1

Version 2 — Submitted August 18, 1997 Encyclopedia of Computer Science and Technology
to be edited by Allen Kent and James G. Williaig.34 wor ds.

Genetic Programming

John R. Koza

Computer Science Department

Stanford University

258 Gates Building
Stanford, California 94305 USA

PHONE: 650-941-0336

FAX: 650-941-9430

E-MAIL: Koza@CS.Stanford.Edu
WWW: http://www-cs-faculty.stanford.edu/~koza/

1. Introduction
Genetic programming is a domain-independent problem-solving approach in whiguteom
programs are evolved to solve, or approximately solve, problems. Genetic programba@sgds
on the Darwinian principle of reproduction and survival of the fittest amalogs of naturally
occurring genetic operations suchcagssover(sexual recombinatigrandmutation

John Holland's pioneeringdaptation in Natural and Atrtificial Systen(s975) described how
an analog of the evolutionary process can be applied to solving mathenpatibkEdms and
engineering optimization problems using what is now calledgtretic algorithm(GA). The
genetic algorithm attempts to find a good (or best) solution to the problemenetically
breeding a population of individuals over a series of generations. In thecgagetithm, each
individual in the population represents a candidate solution to the given problemgenéic
algorithm (GA) transforms agpopulation (set) of individuals, each with an associatBthess
value, into a newgenerationof the population using reproduction, crossover, and mutation.

Books on genetic algorithms that include those that survey the enlitesiieh as Goldberg
(1989), Michalewicz (1992), and Mitchell (1996) as well as others gfetiaize in particular

areas, such as the application of genetic algorithms to roboticsd@a{d990), financial

2
applications (Bauer 1994), image segmentation (Bhanu and Lee 1994), pattgmtien (Pal
and Wang 1996), parallelization (Stender 1993), and simulation an modeling (Stende
Hillebrand, and Kingdon 1994), control and signal processing (Man, Tang, Kwong, and Halang
1997), and engineering design (Gen and Cheng 1997).

Edited collection of papers on genetic algorithms include Davis (1987, 1991mbéisa
(1995), Biethahn and Nissen (1995), Dasgupta and Michalewicz (1997), and Back,ardgel
Michalewicz (1997).

Recent work on genetic algorithms can often be found in conference procesdiiyss the
International Conference on Genetic Algorithms (Back 1997), ICEC —nhtienal Conference
on Evolutionary Computation (IEEE 1997), the annual Genetic Programming Coefékora
et al. 1997), Parallel Problem Solving from Nature (Voigt, Ebeling, Réxgrg, and Schwefel
1996), Artificial Evolution (Alliot et al. 1995), Genetic Algorithms im@neering Systems:
Innovations and Applications (IEE 1995), Evolutionary Computing (Fogarty 1995), Evolutionary
Computation and its Applications (Goodman 1996), Frontiers of Evolutionary Alguit
(Wang 1997), Simulated Evolution And Learning (Yao, Kim, and Furuhashi 1997), lraeaiat
Conference on Evolvable Systems (Higuchi, lwata, and Lui 1997), InternaGonérence on
Artificial Neural Nets and Genetic Algorithms (Pearson, ®eahd Albrecht 1995), and the
Evolutionary Programming Conference (Angeline, Reynolds, McDonnell, and Eberhart 1997).

Genetic programming addresses one of the central goals of compwacescnamely
automatic programming. The goal of automatic programming is to cieate,automated way,

a computer program that enables a computer to solve a problem. Psirgptmahur Samuel

(1959), the goal of automatic programming concerns,

How can computers be made to do what needs to be done, without being tdig exact

how to do it?

In genetic programming, the genetic algorithm operates on a population of computer programs

of varying sizes and shapes (Koza 1992). Genetic programming stérig pritnordial ooze of

3
thousands or millions of randomly generated computer programs composed ofatlable
programmatic ingredients and then applies the principles of animal hugliandreed a new
(and often improved) population of programs. The breeding is done in a domainnidelepe
way using the Darwinian principle of survival of the fittest, an anafodpe naturally-occurring
genetic operation of crossover (sexual recombination), and occasionalomut@ihe crossover
operation is designed to create syntactically valid offspring progrgiven(closure amongst the
set of programmatic ingredients). Genetic programming combines thesex@ high-level
symbolic representations of computer programs with the near-optifiraeety of learning of
Hollands genetic algorithm. A computer program that solves (or approximstdhes) a given
problem often emerges from this process. See also Koza and Rice 1992.
Genetic programming breeds computer programs to solve problems by exedding t

following three steps:
(1) Generate an initial population of random compositions of the functimh$eaminals of

the problem (i.e., computer programs).

(2) lteratively perform the following substeps until the terminatioitelton has been
satisfied:

(A) Execute each program in the population and assign it a fitnessugihgethe fitness
measure.

(B) Create a new population of computer programs by applying the following
operations. The operations are applied to computer program(s) choseth&om
population with a probability based on fitness.

