. The slave shown here consists of a
control block, an address decoder, a register bank, DES FIFOs and an output multiplexer. It is strongly
recommended that you base your implementation on this architecture but alternate working solutions will
be accepted as long as they meet the requirements of the Avalon interface and the testbed. Note that the
responses of the DES Slave to read and write transfer requests as well as the functional behavior of your
slave must still be consistent description in this document if you choose not to use the architecture in Figure
1. Your DES decryption circuit will interface with two FIFOs, similar to the testbed design in Lab2, but
you are required to use the FIFO components provided for this Lab instead. These FIFOs are slightly
different from the ones used in Lab 2 and their functionality will be covered in the next section.

DES block (des.vhd)

The DES block as mentioned earlier will be reused from Lab 2. No modifications to this block’s datapath
or interface are required for this lab.

Figure 1: Block Diagram of Avalon-MM DES Slave

DES Input FIFO (des_input_fifo.vhd)

The DES Input FIFO block, as shown in Figure 2, contains two 32-bit wide x 64-word deep FIFOs. On the
‘DES side’ of the FIFO block, the ports for these internal FIFOs are aggregated to present an identical DES
input interface to the one for your Lab 2 testbed. The DES block uses the i_des_read port to read data on
the 64-bit o_des_data bus. The timing for DES FIFO reads is unchanged from the Input FIFO used in Lab
2. The o_des_empty signal presents the logical OR of the two 32-bit FIFO empty signals to the DES
block.

Figure 2: DES Input FIFO

For the ‘Avalon-MM side’ of the FIFO block, control, data and status ports are available for each 32-bit
internal FIFO. The almost empty ports, when high, signal that the corresponding FIFO contains less than 16

words (1/4 max capacity). The almost full ports, when high, signal that the corresponding FIFO contains at
least 48 words (3/4 max capacity).

DES Output FIFO (des_output_fifo.vhd)

The DES Output FIFO provides a ‘read’ interface for decrypted data. Once again this FIFO block is made
up of 2 32-bit wide FIFOs. On the ‘DES side’ of the FIFO block, the ports for these internal FIFOs are
aggregated to present an output data interface identical to the one used for your Lab 2 testbed. The DES
block uses the i_des_write port to write data to the 64-bit i_des_data port. The timing for DES FIFO
writes is unchanged from the Output FIFO used in Lab 2. The o_des_full signal presents the logical OR of
the two 32-bit FIFO full signals to the DES block.

Figure 3: DES Output FIFO

The only difference between the ‘Avalon-MM side’ of the DES input and DES output FIFOs is the
i_slave_read and o_slave_readdata ports, which replace the DES INPUT FIFO i_slave_write and
i_slave_writedata ports respectively.

Address Decoder

The Address Decoder block is a combinational block that decodes the value on the i_slave_address port to
provide ‘enable’ signals for individual slave registers. The truth table for this operation is shown in Table 3.

Table 3: Slave Address Decoding

i_slave_address(1 downto 0) Slave Select Signals (3 downto 0)
“00” “0001”
“01” “0010”
“10” “0100”
“11” “1000”

The Address Decoder block also encodes the values on the i_slave_byteenable port to provide enable
signals for individual slave register words1. The truth table for this operation is shown in Table 4.

1 For this lab the term, word will refer to a 32-bit value.

Table 4: Slave Byte Enable Encoding

i_slave_byteenable(7 downto 0) Slave Word Enable (1 downto 0)
“11111111” “11”
“11110000” “10”
“00001111” “01”
“00000000” “00”

DES Slave Address Map

Table 5 shows the mapping of addresses to 64-bit registers inside the DES Slave. The most significant
word (MSW), bits 63 downto 32, of a register is accessed when the slave word enable signal = “1x” (as
shown in Table 4). Similarly the least significant word (LSW) is accessed when the slave word enable
signal = “x1” (again see Table 4).

Table 5: DES Slave Address Map

Address i_slave_address (1 downto 0) Access Type Description
0 “00” Read-Only DES Slave Status
1 “01” Read-Write DesKey
2 “10” Write-Only DesDatain
3 “11” Read-Only DesDataout

DES Slave Registers

It is the responsibility of the slave to manage access restrictions. Writes to a Read-Only address should be
ignored by the slave and reads from a Write-Only address should always return zero data with no wait
states. All register bits should be set to ‘0’ after ‘reset’ is asserted.

a) DES Slave Status
 Status for the DES Slave is stored in the DES Slave Status read-only register. Status is captured by
the DES slave on a per word basis, as shown in Table 6. All flags and bits are active high. There are two
types of status bits stored in this register: FIFO status and Transfer status.

