University of Toronto
ECEbH32 Digital Hardware
Module m06: Using ISE

Version for EDK 8.2.02i and ISE 8.2.03i as of January 5, 2007

Introduction

ISE is an integrated environment for developing your cores for the FPGA. The main GUI is Project Navigator
and a number of other tools can be used in or launched from Project Navigator, such as CoreGen, HDL
Bencher, and ModelSim. You will probably do the initial development and debugging of your cores using
ISE before trying to connect them to a Microblaze in EDK (XPS).

Note that Xilinx tools do not work reliably if paths contain spaces. Paths with spaces should be avoided
like the plague when deciding where to install Xilinx tools, third party tools, and where to put your project
files.

For additional information on using ISE, please refer to the Xilinx documentation. Links to the online
documentation are embedded in the PDF version of this document; most of the referenced documentation
is also installed locally as part of ISE.

Goals

e To gain a basic understanding of how to use ISE.
e To develop a simple core using ISE for use on the Xilinx Multimedia board.
e To use CoreGen IP in this design.

e To learn how to initialize memory.

To use iMPACT to download the design to the board.

To use the pushbuttons on the Multimedia board.

Requirements

Access to ISE 8.2.031

Preparation

The documentation for ISE 8.2i is available online and can be either viewed directly in the browser or
downloaded for offline reading. The tools delt with in this module fall into the Design Implementation
category.

e Take a quick look through the ISE Help documentation in the Design Implementation tools list.

e Skim through the FPGA Design Flow Overview to better understand the various tools and their
interactions.

e Skim through the ISE Quick Start Tutorial to get an idea of the additional capabilities of ISE.

e If you are using the Multimedia board, read through the section on User Input and Output in the
MicroBlaze and Multimedia Development Board User Guide. You will be using the pushbuttons, User
Input dip switches, and User LEDs in this lab.

e If you are using the XUPV2P board, read through the Using the LEDs and Switches section of the
Xilinx University Program Virtex-II Pro Development System Hardware Reference Manual. You will
be using the User Input dip switches and User LEDs in this lab.

http://www.xilinx.com/support/sw_manuals/xilinx82/
http://toolbox.xilinx.com/docsan/xilinx82/books/manuals.pdf
http://www.xilinx.com/support/sw_manuals/xilinx82/download/
http://toolbox.xilinx.com/docsan/xilinx82/help/iseguide/iseguide.htm
http://toolbox.xilinx.com/docsan/xilinx82/help/iseguide/html/ise_fpga_design_flow_overview.htm
http://toolbox.xilinx.com/docsan/xilinx82/books/docs/qst/qst.pdf
http://www.xilinx.com/bvdocs/userguides/ug020.pdf
http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf

University of Toronto
ECEbH32 Digital Hardware
Module m06: Using ISE

Steps

1. Open Project Navigator.

2. Create a new project in a directory (without spaces!) by selecting File — New Project.... When you
specify a Project Name, a subdirectory for it will automatically appear in the Project Location box. In
this document, we will call it learn_ise. The top-level module type will be HDL. Click Next.

If you are using the Multimedia board:

The Device Family should be Virtex2.
The Device should be XC2V2000.
The Package should be FF896.

The Speed Grade should be -4.

If you are using the XUPV2P board:

The Device Family should be Virtex2P.
The Device should be XC2VP30.

The Package should be FF896.

The Speed Grade should be -7.

The Synthesis Tool should be XST and the Simulator should be ModelSim-SE Verilog (unless you have
ModelSim-XE installed instead). Click Next, Next, Next, and Finish.

3. If you are using the Multimedia board:

(a)
(b)

(c)

Unzip the m06.zip file in your project directory to get the files for this module.

Select Project — Add Copy of Source. Select the three Verilog files and the UCF file you just
unzipped and add them to the project. Leave the default options selected in the dialog that pops
up.

The mem_init.coe file was created using Microsoft Excel and the Memory Editor as described in
Xilinx Answer Record #11744. Copy it into your learn_ise project directory. Select Project —
New Source. Select IP (CoreGen & Architecture Wizard). Call it 1led lookup_ip. Make sure the
Add to Project checkbox is checked. Click Next.

The Select IP dialog box will pop up. Expand Memories & Storage Elements — RAMs & ROMs.
Select Single Port Block Memory v6.2. Click Next. Click Finish.