(i) Darwinian ReproductionReproduce an existing program by copying it into the
new population.

(i) Crossover Create two new computer programs from two existing programs by
genetically recombining randomly chosen parts of two existing programs
using the crossover operation (described below) applied at a randomly chosen
crossover point within each program.

(iif) Mutation Create one new computer program from one existing program by
mutating a randomly chosen part of the program.

(3) The program that is identified by the method of result designatidesgnated as the
result for the run (e.g., the best-so-far individual). This result bgag solution (or an
approximate solution) to the problem.

Multi-part programs consisting of a main program and one or more repgaiteneterized,
hierarchically-called subprograms (calladtomatically defined functiohsnay also be evolved

(Koza 1994a, 1994b). Aautomatically defined functiofADF) is a function (i.e., subroutine,

4
subprogram, DEFUN, procedure) that is dynamically evolved during a run of genetic
programming and which may be called by a calling program (or subprograny doaicurrently
being evolved. When automatically defined functions are being used, a prograne i
population consists of a hierarchy of one (or mam)sablefunction-defining branches (i.e.,
automatically defined functions) along with a main result-producing branypically, the
automatically defined functions possess one or more dummy arguments| (fararaeters) and
are reused with different instantiations of these dummy argumentsingDa run, genetic
programming evolves different subprograms in the function-defining branchdw ajverall
program, different main programs in the result-producing branch, diffemstantiations of the
dummy arguments of the automatically defined functions in the function-ogfonenches, and
different hierarchical references between the branches.

Architecture-altering operations enhance genetic programming with atitaltyadefined
functions by providing a way to automatically determine the number of suchogudms, the
number of arguments that each subprogram possesses, and the nature efrattohidal
references, if any, among such subprograms (Koza 1995). These operatiads imench
duplication, argument duplication, branch creation, argument creation, branciorjeéand
argument deletion. The architecture-altering operations are motibgtdte naturally occurring
mechanism of gene duplication that creates new proteins (and hencgtroetures and new
behaviors in living things) (Ohno 1970).

Recent research on genetic programming is described in Banzhaf, Nomlier, Kand
Francone (1997), the proceedings of the annual Genetic Programming Confékorzest al.
1997), and in most of the conferences cited earlier on evolutionary coroput&dited
collection of papers on genetic programming include Kinnear (1994) and Angalininnear
(1996).

Before applying genetic programming to a problem, the user must perfgemnfajor
preparatory steps. These five steps involve determining

(1) the set of terminals,

(2) the set of primitive functions,

(3) the fitness measure,

(4) the parameters for controlling the run, and

(5) the method for designating a result and the criterion for terminating a run.

The first major step in preparing to use genetic programming is taifldhe set of
terminals. The terminals can be viewed as the inputs to thet-aswiscovered computer
program. The set of terminals (along with the set of functions)haéngredients from which
genetic programming attempts to construct a computer program to soamgproximately solve,
the problem.

The second major step in preparing to use genetic programming is tdyidéstiset of
functions that are to be used to generate the mathematical expression that &téhtptsgiven
finite sample of data. Each computer program (i.e., parse treleematical expression, LISP S-
expression) is a composition of functions from the functiorFstd terminals from the terminal
set7. Each of the functions in the function set should be able to accets,saguments, any
value and data type that may possibly be returned by any function in the fusetiand any
value and data type that may possibly be assumed by any terminal imthrekeset. That is,
the function set and terminal set selected should have the closureypsipéhat any possible
composition of functions and terminals produces a valid executable congpaggam. For
example, a run of genetic programming will typically employ a protectesiore of division
(returning an arbitrary value such as zero when division by zero is attempted).

The evolutionary process is driven by fiteess measureEach individual computer program
in the population is executed and then evaluated, using the fithess méasiermine how
well it performs in the particular problem environment. The natutbefitness measure varies
with the problem. For many problems, fitness is naturally measurdtelyigcrepancy between
the result produced by an individual candidate program and the desired fBselcloser this
error is to zero, the better the program. In a problem of optimal contrditrtess of a computer

program may be the amount of time (or fuel, or money, etc.) it takbarng the system to a

6
desired target state. The smaller the amount, the better. i$ tryeng to recognize patterns or
classify objects into categories, the fitness of a particular gnognay be measured by accuracy
or correlation. For electronic circuit design problems, the fitmesasure may involve how
closely the circuit's performance (say, in the frequency or time dgnsatisfies user-specified
design requirements. If one is trying to evolve a good randomizer, tresditmight be
measured by means of entropy, satisfaction of the gap test, satisfaicthe run test, or some
combination of these factors. For some problems, it may be apprdpriase a multiobjective
fithness measure incorporating a combination of factors such astoesscparsimony (smallness
of the evolved program), efficiency (of execution), power consumption (foleatrieal circuit),
or manufacturing cost (for an electrical circuit).

