University of Toronto
ECEbH32 Digital Hardware
Module m04: Adding the OPB EMAC Peripheral

Version for EDK 8.2.02i as of January 7, 2007

Acknowledgement

This lab is derived from a Xilinx lab given at the University of Toronto EDK workshop in November 2003.
Many thanks to Xilinx for allowing us to use and modify their material.

Goals

e Understand the procedure for adding more complex peripherals to an XPS project.
e Use XPS to manually add the OPB 10/100 EMAC peripheral to the MicroBlaze system.

e Search through more documentation to see where to find various bits of information and examples.

Prerequisites

Module m03: Adding IP and Device Drivers — Timers and Interrupts

Preparation

e Read through this module first to get an idea of what you are about to do.
e Find the data sheet for the OPB Ethernet Media Access Controller (EMAC) and review it.

e In this lab you will be modifying an example program that can be found in the Processor IP drivers
library for the device. On the Lab 1 machines, goto the EDK 8.2 installation directory and look in:

$XILINX_EDK$\sw\XilinxProcessorIPLib\drivers\emac_v1_01_a\examples

e The first step is to copy the previous lab into a directory called 1ab4. If you like, you can delete the
lab3.c source file from your lab4/code/ directory.

You should, of course, check to see if you have enough space first! You may need to clean up some files.
You can do this using the XPS interface (i.e., via Project — Clean all generated files), using the facilities
provided by the system.make makefile (e.g., start by trying make -f system.make; you might need
to first use dos2unix on system.make if you’re running make on a UNIX or a Linux machine), or by
simply deleting the implementation directory in your project (since it is automatically generated and
since it consumes the bulk of your project’s disk space).

e In this module, you will be working with the example called xemac_intr_fifo_example.c. Copy the
file from the driver example directory.

You will be asked to modify it so that it will work with your system. You might want to try to
understand what it does so that you will not have to spend time during a lab period doing this. You
can also make some modifications or add some xil_printf statements. Put the copied (and possibly
modified) xemac_intr_fifo_example.c in lab4/code/.

Background

As peripherals become more complex, there are more signals to be brought out of the FPGA and possibly
more timing issues, including the need for timing constraints and Digital Clock Managers (DCMs). The
DCM is a block in the FPGA that contains functions like Delay-Locked Loops (DLLs) that can be used to
help synchronize internal logic and clocks with external logic and their clocks. You will not have to deal
with them in this lab. In this lab, you will be connecting the FPGA to an external Ethernet chip.

University of Toronto
ECEbH32 Digital Hardware
Module m04: Adding the OPB EMAC Peripheral

Ethernet is a widely used peripheral, so it is beneficial to learn how to properly include the OPB EMAC
into an XPS project.

Outside of the FPGA is the physical layer interface (PHY) chip that actually connects to the Ethernet
cable on one side, and the FPGA pins on the other side. The EMAC is the peripheral that is inside the
FPGA that connects from the FPGA pins to the OPB bus of the MicroBlaze allowing the processor to talk
to the Ethernet chip.

This module is built on top of Module m03. It expects a MicroBlaze system with an interrupt controller
and serial Uart device for standard I/0. If you didn’t successfully add the DIP switch in m03, you can build
onto the simpler design.

Note that the OPB clock frequency must be greather than or equal to 66MHz for the Ethernet core to
be able to operate at 100MBps; as such, the design implemented in this lab can only be expected to operate
at 10MBps (which requires an OPB clock frequency of only 6.5MHz).

Using XPS Base System Builder

1. Copy the XPS project directory of the previous lab and rename the copy to lab4 if you have not done
so already. This will be the working project directory for this lab. You may need to clean the project
or delete the implementation directory of the previous module to free up disk space.

2. Open the lab4 project using XPS.

3. Add an opb_ethernet peripheral to the system (use version 1.04.a). Define the base address of the device
to be aligned at a 16K boundary following the address of the last peripheral in the list. Attach the
EMAC as a slave to the OPB bus. Note that two devices appear. Configure only the SOPB (slave)
version.

When would you attach the EMAC as a master to the OPB bus?

