Real Time and Embedded Systems

by
Dr. Lesley Shannon

Email: Ishannon@ensc.sfu.ca
Course Website: hitp://www.ensc.sfu.ca/~lshannon/courses/ensc351

Simon Fraser University Slide Set: 8
Date: November 15, 2011




Slide Set Overview

* More on Interrupts in Linux

ENSC 351: Lecture Set 8



Check out chapter 10 of the Linux Device
Driver book for even more detalls

ENSC 351: Lecture Set 8 3



Linux Interrupts

« Linux handles hardware interrupts similar to signals in user
space.

« Generally, a driver just registers a handler for its device’s
interrupts that will handle them properly when they occur.

« However, interrupt handlers are rather limited in the actions
they can perform — this effects how they run.

ENSC 351: Lecture Set 8 4



Parallel Port

I'll be going through the discussion of the parallel port

example from the book

— Also commonly called a printer port

IBM PC systems used to allocate their first three parallel ports according
to the following table (from Wikipedia):

PORT
NAME

LPT1
LPT2
LPT3

Interrupt # Starting /O

IRQ 7 0x378
IRQ 5 0x278
IRQ 2 Ox3bc

ENSC 351: Lecture Set 8

Ending |/O

Ox37f
Ox27f
Ox3bf



Parallel Port

The traditional commandline for unix/linux to print is: lpr (you can
cheque the print queue with Ipq)

— By default, you print to LPT1
If an LPTx slot is unused, the port addresses of the other LPT ports may
be moved up.

However, the IRQ lines remain fixed (they are fabbed into the PCB
board)

Ilflgl\ljl-llé Interrupt # Starting /O Ending |/O
LPT1 IRQ 7 0x378 Ox37f
LPT2 IRQ 5 0x278 0x27f
LPT3 IRQ 2 0x3bc Ox3bf

ENSC 351: Lecture Set 8 6



Linux Interrupts

The printer driver is known as the “lp” driver (lpr, Ipq, ...)

The parallel port uses an interrupt to inform the Ip driver that it is ready
to accept the next character in the buffer to print

Remember, the hardware system has to be configuredto generate
interrupts before it will happen

The parallel standard states that setting bit 4 of port 2
(0x37a/0x27a/Base Address+2...) enables interrupt reporting.
— You can use outb to set the bit

ENSC 351: Lecture Set 8 7



Linux Interrupts

With interrupts enabled on the device, the parallel port will
generate an interrupt on Pin 10 (called its ACK bit)

It is rising edge activated

However, just because the device generates interrupts,
doesn't mean they are handled the way you want.

By default, linux will simply acknowledge the interrupt and
ignore It.

ENSC 351: Lecture Set 8 8



Linux Interrupts

With interrupts enabled on the device, the parallel port will
generate an interrupt on Pin 10 (called its ACK bit)

It is rising edge activated

However, just because the device generates interrupts,
doesn't mean they are handled the way you want.

By default, linux will simply acknowledge the interrupt and
ignore It.

ENSC 351: Lecture Set 8 9



Linux Interrupts

Therefore, you also need to configure a software “handler”
to service the interrupt

Remember, there are only so many interrupt pins on the
CPU :

— If a device doesn’t need interrupts, don’t waste them

The kernel keeps a reqistry of interrupt lines
— It’s like the 1/O registry

— Remember your Interrupt Vector Table

ENSC 351: Lecture Set 8 10



Linux Interrupts

The device has to request an interrupt channel (i.e. IRQ)
before using it and is expected to release it when done.

In many cases, a driver may have to share an interrupt line
with other drivers

— recall daisy chaining

Checkout the functions in <linux/interrupt.h>

ENSC 351: Lecture Set 8 11



Linux Interrupts

« Checkout the functions in <linux/interrupt.h>:

int request_irg(unsigned int irq, irgreturn_t (*handler)(int, void
*, struct pt_regs *), unsigned long flags, const char
*dev_name, void *dev_id);

void free_irg(unsigned int irq, void *dev_id);

ENSC 351: Lecture Set 8 12



Linux Interrupts

« Checkout the functions in <linux/interrupt.h>:

void free_irg(unsigned int irq, void *dev_id);

« This is the easy function with simple parameters, so we're
going to focus on request_irq

ENSC 351: Lecture Set 8 13



Linux Interrupts

« Checkout the functions in <linux/interrupt.h>:

int request_irg(unsigned int irq, irgreturn_t (*handler)(int, void
*, struct pt_regs *), unsigned long flags, const char
*dev_name, void *dev_id);

* request _irg returns 0 to indicate success or a negative error
code, as usual.

— For example, it may return -EBUSY to indicate that another device
driver is currently using the requested interrupt lline

ENSC 351: Lecture Set 8 14



Linux Interrupts

* request_irg’'s arguments are:

— unsigned int irq,

— irgreturn_t (*handler)(int, void *, struct pt_regs *),

— unsigned long flags,

— const char *dev_name,

— void *dev_id);

ENSC 351: Lecture Set 8



Linux Interrupts

« The flag bits that can be set are:
— SA_INTERRUPT

— SA_SHIRQ

— SA_SAMPLE_RANDOM

ENSC 351: Lecture Set 8

16



Questions?

« How do you request an interrupt channel in linux?

« What function frees an interrupt channel?

ENSC 351: Lecture Set 8

17



Questions?

« Why may you need to free an interrupt channel?

« Be ready for “fast and slow handlers” and “interrupt
sharing”...

ENSC 351: Lecture Set 8

18