The primary parameters for controlling a run of genetic programmintharpopulation size,
M, and the maximum number of generations to be@un,

Each run of genetic programming requires specification dkeranination criterion for
deciding when to terminate a run and a methodestilt designation One frequently used
method of result designation for a run is to designate the best indivitii@ihed in any
generation of the population during the run (i.e., lest-so-far individuglas the result of the
run.

In genetic programming, populations of thousands or millions of computer proguams
genetically bred for dozens, hundreds, or thousands of generations. This breefting using
the Darwinian principle of survival and reproduction of the fittest aleitly a genetic crossover
operation appropriate for mating computer programs. A computer progransdhas (or
approximately solves) a given problem often emerges from this combinaiti@arwinian
natural selection and genetic operations.

Genetic programming starts with an initial population (generation @rafomly generated
computer programs composed of the given primitive functions and termihgtscally, the size
of each program is limited, for practical reasons, to a certaximum number of points (i.e.

total number of functions and terminals) or a maximum depth (of the pnogee). The

7
creation of this initial random population is, in effect, a blind randonallgh search of the
search space of the problem represented as computer programs.

Typically, each computer program in the population is run over a number efediffitness
casesso that its fitness is measured as a sum or an average oaeiety of representative
different situations. These fitness cases sometimes repeesanipling of different values of an
independent variable or a sampling of different initial conditions ofstem. For example, the
fitness of an individual computer program in the population may be measutedns of the
sum of the absolute value of the differences between the output produteddrgdram and the
correct answer to the problem (i.e., the Minkowski distance) omgn@s root of the sum of the
squares (i.e., Euclidean distance). These sums are taken oveplangawh different inputs
(fitness cases) to the program. The fithess cases may be etasedom or may be chosen in
some structured way (e.g., at regular intervals or over a regular gitid} also common for
fitness cases to represent initial conditions of a systemm(ascontrol problem). In economic
forecasting problems, the fithess cases may be the daily closing gficome financial
instrument.

The computer programs in generation O of a run of genetic programminglnmwast always
have exceedingly poor fitness. Nonetheless, some individuals in the populditiamnaout to
be somewhat more fit than others. These differences in performance are thendexploite

The Darwinian principle of reproduction and survival of the fittest dedgenetic operation
of crossover are used to create a new offspring population of individuglutenprograms from
the current population of programs.

The reproduction operation involves selecting a computer program from thentcur
population of programs based on fitness (i.e., the better the fitnessotadikely the individual
Is to be selected) and allowing it to survive by copying it into the new population.

The crossover operation creates new offspring computer programs frompavental
programs selected based on fitness. The parental programs in geogtaanming are typically

of different sizes and shapes. The offspring programs are composdaegpsessions (subtrees,

8
subprograms, subroutines, building blocks) from their parents. These offspog@mps are
typically of different sizes and shapes than their parents.

For example, consider the following computer program (presented here L4SPa S-

expression):

(+ (* 0.234 2) (- X 0.789)),

which we would ordinarily write as

0.234Z + X - 0.789.
This program takes two inputX &ndZ) and produces a floating point output.

Also, consider a second program:

(* (* ZY) (+ Y (* 0.314 2))).

One crossover point is randomly and independently chosen in each parent. Shaptse t
crossover points are thein the first parent and thein the second parent. These two crossover
fragments correspond to the underlined sub-programs (sub-lists) in thpatewotal computer
programs.

The two offspring resulting from crossover are as follows:

(+ (+ Y (* 0.314 2)) (- X 0.789))

(* (* ZY) (¥ 0.234 2)).

Thus, crossover creates new computer programs using parts of existmgapg@rograms.
Because entire sub-trees are swapped, the crossover operation @edyses syntactically and
semantically valid programs as offspring regardless of the choiteedfnvo crossover points.

Because programs are selected to participate in the crossovatiapevith a probability based

9
on fitness, crossover allocates future trials to regions of thehsegpace whose programs
contains parts from promising programs.

The mutation operation creates an offspring computer program from onggbgyeograms
selected based on fitness. One crossover point is randomly and indepeodesély and the
subtree occurring at that point is deleted. Then, a new subtree is gtdWwat point using the
same growth procedure as was originally used to create the initial random population.

After the genetic operations are performed on the current populatiorpoingation of
offspring (i.e., the new generation) replaces the old population (i.e., thgeep&tation). Each
individual in the new population of programs is then measured for fithnedstha process is
repeated over many generations.

The hierarchical character of the computer programs that are pcbduaa important feature
of genetic programming. The results of genetic programming are inhereathrchical. In
many cases the results produced by genetic programming are defauithingsraprioritized
hierarchies of tasks, or hierarchies in which one behavior subsumes or suppresses another.

The dynamic variability of the computer programs that are developed diengady to a
solution is also an important feature of genetic programming. Ites ahifficult and unnatural
to try to specify or restrict the size and shape of the eventusticgolin advance. Moreover,
advance specification or restriction of the size and shape of th@sdio a problem narrows the
window by which the system views the world and might well preclude finti@golution to the
problem at all.