4. Make the PHY_* ports of the opb_ethernet_0 peripheral instance external, except for PHY rx_en. PHY rst_n
should only be made external if you are using the XUPV2P board. Be careful not to make both
the bidirectional signal and the individual unidirectional components of that signal ex-
ternal! For instance, make PHY Mii_data external and leave PHY Mii data_I, PHY Mii_data_0, and
PHY Mii_data_T as No Connection. Later, you will use the board user’s guide or schematic for informa-
tion on pin assignments for each signal.

5. There are two pins on the PHY that are connected to the FPGA but that do not have corresponding
ports in the EMAC device. These signals are inputs to the PHY and should be tied high (i.e., tied to
net_vcc) in the design.

Click Add External Port in the Ports tab to create a system port. Name the port
opb_ethernet_0_PHY slewO_pin, make it an output, and connect it to net_vcc. Do the same for
opb_ethernet_O_PHY_slewl_pin.

6. Connect the IP2INTC_Irpt signal of the opb_ethernet_0 peripheral instance to a new net called
opb_ethernet_O0_IP2INTc_Irpt.

Recall that the interrupt controller can handle a number of interrupt input request lines. The interrupt
input of the controller is really a vector of signals, not a single wire. Since there may be other interrupt
signals already connected to the interrupt input of the interrupt controller, the EMAC interrupt output
may need to be concatenated to those signals.

To add a new signal to the interrupt input of the controller, click on the entry in the Net column beside
the Intr input of the opb_intc_0 peripheral instance. In the dialog that opens, select the interrupt signal
you wish to add. Click on the plus symbol to add signals, the scissors symbol to remove signals, and
the arrows to change the order of signals in the list on the right. Note that the order of the list reflects
the priority of the interrupt sources.

University of Toronto
ECEbH32 Digital Hardware
Module m04: Adding the OPB EMAC Peripheral

7. Right-click on the opb_ethernet 0 peripheral instance and select Configure IP.... Disable the direct

memory access for the Ethernet core by setting the DMA Present parameter to a value of No DMA.

Add the following entries to the system.ucf file for the project. This configures the physical connec-
tions between the PHY device and the FPGA pins. Use the board user’s guide to find the correct pin
locations. (Hint: You can cut and paste the template below from the PDF into your system.ucf by
changing the select cursor in Acrobat to select text. Make sure the angle brackets appear as greater and
less than symbols after pasting.)

Net opb_ethernet_O_PHY_tx_data_pin<0> LOC=x*x**; # TX_DATAO

Net opb_ethernet_O_PHY_tx_data_pin<1> LOC=+xx; # TX_DATA1

Net opb_ethernet_O_PHY_tx_data_pin<2> LOC=*xx*; # TX_DATA2

Net opb_ethernet_O_PHY_tx_data_pin<3> LOC=*xx*; # TX_DATA3

Net opb_ethernet_O_PHY_tx_en_pin LOC=xxx; # TX_ENABLE

Net opb_ethernet_O_PHY_tx_clk_pin LOC=x***; # TX_CLOCK

Net opb_ethernet_O_PHY_tx_er_pin LOC=x*x**; # TX_ERROR

Net opb_ethernet_O_PHY_slewO_pin LOC=xxx; # ENET_SLEWO
Net opb_ethernet_O_PHY_slewl_pin LOC=xx**; # ENET_SLEW1
Net opb_ethernet_O_PHY_rx_data_pin<0> LOC=***; # RX_DATAO

Net opb_ethernet_O_PHY_rx_data_pin<1> LOC=x***; # RX_DATA1

Net opb_ethernet_O_PHY_rx_data_pin<2> LOC=x*x; # RX_DATA2

Net opb_ethernet_O_PHY_rx_data_pin<3> LOC=xx%*; # RX_DATA3

Net opb_ethernet_O_PHY_rx_clk_pin LOC=xxx; # RX_CLOCK

Net opb_ethernet_O_PHY_dv_pin LOC=x*x; # RX_DATA_VALID
Net opb_ethernet_O_PHY_rx_er_pin LOC=xxx; # RX_ERROR

Net opb_ethernet_O_PHY_col_pin LOC=***; # COLLISION_DETECTED
Net opb_ethernet_O_PHY_crs_pin LOC=x***; # CARRIER_SENSE
Net opb_ethernet_O_PHY_Mii_data_pin LOC=xxx*; # MDIO

Net opb_ethernet_O_PHY_Mii_clk_pin LOC=xxx; # MDC

Net opb_ethernet_O_PHY_rst_n_pin LOC=xxx; # ENET_RESET_Z -- XUPV2P only

Building The Hardware

9.