FIFO status bits are related to the DES input and DES output FIFOs while Transfer status bits are related to
the successful completion of slave transfers. FIFO status should be constantly updated (i.e. every clock
cycle) and Transfer status should be updated upon completion of a transfer on the related word.
There are two types of transfer status bits: timeout status and ‘sticky’ timeout status. Timeout status
indicates that the most recent word transfer ‘timed out’. This event originates from within the slave control
block and is described in detail later. The ‘sticky’ timeout flag is set when a transfer timeout occurs and
remains set until the slave ‘reset’ signal is asserted. The flag is termed ‘sticky’ because once it has been
set, it remains set to indicate that an error has occurred during one of the previous transactions as opposed
to the timeout flag, which can only indicate if an error occurred during the previous transaction.

b) DesKey
The DES Key register is accessible through the DesKey address and stores the 64 bit DES key used by

the DES block. This address is considered read/write. The slave does not have to concern itself with
synchronizing a new key with incoming data. It is the master’s responsibility to ensure a new key is loaded
when the slave is not currently processing input data.

c) DesDatain
The DesDatain address is a write-only address that allows an Avalon-MM master to write data to the

DES INPUT FIFO for processing by the DES component.

d) DesDataout
The DesDataout address is a read-only address that allows an Avalon-MM master to read decrypted

data from the DES OUTPUT FIFO.

Table 6: Des Slave Status Register Definition

Bit Name Description
63:32 RESERVED Always reads 0x“00000000”
31:30 RESERVED Always reads “00”

29 write_fifo1_almost_full Almost full status of the MSW FIFO in the DES Input FIFO block
28 write_fifo1_almost_empty Almost empty status of the MSW FIFO in the DES Input FIFO block
27 write_fifo1_full Full status of the MSW FIFO in the DES Input FIFO block
26 write_fifo1_empty Empty status of the MSW FIFO in the DES Input FIFO block
25 write_fifo1_timeout Transfer timeout status of last transfer on MSW of DesDatain
24 write_fifo1_timeout_sticky ‘Sticky’ transfer timeout flag for MSW of DesDatain

23:22 RESERVED Always reads “00”
21 write_fifo0_almost_full Almost full status of the LSW FIFO in the DES Input FIFO block
20 write_fifo0_almost_empty Almost empty status of the LSW FIFO in the DES Input FIFO block
19 write_fifo0_full Full status of the LSW FIFO in the DES Input FIFO block
18 write_fifo0_empty Empty status of the LSW FIFO in the DES Intput FIFO block
17 write_fifo0_timeout Transfer timeout status of last transfer on LSW of DesDatain
16 write_fifo0_timeout_sticky ‘Sticky’ transfer timeout flag for LSW of DesDatain

15:14 RESERVED Always reads “00”
13 read_fifo1_almost_full Almost full status of the MSW FIFO in the DES Output FIFO block
12 read_fifo1_almost_empty Almost empty status of the MSW FIFO in the DES Output FIFO

block
11 read_fifo1_full Full status of the MSW FIFO in the DES Output FIFO block
10 read_fifo1_empty Empty status of the MSW FIFO in the DES Output FIFO block
9 read_fifo1_timeout Transfer timeout status of last transfer on MSW of DesDataout
8 read_fifo1_timeout_sticky ‘Sticky’ transfer timeout flag for MSW of DesDataout

7:6 RESERVED Always reads “00”
5 read_fifo0_almost_full Almost full status of the LSW FIFO in the DES Output FIFO block
4 read_fifo0_almost_empty Almost empty status of the LSW FIFO in the DES Output FIFO block
3 read_fifo0_full Full status of the LSW FIFO in the DES Output FIFO block
2 read_fifo0_empty Empty status of the LSW FIFO in the DES Output FIFO block
1 read_fifo0_timeout Transfer timeout status of last transfer on LSW of DesDataout
0 read_fifo0_timeout_sticky ‘Sticky’ transfer timeout flag for LSW of DesDataout

Output Multiplexer

The Output Multiplexer uses the decoded slave address and encoded slave byte enable signals to route the
appropriate register value to the o_slave_readdata port. This block also drives all ‘invalid’ bytes of the
DES Slave read data low.

Control Block

The control block implements the transfer state machine for the DES Slave. It generates: 1) control signals
for the ‘Avalon-MM side’ of the DES INPUT and DES OUTPUT FIFOs, 2) timeout status signals for the
DES Status register, 3) the o_slave_waitrequest and o_slave_readdatavalid signals driven on the Avalon-
MM Slave interface.