Another important feature of genetic programming is the absenceative®l minor role of
preprocessing of inputs and postprocessing of outputs. The inputs, intermredidte, and
outputs are typically expressed directly in terms of the naturalinetogy of the problem
domain. The programs produced by genetic programming consist of functionsetmattaral
for the problem domain. The postprocessing of the output of a program, ifsatdgne by a

wrapper (output interface

10

Finally, another important feature of genetic programming is thattthetsres undergoing
adaptation in genetic programming are active. They are not passive reggoflie.,
chromosomes) of the solution to the problem. Instead, given a computer dntahim, the
structures in genetic programming are active structures that are eapdlgling executed in their
current form.

Automated programming requires some hierarchical mechanism to expfoieuseand
parameterization the regularities, symmetries, homogeneities, similarities, rpafteand
modularities inherent in problem environments. Subroutines do this in ordooamputer
programs.

Automatically defined functions can be implemented within the contextgesietic
programming by establishing a constrained syntactic structure for thedwali programs in the
population. Each multi-part program in the population contains one (or nuoiet)an-defining
branches and one (or more) main result-producing branches. The result4qpgotuanch
usually has the ability to call one or more of the automaticallynddffunctions. A function-
defining branch may have the ability to refer hierarchically to othieeady-defined
automatically defined functions.

Genetic programming evolves a population of programs, each consisting obaratcally
defined function in the function-defining branch and a result-producing branch. The structures of
both the function-defining branches and the result-producing branch are detkeroyinine
combined effect, over many generations, of the selective pressuredelgrthe fitness measure
and by the effects of the operations of Darwinian fithess-based repioodand crossover. The
function defined by the function-defining branch is available for use by thét4qaoducing
branch. Whether or not the defined function will be actually calletbispredetermined, but
instead, determined by the evolutionary process.

Since each individual program in the population of this example consigteadion-defining
branch(es) and result-producing branch(es), the initial random generatibberreated so that

every individual program in the population has this particular constrainedcsignstructure.

11

Since a constrained syntactic structure is involved, crossover must be perforaseid sweserve
this syntactic structure in all offspring.

Genetic programming with automatically defined functions has been showendapable of
solving numerous problems (Koza 1994a). More importantly, the evidenceirdiates that,
for many problems, genetic programming requires less computational @#oytfewer fitness
evaluations to yield a solution with, say, a 99% probability) with autoaitidefined functions
than without them (provided the difficulty of the problem is above ainegtatively low break-
even point).

Also, genetic programming usually yields solutions with smaller avevageall size with
automatically defined functions than without them (provided, again, that ¢hdepr is not too
simple). That is, both learning efficiency and parsimony appear to berfespef genetic
programming with automatically defined functions.

Moreover, there is evidence that genetic programming with automugteefined functions is
scalable. For several problems for which a progression of scaledrsipngewas studied, the
computational effort increases as a function of problem sizeslatger ratewith automatically
defined functions than without them. Also, the average size of solutioilarly increases as a
function of problem size atsdower ratewith automatically defined functions than without them.
This observed scalability results from the profitable reuse of afdeically-callable,
parameterized subprograms within the overall program.

When single-part programs are involved, genetic programming automatictlyndees the
size and shape of the solution (i.e., the size and shape of the proggnadrwell as the
sequence of work-performing primitive functions that can solve the probldawever, when
multi-part programs and automatically defined functions are being usegli¢isgon arises as to
how to determine the architecture of the programs that are being évolearchitectureof a
multi-part program consists of the number of function-defining branchesnfatitally defined
functions) and the number of arguments (if any) possessed by each funcimamgdiefanch.

The architecture may be specified by the user, may be evolved using @vatytselection of

12
the architecture (Koza 1994a), or may be evolved using architectuiagaloperations (Koza

1995).

2. The Threshold of Practicality
Genetic programming has been used to produce results that are cempeith human
performance on certain non-trivial problems. In fields as diverseetslar automata, space
satellite control, molecular biology, and design of electrical cscuenetic programming has
evolved a computer program whose results were, under some reasonakpectation,
competitive with human performance on the specific problem. For exanggeetic
programming with automatically defined functions has evolved a rule for nigrity
classification task for one-dimensional two-state cellular aui@nvéh an accuracy that exceeds
that of the original human-written Gacs-Kurdyumov-Levin (GKL) rule, @ther known
subsequent human-written rules, and all other known rules produced by autopyatsathes
for this problem (Andre, Bennett, and Koza 1996). Another example involveseidre
minimum-time control of a spacecrafts attitude maneuvers usingiggmegramming (Howley
1996). A third example involves the discovery by genetic programming of a canppodeam
to classify a given protein segment as being a transmembrane dorttentwising biochemical
knowledge concerning hydrophobicity (Koza 1994a; Koza and Andre 1996a). A fourth example
illustrated how automated methods may prove to be useful in discovering bablipgi
meaningful information hidden in the rapidly growing databases of DNA secqgiandeprotein
sequences. Genetic programming successfully evolved motifs for dgtéloéi D-E-A-D box
family of proteins and for detecting the manganese superoxide dismataibethat detected the
two families either as well as, or slightly better than, thegamable human-written motifs found
in the database created by an international committee of expertslecutar biology (Koza and
Andre 1996b). A fifth example is recent work on facility layouts (Es#eerez, Schoenefeld,
and Wainwright 1996).