A CoreGen GUI will pop up. Enter 1led_lookup_ip as the Component Name. Select Read Only as
the Port Configuration. Enter a Width of 2 and a Depth of 1024 for Memory Size. This will create
a ROM that has 1024 2-bit words. Click Next. Let CoreGen Optimize for Area in the Primitive
Selection panel. Leave all other options as their default values. Click Next. Click Next. In the
Initial Contents panel, check the Load Init File checkbox. Click on Load File... and browse to and
select the COE file that you copied. Click Generate. You should get the message “Successfully
generated <led_lookup_ip>" in the Transcript panel at the bottom of the Project Navigator window.
Note that you have just initialized a very small block of memory so it did not take very long.
If you were to initialize something occupying over 50% of the on-chip block ram, generating the
ROM could take upward of 10 minutes.

In your project directory you should now have a number of generated files for led_lookup_ip.
The MIF file is the Memory Initialization File that can be used in behavioural simulations. The V
and VHD files are for compiling at simulation time. The VEO and VHO files are the instantiation
templates for the IP. (Naturally, you could come up with that yourself, but copying and pasting
from the template saves typing.)

file:www.xilinx.com/xlnx/xil_ans_display.jsp?BV_UseBVCookie=yes&getPagePath=11744&iLanguageID=1

University of Toronto
ECEbH32 Digital Hardware
Module m06: Using ISE

(2)

Next, you will create a DCM for the module. The DCM in this module is mostly for demonstration
purposes. You would really want to use a DCM when you need phase shifting or clock scaling.
The feedback circuit works to line up or phase shift clock edges, as configured in CoreGen, and
produces a “locked” signal when the DCM output has settled. You should NOT just put a clock
through a T flip-flop to generate another clock at half the frequency. That will cause timing
headaches.

Create a DCM (Digital Clock Manager) IP in CoreGen by clicking on Project — New Source. Select
IP (CoreGen & Architecture Wizard). Call it led_decm. Make sure the Add to Project checkbox is
checked. Click Next.

The Select IP dialog box pops up. Expand FPGA Features and Design — Clocking — Virtex-Il
Pro, Virtex-1l, Spartan-3. Choose Single DCM v8.2i. Click Next. Click Finish. The Xilinx Clocking
Wizard pops up. Enter 27 MHz as the Input Clock Frequency, since this is one of the available
clock frequencies on the Multimedia board. Ensure that RST, CLKO, CLKDV, and LOCKED
are checked on the picture. Select 4 as the Divide By Value. Click Next. The next window is for
clock buffers. One of the important aspects of the DCM is that all the DCM clock outputs get
put through clock buffers. The default values should be fine. Click Next, then Finish.

If you are using the XUPV2P board:

(a)

Create a new text document in your project directory called example memory.coe and paste the
following into it:

memory_initialization_radix=2;
memory_initialization_vector=
0101,

1010,

0110,

1001,

1100,

0011,

1110,

0001,

0000,

1111,

1000,

0100,

0010,

0111,

1011,

1101;

Select Project — New Source. Select IP (CoreGen & Architecture Wizard). Call it example_memory.
Make sure the Add to Project checkbox is checked. Click Next.

The Select IP dialog box will pop up. Expand Memories & Storage Elements — RAMs & ROMs.
Select Single Port Block Memory v6.2. Click Next. Click Finish.

A CoreGen GUI will pop up. Leave example memory as the Component Name. Select Read Only
as the Port Configuration. Enter a Width of 4 and a Depth of 16 for Memory Size. This will create
a ROM that has 16 4-bit words. Click Next. Let CoreGen Optimize for Area in the Primitive
Selection panel. Leave all other options as their default values. Click Next. Click Next. In the
Initial Contents panel, check the Load Init File checkbox. Click on Load File... and browse to and
select the COE file that you created. Click Generate. You should get the message “Successfully
generated <example_memory>" in the Transcript panel at the bottom of the Project Navigator
window.

University of Toronto
ECEbH32 Digital Hardware
Module m06: Using ISE

Note that you have just initialized a very small block of memory so it did not take very long. If
you were to initialize something occupying over 50% of the on-chip block RAM, generating the
ROM could take upward of 10 minutes.

(e) Select Project — New Source. Select Verilog Module. Call it example_verilog. Make sure the
Add to Project checkbox is checked. Click Next.