Examples of possible read and write state-machines are given in the following section. Note for a slave
supporting 1 pending pipelined read (i.e. n=1), the read state-machine and write state-machine can be
implemented separately as these operations are mutually exclusive. For multiple pending pipelined reads
(i.e. n>1), Avalon-MM slaves must be able to handle write requests that are initiated between pending read
requests.

Example Read State machine
Table 7: Example of Read States

State o_readdatavalid o_waitrequsest Description
idle ‘0’ ‘X’ Waiting for a read request or processing

a write transfer.
wait ‘0’ ‘1’ Waiting for data to complete transfer.
valid ‘1’ ‘0’ Read data is available on Avalon

interface.

Table 8: Example Read State Transitions

Current State Next State Description
reset = ‘1’ idle
i_slave_read = ‘0’

wait i_slave_read = ‘1’ and data not ready for transfer

idle

valid i_slave_read = ‘1’ and data ready transfer
idle reset = ‘1’
wait Data not ready for transfer

Data ready for transfer

wait

valid
Transfer timeout.
reset = ‘1’ idle
i_slave_read = ‘0’

iait i_slave_read = ‘1’ and data not ready for transfer

valid

valid i_slave_read = ‘1’ and data ready transfer

Example Write Statemachine

Table 9: Example Write States

State o_readdatavalid o_waitrequsest Description
idle ‘X’ ‘X’ Waiting for a write request or processing

a read transfer.
wait ‘0’ ‘1’ Waiting until slave is ready to accept

data.
valid ‘0’ ‘0’ Write data is accepted by the slave

Table 10: Example Write State Transitions

Current State Next State Description
reset = ‘1’ idle
i_slave_write = ‘0’

wait i_slave_write = ‘1’ and slave not ready to accept
data.

idle

valid i_slave_write = ‘1’ and slave ready to accept data
idle reset = ‘1’
wait Slave not ready to accept data.

Slave ready to accept data.

wait

valid
Transfer timeout.
reset = ‘1’ idle
i_slave_write = ‘0’

wait i_slave_write = ‘1’ and slave not ready to accept
data.

valid

valid i_slave_write = ‘1’ and slave ready to accept data.

Timeout Feature

If a single transfer causes the o_slave_waitrequest to be asserted for greater than the defined timeout
threshold, the slave control block will release the requesting master by deasserting o_slave_waitrequest
and report the transfer as ‘timed out’ in the DES Slave Status register. The timeout threshold is dependent
on the maximum latency (in clock cycles) of your design. You must determine this value based on your
design and justify the value used. (Hint: a starting point is the maximum latency of your DES block). Timed
out read transfers must still complete over the Avalon-MM interface. For timed-out read transfers, the slave
should drive all zeroes on the o_slave_readdata port. It is the master’s responsibility to check the DES
Status register to see if a transfer was successful.

Avalon Test System

To test your DES Slave, you will be provided the test system shown in . This system, which will use a 32-
bit Avalon-MM master, vector ROMs and comparison logic to verify your design, is similar to the Lab 2
testbed. Note that all logic with the exception of the DES Slave will be provided on the course website.
The following section briefly describes each test system component provided.

Figure 4: Avalon Slave Test System

Avalon Interconnect (avalon_interconnect_m32_s64.vhd)

The System Interconnect Fabric for an Avalon System provides: 1) master arbitration, 2) slave selection,
and 3) address alignment to support communication between multiple Avalon-MM components. This is
typically generated by Altera’s System on Programmable Chip Builder (SOPCBuilder), a tool used to
automate the connection of hardware IP components for use on Altera FPGAs. For this lab, where the
focus is on the Avalon-MM slave protocol, we will provide you with a simple component to mimic the
behaviour of the Avalon System Interconnect Fabric for a single-master/single-slave Avalon system. This
component only implements the address alignment functionality of the interconnect fabric as no master

arbitration or slave selection is needed for our simple system. Avalon address alignment is covered in detail
in Section 3.6 of the Avalon Interface Specification.

Avalon Master (avalon_MM_master_32.vhd)

The Avalon Master initiates Avalon compliant read and write transfers for your DES Slave. It is a simple
Master that fetches commands and operands from an instruction memory (Cmd ROM) and data from a
separate data ROM and executes simple read and write transfer requests to the Avalon Interconnect. The
master supports peripheral controlled wait states and pipelined read requests and can fully exercise your
DES Slave’s requirements. The Master executes instructions only, it does not make decisions based on
feedback from the slave. For example the Avalon Master will not wait for read data to be returned before
moving on to another request unless stalled by the DES Slave waitrequest signal. The master can also
request writes to an already full DES INPUT FIFO or reads from an empty DES OUTPUT FIFO. The DES
Slave will have to stall the master until these transactions complete or timeout.