An additional group of examples is provided by work in which genetic programmingekas

used to evolve both the topology and numerical component values for electrmats,

13
including lowpass filters, crossover (woofer and tweeter) filtasymmetric bandpass filters,
amplifiers, computational circuits, a time-optimal controllercait, a temperature-sensing

circuit, and a voltage reference circuit (Koza, Bennett, Andre, Keane, and Dunlap 1997).

3. Operationson Complex Data Structures

Ordinary computer programs use numerous well-known techniques for handlingsafctiata,
arrays, and more complex data structures. One important area fooweéechnique extensions
for genetic programming involves developing workable and efficient ways to ehaedtors,
arrays, trees, graphs, and more complex data structures. Such newjueshwobuld have
immediate application to a number of problems in such fields as compsin, biological
sequence analysis, economic time series analysis, and pattern fencoghére a solution to the
problem involves analyzing the character of an entire data strucReeent work in this area
includes that of Langdon (1996) in handling more complex data structures sisthcks,
gueues, rings, and lists, the work of Teller (1996) in understanding imageseawted by large
arrays of pixels, and the work of Handley (1996) in applying statisticapating zones and

iteration to biological sequence data and other problems.

4. Evolution of Mental Models

Complex adaptive systems usually possess a mechanism for modelingniednment. A
mental model of the environment enables a system to contemplatiettis ef future actions
and to choose an action that best fulfills its goal. Brave (1996b) kaekped a special form of
memory that is capable of creating relations among objects and thren these relations to

guide the decisions of a system.

5. Automatically Defined Functions, Automatically Defined Macros, and M odules

Computer programs gain leverage in solving complex problems by means dblecasd
parameterizable subprograms. Automated machine learning can becalalges¢and truly
useful) only if there are techniques for creating large and complexepnedlving programs

from smaller building blocks. Spector (1996) has developed the notion of awdaligatdiefined

14
macros (ADMs) for use in evolving control structures. Rosca (1995aragzed the workings
of hierarchical arrangements of subprograms in genetic programming. ikd&éb94) has
studied modules that are made available to all programs in the populatough a genetic
library.

Automatically defined functions and architecture-altering operationscfeating useful

electrical subcircuits (Koza, Andre, Bennett, and Keane 1996).

6. Céellular Encoding

Gruau (1994) described an innovative technique, catlgdtllar encodingor developmental
genetic programmingin which genetic programming is used to concurrently evolve the
architecture of a neural network, along with the weights, thresholds, asesbof the individual
neurons in the neural network. In this technique, each individual programm titee population

is a specification for developing a complete neural network froraréirgj point consisting of a
very simple embryonic neural network containing a single neuron. Geneticapnogng is
applied to populations of these network-constructing program trees in orégolve a neural
network to solve various problems.

Brave (1996a) has extended and applied this technique to the evolution of finite automata.

7. Automatic Programming of Multi-Agent Systems

The cooperative behavior of multiple independent agents can potentiallynsssea to solve a
wide variety of practical problems. However, programming of multi-aggrgtems is

particularly vexatious. Bennetts recent work (1996) in evolving the numbandependent

agents while concurrently evolving the specific behaviors of each agethemecent work by
Luke and Spector (1996) in evolving teamwork are opening this area to the apphbéajeretic

programming. See also Iba (1997).

15
8. Autoparalléelization of Algorithms
The problem of mapping a given sequential algorithm onto a parallel mashirsgially more
difficult than writing a parallel algorithm from scratch. Theest work of Walsh and Ryan

(1996) is advancing the autoparallelization of algorithms using genetic programming.

9. Co-Evolution
In nature, individuals do not evolve in a vacuum. Instead, there is co-evdindibmvolves
interactions between agents and other agents as well as betweds age their physical

environment (Angeline and Pollack 1994, Pollack and Blair 1996).

10. Complex Adaptive Systems
Genetic programming has proven useful in evolving complex systems, suchdenriayer
systems (Jacob 1996) and cellular automata (Andre, Bennett, and Koza h896am be

expected to continue to be useful in this area.