(f) Create input ports system_clock, sw.0, sw_1, sw_2, and sw_3 and output ports led 0, led 1,
led 2, and led_3. Click Next.

(g) Select File — Open... and open the example memory.veo file that was automatically gener-
ated for you by CoreGen. Copy the instantiation template from this file to your newly-created
example_verilog.v. Connect the ports of the memory as follows: addr with {sw_3,sw_2,sw_1,sw_0},
clk with system_clock, din with 4°h0, dout with {led_-3,1led_-2,1ed_1,1ed 0}, and we with
1°b0.

(h) Select Project — New Source. Select Implementation Constraints File. Call it example_verilog.
Make sure the Add to Project checkbox is checked. Click Next. Select example_verilog as the source
with which the UCF file should be associated. Click Next and Finish.

(i) Select example_verilog.ucf from the Sources panel, then double-click on User Constraints — Edit
Constraints (Text) in the Processes panel. Copy the appropriate lines from the User Constraint Files
(UCF) section Xilinx University Program Virtex-II Pro Development System Hardware Reference
Manual into your new UCF file.

(j) Save and close all the open design files.

. In the Sources in Project window you will see a collapsible listing of the source file hierarchy for the
project. Depending on which source you click on, the Processes panel will change to correspond to that
source file. This allows you to compile and debug at various levels in your design. Be sure that you
have clicked on the source file you actually want before running one of the processes for it.

Another helpful tool for lazy typers: In the Sources panel of the Project Navigator window, select a
Verilog or VHDL source file. In the Processes panel, double click View HDL Instantiation Template.
This will generate an instantiation template to instantiate the module represented by that file.

. In the Sources panel, click on the top-level module. In the Processes panel, double click on Synthesize
— XST.

If you are using the project files for the Multimedia board, you should get errors. In the Transcript
panel, scroll up until you reach the first error from the top. It should be preceded by a little red WEB
icon. Right click on the red WEB icon. Notice that one option is Goto Answer Record. This links to
the online Xilinx Answers Database and searches for any related answer records. Our problem is just
a syntax error, so choose Goto Source. This will open the source file; the offending line is indicated
by a yellow triangle. Scroll up in the file to find the problem and fix it. Save led_lookup.v. Re-run
synthesis.

. When synthesis completes successfully, double click on Implement Design in the Processes panel.

If you are using the project files for the Multimedia board, you should get an error. The first error in
the Transcript panel will tell you what file to open. Make the required modification and save the file.
(Hint: to open the UCF file in the ISE text editor, select learn_ise.ucf from the Sources panel and
double-click on User Constraints — Edit Constraints (Text) in the Processes panel.) Re-run Implement
Design.

. When Implementation completes successfully, double click on Generate Programming File in the Pro-
cesses panel.

. When the programming file has been generated, go to the Windows program folder where the Project
Navigator shortcut is located. Make sure your board is connected correctly, turned on, and with the
User Input switches on (i.e., up). Open the Accessories folder and launch iMPACT. Select create a new
project (.ipf) and click OK and then Finish.

http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf
http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P_User_Guide.pdf

University of Toronto
ECEbH32 Digital Hardware
Module m06: Using ISE

e If you are using the Multimedia board, bypass the first Assign New Configuration dialog and select
learn_ise.bit from your project directory in the second.

e If you are using the Multimedia board, bypass the first two Assign New Configuration dialogs and
select example verilog.bit from your project directory in the second.

e If you get a warning saying “Startup Clock has been changed to JtagClk”, just click OK.

9. Click on the xc2v2000 device (Multimedia board) or xc2vp30 device (XUPV2P board) so that it turns
green. Select Operations — Program. Do not check Verify! Click OK. Your BIT file will be downloaded
to the board. When it is done you should get a message stating it is done and the DONE LED should
light up on the board. If programming fails because the DONE LED could not be driven, repeat the
programming attempt.

e If you are using the Multimedia board, you can then enter different combinations on the push-
buttons and hit Enter to get different combinations of flashing User LEDs. Even though there
are mappings in the memory for an address affected by all ten pushbuttons, why do only the two
pushbuttons nearest the Enter key make any difference? Which of the two User Input switches is
the RESET switch?

o If you are using the XUPV2P board, you can fiddle with the user switches to get different config-
urations on the LEDs. Can you explain the results of a given switch configuration?

Look at Next

Module m07: ModelSim Simulation
Module m09: Using and Modelling OPB Interfaces