Command ROM (master_cmd_rom.vhd)

The Avalon Master Command ROM (Cmd ROM) is a 21-bit wide x 64-word deep instruction ROM used
which stores the Master execution sequence. Table 11: Master Command Word DefinitionTable 11 shows
the description of the fields in a single Cmd ROM entry or instruction word. After your program starts the
master will iterate through the Cmd ROM (starting at address 0) until it has executed all 64 entries. At the
end of the program signal the master will go into a ‘done’ state and only reset can restart the master
program.

Table 11: Master Command Word Definition

Bit Name Description
20:19 Opcode “00” – NOP. No operation. Master does nothing.

“01” – Read. Initiate an Avalon Read Transfer.
“10” – Write, Initiate an Avalon Write Transfer.
“11” – Wait, Insert wait cycles.

18:16 Master Address 3 bit master address to be used for read and write transfers.
Only valid for Read and Write commands.

15:7 Count For Read commands this indicates the number of successive reads to
be requested from Master Address.
For Write commands this indicates the number of successive writes to
be requested to Master Address.
For Wait commands this indicates the number of cycles to wait before
fetching a new command word.
This command field is ignored for NOP commands.

6:0 Data ROM Address 7 bit Data ROM address indicates the location of the initial data that
should be written to the Slave. Only valid for Write opcodes. For
Write commands with Count > 1, the ROM Address increments with
the current count. For example if Count = 3 and Data ROM Address =
0x10, then the first data value written to the DES Slave is stored in the
Data ROM at address 0x10. The second data value is stored at
address 0x11 and so on.

Data ROM(master_data_rom.vhd)

The Data ROM is a 32-bit wide x 128-word deep ROM that stores write data for the Avalon Master. When
the Avalon Master fetches a command word with a ‘Write’ opcode, it then fetches 32 bits of data from the
Data ROM and requests to write it to the DES Slave.

Read Data FIFO

Valid (i_master_readdatavalid = ‘1’) data returned to the master should be driven into the Read Data FIFO
for comparison. This 32-bit wide x 64-word deep FIFO will be provided. Once again the write and read
timing for this FIFO is consistent with the Lab 2 Input and Output FIFOs.

Expected Data ROM

The expected data ROM is a 32-bit wide by 1024-word deep ROM used to verify the master read data. The
only difference between this Expected Data ROM and the Expected Data ROM used in Lab 2 is the new
width of 32 bits to match the master read data.

Comparison Logic
The comparison logic compares data from the new Expected Data ROM and the Read Data FIFO
components. Once again green LED is turned on if the result matches the expected value, otherwise a red
LED is turned on and the comparison logic is stalled to let the user view the offending result on the LCD.

The Testbed

A testbed for verifying your design on the DE2-70 board has been provided. This testbed will be used in
your demo to evaluate your design. The testbed files are:

• avalon_testbed.vhd – top level testbed file that implements the Avalon Test System.
• avalon_MM_master_32.vhd – 32 bit Avalon MM master.
• avalon_interconnect_m32_s64.vhd – Component simulating Avalon Interconnect Fabric.
• expected_rom.vhd – wrapper vhdl file for 1024x32-bit ROM of expected output values
• expected_rom.cmp – netlist file for 1024x32-bit ROM of expected output values
• expected_rom.mif – initialization file for 1024x32-bit ROM of expected output values
• read_fifo.vhd – wrapper vhdl file for read FIFO the Avalon System interacts with
• read_fifo.cmp– netlist file for the read FIFO the Avalon System interacts with
• master_cmd_rom.vhd – wrapper vhdl file for 64x21-bit Command ROM
• master_cmd_rom.cmp – netlist file for 64x21-bit Command ROM
• master_cmd_rom.mif – initialization file for 64x21-bit Command ROM
• master_data_rom.vhd – wrapper vhdl file for 128x32-bit Command ROM
• master_data_rom.cmp – netlist file for 128x32-bit Command ROM
• master_data_rom.mif – initialization file for 128x32-bit Command ROM

Use the Testbed:

1. KEY(0) is the circuit reset. This MUST be pressed after downloading to the board
2. KEY(1) is the master start signal. This MUST be pressed after reset to run the program in the

master Cmd ROM.
3. LEDG(0) will light up as long as the output of your circuit matches that of the expected output

ROM. If this stays lit then everything seems to be working fine.
4. LEDR(0) will light up the DES circuit output does not match the expected output.
5. If a mismatch is detected, the comparison circuit in the testbed will stall. No more comparisions

will be done until after a system reset.
6. You can view the expected output, circuit output, and ROM address where mismatch occurred on

the LCD. To view information on the LCD you must use SW(17:16) to select which value you
want to display (00=circuit, 01=expected, 10 and 11 = address) and then push KEY(2) to update
the LCD.