11. Evolution of Structure

One of the most vexatious aspects of automated machine learninghtoeariest times has
been the requirement that the human user predetermine the size aedoshhe ultimate
solution to his problem (Samuel 1959). There can be expected to be continuing research on ways
by which the size and shape of the solution can be made part ahsherprovided by the
automated machine learning technique, rather than part afuibgtionsupplied by the human
user. For example, architecture-altering operations (Koza 1995) egeatddc programming to
introduce (or delete) function-defining branches, to adjust the number of emguof each
function-defining branch, and to alter the hierarchical references arhorgjion-defining
branches. Brave (1995) showed that recursion could be implemented withitic gene
programming. It is also possible to evolve iterations using genetic progrey (Koza and

Andre 1996b).

16

12. Foundations of Genetic Programming

Genetic programming inherits many of the mathematical and thedratidarpinnings from
John Holland's pioneering work (1975) in the field, including the near-optimaiiyarwinian
search. However, the genetic algorithm is a dynamical systemrefrety high dimensionality.
Many of the most basic questions about the operation of the algorithm addrnt@én of its
applicability are only partially understood. The transition from thedfbemgth character strings
of the genetic algorithm to the variable-sized Turing-complete protnees (Teller 1994) and
even program graphs (Teller 1996) of genetic programming further compounddfithdtyliof
the theoretical issues involved. There is increasing work on the gticahstructure of genetic
programming (Whigham 1996) and the theoretical basis for genetic progranfRofigand
Langdon 1997).

13. Optimization

Recent examples of applications of genetic programming to problems ofizgiton include
work (Soule, Foster, and Dickinson 1996) from the University of Idaho, th@fsiteich early
work on genetic programming techniques, and the work of Garces-Perez, Selibeaed

Wainwright (1996).

14. Evolution of Assembly Code

The innovative work by Nordin (1994) in developing a version of genetic programmingich
the programs are composed of sequence of low-level machine codenaffegsous possibilities
for extending the techniques of genetic programming (especially for progritimdoops) as
well as enormous savings in computer time. These savings can thesdlie ircrease the scale

of problems being considered. See also Banzhaf, Nordin, Keller, and Francone (1997).

15. Techniquesthat Exploit Parallel Hardware
Evolutionary algorithms offer the ability of solve problems in a domaingaddent way that
requires little domain-specific knowledge. However, the price ofdbmain-independence and

knowledge-independence is paid in execution time. Application of genetic progng to

17

realistic problems usually requires substantial computational resour@he long-term trend
toward ever faster microprocessors is likely to continue to makeimueasing amounts of
computational power available at ever-decreasing cost. Howevenpk® tising algorithms that
can beneficially exploit parallelization (such as genetic programmpeypllelization is even
more important than microprocessor speed in terms of delivering largeras of computational
power. In genetic programming, the vast majority of computer resoueesad on the fitness
evaluations. The calculation of fitness for one individual in the populasomsually
independent and decoupled from the calculation of fitness of all otherduodisi Thus, parallel
computing techniques can be applied to genetic programming (and genetithvalgantgeneral)
with almost 100% efficiency (Andre and Koza 1996). In fact, the useewifi-isolated
subpopulations often accelerates the finding of a solution to a problem gsimegfic
programming and produces not just near-linear speed-up, but super-linear uppeed-

Parallelization of genetic programming will be of central importance to the grovitie dield.

16. Evolvable Hardware

One of the newest areas of evolutionary computation involves the use wéldeohardware
(Sanchez and Tomassini 1996; Higuchi, Ilwata, and Lui 1997). Evolvable harmholuges
devices such as field programmable gate arrays (FPGA) and fmddaptmable analog arrays
(FPAA). The idea of evolvable hardware is to embody each individuahefetvolving
populationinto hardwareand thereby exploit the massive parallelism of the hardware torperf
evolution "in silicon." These devices are reconfigurable with very stumfiguration times and
download times. Thompson (1996) has pioneered the use of field-programmablargays to
evolve a frequency discriminator circuit and a robot controller usingreébently developed
Xilinix XC6216 chip. Considerable growth can be anticipated in the useobfadble hardware

to accelerate genetic programming runs and perform evolution.

18

17. FutureWork

The presence of some or all of the following characteristics raakarea especially suitable for

the application of genetic programming:

* an area where conventional mathematical analysis does not, or camvide pmnalytic
solutions,

* an area where the interrelationships among the relevant varabl@g®orly understood (or
where it is suspected that the current understanding may well be wrong),

» an area where finding the size and shape of the ultimate solutibe pvoblem is a major
part of the problem,

* an area where an approximate solution is acceptable (or is theesuliythat is ever likely
to be obtained),

* an area where there is a large amount of data, in computer eddahl| that requires
examination, classification, and integration, or

» an area where small improvements in performance are routinehgumesl (or easily
measurable) and highly prized.

For example, problems in automated control are especially welldsdde genetic
programming because of the inability of conventional mathematical amadyprovide analytic
solutions to many problems of practical interest, the willingnesswifral engineers to accept
approximate solutions, and the high value placed on small incremental imm@notge in
performance.

Problems in fields where large amounts of data are accumulatimgcéhine readable form
(e.g., biological sequence data, astronomical observations, geological ancupetrdata,
financial time series data, satellite observation data, weathtr, news stories, marketing
databases) also constitute especially interesting areas for igbteractical applications of

genetic programming.