Select the Hardware menu and the Generate Bitstream submenu in XPS to start building the hardware
system. This will take about 10-15 minutes as the system is compiled, placed and routed for the FPGA.
During the build process, a lot of information will be displayed in the bottom window pane of XPS.
The first step of the software design may be done while the bitstream is being generated.

Defining The Software

10.

11.

12.

Create a simple loopback application that sends an Ethernet frame and receives the same frame while
the EMAC is in internal loopback mode. Begin with the xemac_intr_fifo_example.c example pro-
vided in the EDK installation area by copying this file to your lab4/code/ subdirectory. The Prepa-
ration section describes where to find the file.

You can look through the example code while XPS generates a hardware bitstream but you should
have done this prior to the working on this as preparation!

Add the xemac_intr fifo_example.c file to the XPS project as program source. Be sure to remove
any other source files that are leftover from previous modules.

Next you will edit the xemac_intr_fifo_example.c source to match your system. The example sup-
ports the PPC405 processor by default, but it can be made to work with the MicroBlaze with only
minor modifications.

University of Toronto
ECEbH32 Digital Hardware
Module m04: Adding the OPB EMAC Peripheral

First, you should correct the parameters defined around line 70, referencing xparameters.h for the
correct constant names needed by the application. Open the xparameters.h file. When looking
through the file, you should notice that there are no references to the Ethernet core. The generation
of the bitstream did not update your xparameters.h file. Goto the Software menu and generate the
libraries. This should update your xparameters.h file. Now you can edit the example file to match
your system by providing the correct names from the xparameters.h file. (Hint: the constants should
all begin with XPAR so you can do a search.)

Next, you can try building the example. You’ll notice that it fails to compile due to missing definitions
around line 662. This block of code performs some necessary interrupt initialization on the PPC405
that is not required or supported on the MicroBlaze. One option is to remove this code entirely and
replace it with the necessary initialization code for the MicroBlaze (hint: check Module m03 if you
don’t remember what’s required); another more elegant solution is suggested by the #ifndef directive
at line 59.

Compiling the Drivers and Program

13.

14.

In XPS, make sure that the compiler options are set so there is no optimization and debug flags are
generated. Compile the application.

Select the Device Configuration menu and the Update Bitstream submenu to update the BRAM
contents of the bitstream with the newly-compiled executable.elf.

Downloading the Bitstream to the FPGA

15.

Ensure that power is on to the board and the programming cable is connected to the PC. Select the
Tools menu and Download submenu. This will download the hardware and software contained in the
bitstream to the FPGA. The ROM monitor software will begin executing after the download completes.

Getting Ready to Debug

16.

Use XMD to connect to the stub (ROM monitor software) running on the target board.

Debugging Software

17.

18.

Use the software debugger to connect to the XMD GDB server and download the executable.elf file
that contains the EMAC loopback application.

Use GDB to step through the program. Verify the program runs by setting breakpoints in the interrupt
handlers and looking at return values with the debugger or by adding xil_printf statements to the
code and looking at the terminal output. Why do we prefer xil printf over printf?

Note: You can save your breakpoint locations for subsequent runs. In the GDB Source window, select
the View menu and the Breakpoints submenu. The Breakpoints window will open. Once you have
set all your breakpoints in the Breakpoints window, select the Global menu and the Store Breakpoints
submenu. You can then specify a filename that you can restore in a subsequent run of GDB.

Look At Next

Module m05: Adding a User-Designed Peripheral
Module m06: Using ISE