What you are going to Do:

Task 1: Draw State Diagrams for n = 1 and n = 2
Although you are only required to implement the slave interface for pending requests such that n=1, you
are also required to draw the state diagram for n = 2.

Important note: Those of you who are good with Google will likely find lots of VHDL descriptions of the
Avalon interface on the web. Feel free to use these as a reference, but remember, your design has to match
our specifications exactly. Even if this were not a form of plagiarism, it is probably more work to modify
an existing implementation than to write your own given the information provided here. Also beware that
at least a few of the on-line versions have bugs. Finally, remember any direct copying of on-line versions
would be plagiarism resulting in the loss of 30% of your final mark (as specified during the first class).
[Hint: This should look familiar from your previous lab. =)]

Task 2: Implement the VHDL for each of the necessary subcomponents in the design
Write VHDL for each of the new subcomponents for your design and simulate them thoroughly.

Task 3: Integrate your subcomponents to create your final design
This should be the final implementation of your overall design. Again, be sure to simulate your design
thoroughly.

Task 4: Implement your design on the DE2-70 board and test it
Implement your design on the DE2-70 board and test it with the command and data input vectors provided
on the website. The processing results will be compared with the provided values to be stored in your
“expected output” ROM.

Task 5: Demonstrate your Design and Submit your report.
In your demonstration you will be asked:

• Show your source code and answer questions about it
• Show a simulation of your DES circuit converted into an Avalon slave or any of the sub-circuits

and explain what is going on in the waveform
• Show your circuit working on the DE2-70 board with the provided testbed
• Note: Be sure to let us know if you implemented the bonus (i.e. n=2)

Your written submission should include:

• A title page with both students names, student numbers, course number, and date.
• A state diagram (what type of state machine did you use) for n=1 and n=2,
• A system block diagram,
• A summary of resource usage,
• The minimum clock period and maximum throughput of your design,
• A hierarchy tree for your VHDL files
• Anything that you think is exceptional about the design of your DES Slave block (e.g. n=2).
• A zipped softcopy of all your source files. This must be messaged to the TA via WebCT. Source

files should have comments, consistent indentation, adequate white spaces, descriptive names for
signals/variables, one entity/architecture pair per file, and a maximum line length of 80 characters.

Please note that your reports are not marked by weight. Clearly written, short and succinct reports are
highly preferable. There is no maximum or minimum page limit, but your target should be between 3-5
pages, not including title page. Also, a picture is worth a 1000 words, so if possible illustrate. Please do
not include a background description of the generic DES algorithm or the Avalon interface, it is not
necessary.

Your source files will be run through a comparison program to help identify copied segments of source
code between groups. Copying any portion of another groups source files is considered cheating.

Marking Scheme
Demo
 2 marks for working Simulations and reasonable responses to questions
 2 marks for working on the DE2-70 and reasonable responses to questions
Total = 4

Report
 2 mark for accurate State Diagrams (where n=1 implementation must match VHDL)
 1 mark for accurate System Block Diagram (must match VHDL)
 1 mark for resource usage report
 1 mark for hierarchy tree and VHDL coding practices
 1 mark for readability of report
Total = 6

Suggested Milestones:
The following are some suggested milestones for this project. We aren’t going to be checking your
progress, but you can use this list to see if you are falling behind.

Start Project: March 7th, 2009

Milestone 1: Draw State Diagrams for n = 1 and n =2 , March 10th, 2009

Milestone 2: Implement all of the VHDL for your new subcomponents: March15th, 2009

Milestone 3: Integrate all of these components: March 20th, 2009

Milestone 4: Finish a thorough testing of your design on the board and demo it: March 25th, 2009

Milestone 5: Submit your report on your design: March 27th, 2009

Bonus ONLY:
Remember that a 10% bonus is available for those of you that choose to support n=2 pending reads and
writes.

What to hand in:

1) A copy of your lab report submitted into the ensc350 drop box by 3:30pm on March 27th, 2009. Note
the time, as we won’t accept excuses (including jammed printers/no paper in the printers) and we won’t be
accepting soft copies.
2) A zip file with your VHDL files for both your new DES Slave core and your testbed as well as a
README file with hierarchy, group members and student IDs, group number. Please note this should be
emailed to the TA’s WebCT email account.

REMEMBER: Don’t be late, as late submissions will be severely penalized (minimum of 50%) even if it
is only by 1 hour.

Then you are done!!!