Bibliography

Alliot, J. M. Lutton, E., Ronald, E., Schoenauer, M., and Snyers, D. (editors). Xgfifcial
Evolution: European Conference, AE 95, Brest, France, September 1995, Sedgaes P
Lecture Notes in Computer Science, Volume 1063. Berlin: Springer-Verlag.

Andre, David, Bennett Ill, Forrest H, and Koza, John R. 1996. Discovery byigenet
programming of a cellular automata rule that is better than any kndesfior the majority

classification problem. In Koza, John R., Goldberg, David E., Fogel, Davich® Rislo,

19
Rick L. (editors). 1996Genetic Programming 1996: Proceedings of the First Annual
Conference, July 28-31, 1996, Stanford Univers@®ambridge, MA: MIT Press.

Andre, David and Koza, John R. 1996. Parallel genetic programming: Ablscala
implementation using the transputer network architectuta. Angeline, Peter J. and
Kinnear, Kenneth E. Jr. (editors). 19%@lvances in Genetic Programming €ambridge,
MA: The MIT Press. Chapter 18.

Angeline, Peter J. 1994. Genetic programming and the emergence ojemadi In Kinnear,

K. E. Jr. (editor)Advances in Genetic Programmin@ambridge, MA: The MIT Press.

Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1®@W&ances in Genetic
Programming 2 Cambridge, MA: The MIT Press.

Angeline, Peter J. and Pollack, Jordan B. Coevolving high-level represaatatin Langton,
Christopher G. (editor). Artificial Life 1ll, SFI Studies in the Sciences of Complexity
Volume XVII Redwood City, CA: Addison-Wesley. Pages 55-71. 1994

Angeline, Peter J., Reynolds, Robert G., McDonnell, John R., and Eberhart, €diiess).
Evolutionary Programming VI. 6th International Conference, EP97, Indianapolis,
Indiana, USA, April 1997 Proceeding&ecture Notes in Computer Science, Volume 1213.
Berlin: Springer-Verlag. 125-136.

Back, Thomas. (editor). 199Genetic Algorithms: Proceedings of the Fifth International
Conference San Francisco, CA: Morgan Kaufmann.

Back, Thomas, Fogel, David B., and Michalewicz, Zbigniew (editors). 199andbook of
Evolutionary Computatian Bristol, UK: Institute of Physics Publishing and New York:
Oxford University Press.

Banzhaf, Wolfgang, Nordin, Peter, Keller, Robert E., and Francone, Frank D. Thetic
Programming — An Introduction San Francisco, CA: Morgan Kaufmann and Heidelberg:
dpunkt.

Bauer, R. J., Jr. 1994Genetic Algorithms and Investment Strategiéshn Wiley.

20

Bennett, Forrest H Ill. 1996. Automatic creation of an efficienttiragent architecture using
genetic programming with architecture-altering operations. In Koza, Rgh@oldberg,
David E., Fogel, David B., and Riolo, Rick L. (editors). 19@&netic Programming
1996: Proceedings of the First Annual Conference, July 28-31, 1996, Stanford Uwiversit
Cambridge, MA: The MIT Press.

Bhanu, Bir and Lee, Sungkee. 1994enetic Learning for Adaptive Image Segmentation
Boston: Kluwer Academic Publishers.

Biethahn, Jorg and Nissen, Volker (editors). 198%olutionary Algorithms in Management
Applications Berlin: Springer-Verlag.

Brave, Scott. 1995. Using genetic programming to evolve recursive programiedaearch.
Proceedings of the Fourth Golden West Conference on intelligent Systafeigh, NC:
International Society for Computers and Their Applications. Pages 60 — 65.

Brave, Scott. 1996a. Evolving deterministic finite automata using @ekuicoding. In Koza,
John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1Q86etic
Programming 1996: Proceedings of the First Annual Conference, July 28-31, 1996,
Stanford University Cambridge, MA: MIT Press.

Brave, Scott. 1996b. The evolution of memory and mental models using geogtanpming.

In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editb@96.
Genetic Programming 1996: Proceedings of the First Annual Conference, J@8¥, 28-
1996, Stanford UniversityCambridge, MA: MIT Press.

Chambers, Lance (editor). 199Bractical Handbook of Genetic Algorithms: Applications:
Volume I. Boca Raton, FL: CRC Press.

Dasgupta, D. and Michalewicz, Z. (editors). 199%volutionary Algorithms in Engineering
Applications Berlin: Springer-Verlag.

Davidor, Yuval.Genetic Algorithms and RoboticSingapore: World Scientific 1991.

Davis, Lawrence (editor) 198Genetic Algorithms and Simulated Annealihgndon: Pittman.

Davis, Lawrence 1991Handbook of Genetic Algorithmilew York: Van Nostrand Reinhold.

