University of Toronto
ECEbH32 Digital Hardware
Module m10: Fast Simplex Link (FSL) Interfaces

Version for EDK 8.2.02i as of January 7, 2007

Goals

e To learn about the Xilinx Fast Simplex Link (FSL) Interface.

e To become familiar with the documentation you will need to refer to when designing your own systems
with FSLs.

Requirements

e Module m01: Building a MicroBlaze System in XPS.

e It is suggested that Modules m02, m03, m04, and m05 also be completed before proceeding.

Preparation

¢ Read the FSL datasheet:
$XILINX _EDK/hw/XilinxProcessorIPLib/pcores/fsl _v20_v2_00_a/doc/fsl_v20.pdf

e Read the FSL Application Note, XAPP529. If you are short on time, start reading at the middle of
page 6 where they begin to describe the FSL interface in detail.

Background

The Fast Simplex Link (FSL) is a uni-directional point-to-point connection between two devices. It is
an abstraction designed to look like a reliable, ordered communication channel that essentially wraps a
FIFO with a standardized interface. The implementation is parameterized to suit the characteristics of the
design, depending on whether the user needs it to be synchronous (both devices run on the same clock) or
asynchronous (the master and slave run on different clocks), on the size, and on various other parameters
that the user can specify.

As a point-to-point simplex link, a single FSL can connect only one master device to one slave device. The
master writes into the FSL and the slave reads from it. Since we typically want to be able to communicate
in both directions, FSLs are often used in pairs where each of the two connected devices is a master on one
of the FSLs and a slave on the other.

Important Notes

e Note that you can only have one master and one slave on a single FSL.

e Note that one bidirectional (duplex) FSL link is in fact composed of one pair of FSLs. If the FSL link
connects devices A and B, one of the FSLs has device A as the master and B as the slave. The other
FSL has B as the master and A as the slave.

e Do not write to the FSL when the Full signal is high. Doing so will cause the FSL data to be corrupted.
In the asynchronous FSL, doing so will overwrite the word in FSL_S Data with the latest data word.
This is not a concern when doing writes in C code, because the MicroBlaze functions take care of
checking the FSL Full and Exists lines.

http://www.xilinx.com/bvdocs/appnotes/xapp529.pdf

University of Toronto
ECEbH32 Digital Hardware
Module m10: Fast Simplex Link (FSL) Interfaces

Creating the Hardware

1.

10.

Create a copy of the labl folder and rename to 1ab10. This will be the working project directory for
this lab.

. Download the file m10.zip and unzip it in the directory containing the 1ab10 folder you just created.

This file contains an IDCT pcore that we will connect to MicroBlaze using the FSL and the source
code for a test application. Go into your 1lab10/code/ directory and delete labl.c.

Return to your 1ab10 folder and double-click on system.xmp to open the project.

In the Project Repository under the IP Catalog section, you should find the xil_idct_v1_00_a user core.
Add it to the system. It should now appear in the System Assembly.

Add two FSL links which you can find under Bus within the IP Catalog menu.
Double click on microblaze_0 and under Bus Interfaces set the Number of FSL Links to 2.

Connect MicroBlaze as a master on £s1_v20.0 (using MFSLO) and as a slave on £s1_v20_1 (using
SFSL1).

Connect the xil_idct_0 user core as a master on £s1_v20_1 (using MFSL) and as a slave on £s1_v20_0
(using SFSL).

In the Ports view, expand the xil_idct_0 pcore instance. Connect Clk to sys_clk_s and Reset to
net_gnd.

Do the same for £s1_v20_0 and £s1_v20_1. Leave all other connections untouched.

Creating the Software

11.

12.

Remove labl.c and add system.c under Sources in the Applications Tab.

Click on Build All User Applications to generate the libraries and compile your program.

Testing the Application

13.
14.

15.

Generate the Bitstream and download it to the board.

Using XMD, download the executable and run it. Observe the output on the HyperTerminal screen.
You should see the results of a sample application which tests the IDCT operation on 8 sets of data.
Read through the sample code (system.c) to see how the software interface to the FSL links works.
There is a small mistake in the program which is causing the read values to be all-zeros. It is up to
you to find the mistake and correct it (hint: think about how the FSLs are connected).

After your system runs correctly, try to use the blocking read and write FSL operations instead of the
non-blocking ones (this is trivial).