21

Fogarty, Terence C. (editor). 199kvolutionary Computing: AISB Workshop, Sheffield, U. K.,
April 1995, Selected PapersLecture Notes in Computer Science, Volume 993. Berlin:
Springer-Verlag.

Garces-Perez, Jaime, Schoenefeld, Dale A., and Wainwright, Rog&B®6. Solving facility
layout problems using genetic programming Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors). 199&enetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31, 1996, Stanford Univer§igmbridge, MA: MIT
Press.

Gen, Mitsuo and Cheng, Runwei. 19%enetic Algorithms and Engineering DesigiNew
York: John Wiley and Sons.

Goodman, Erik D. (editor). 1996.Proceedings of the First International Conference on
Evolutionary Computation and Its ApplicationsMoscow: Presidium of the Russian
Academy of Sciences.

Goldberg, David E. 1989Genetic Algorithms in Search, Optimization, and Machine Learning
Reading, MA: Addison-Wesley.

Gruau, Frederic. 1994. Genetic micro programming of neural networks.nire#i, Kenneth E.

Jr. (editor). 1994Advances in Genetic ProgrammingCambridge, MA: The MIT Press.
Pages 495-518.

Handley, Simon. 1996. A new class of function sets for solving sequence pobleriKoza,
John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1@86etic
Programming 1996: Proceedings of the First Annual Conference, July 28-31, 1996,
Stanford University Cambridge, MA: The MIT Press.

Haynes, Thomas and Sen, Sandip. 1997. Crossover operators for evolving drideoza,
John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba, Hitoshi, and
Riolo, Rick L. (editors). 1997Genetic Programming 1997: Proceedings of the Second
Annual Conference, July 13-16, 1997, Stanford Universgn Francisco, CA: Morgan
Kaufmann. Pages 162 — 167.

22

Higuchi, Tetsuya, Iwata, Masaya, and Lui, Weixin (editors). 1P8dceedings of International
Conference on Evolvable Systems: From Biology to Hardware (ICES-Bé¢ture Notes
in Computer Science, Volume 1259. Berlin: Springer-Verlag.

Holland, John H. 197%Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Atrtificial Intelligence Ann Arbor, MI:
University of Michigan Press. The 1992 second edition was published by The MIT Press.

Howley, Brian. 1996. Genetic programming of near-minimum-time spdteatétude
maneuvers. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L.
(editors). 1996.Genetic Programming 1996: Proceedings of the First Annual Conference,
July 28-31, 1996, Stanford Universit¢ambridge, MA: MIT Press.

Iba, Hitoshi. 1997. Multiple-agent learning for a robot navigation task byiggmegramming.

In Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, Iba,
Hitoshi, and Riolo, Rick L. (editors). 199@&enetic Programming 1997: Proceedings of
the Second Annual Conference, July 13-16, 1997, Stanford UniveBsityFrancisco, CA:
Morgan Kaufmann. Pages 195 — 200.

IEE. 1995. Proceedings of the First International Conference on Genetic Algoritiims
Engineering Systems: Innovations and Applications (GALESI&Nndon: Institution of
Electrical Engineers.

IEEE. 1997 Proceedings of the Fourth IEEE Conference on Evolutionary ComputaltitthE
Press.

Jacob, Christian. 1996. Evolving evolution programs: Genetic programming anddmmSysin
Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 1996.
Genetic Programming 1996: Proceedings of the First Annual Conference, JW@8¥, 28-
1996, Stanford UniversityCambridge, MA: The MIT Press. Pages 107-115.

Kinnear, Kenneth E. Jr. (editor). 199 dvances in Genetic ProgrammingCambridge, MA:

MIT Press.

23

Koza, John R. 199Zenetic Programming: On the Programming of Computers by Means of
Natural Selection.Cambridge, MA: The MIT Press.

Koza, John R. 1994&enetic Programming Il: Automatic Discovery of Reusable Programs.
Cambridge, MA: The MIT Press.

Koza, John R. 1994l6senetic Programming 1l Videotape: The Next Generati@ambridge,
MA: MIT Press.

Koza, John R. 1995. Gene duplication to enable genetic programming to conclavehtty
both the architecture and work-performing steps of a computer progPanteedings of
14th International Joint Conference on Artificial Intelligen&an Francisco, CA: Morgan
Kaufmann.

Koza, John R., and Rice, James P. 1@¥hetic Programming: The MovieCambridge, MA:
MIT Press.

Koza, John R. and Andre, David. 1996a. Evolution of iteration in genetic progngmrnin
Evolutionary Programming V Proceedings of the Fifth Annual Conference on
Evolutionary Programming Cambridge, MA: MIT Press.

Koza, John R. and Andre, David. 1996b. Automatic discovery of protein motifs usiegjcge
programming. In Yao, Xin (editor). 1996.Evolutionary Computation: Theory and
Applications Singapore: World Scientific.

Koza, John R., Bennett lll, Forrest H, Andre, David, Keane, Martin A, and Dunlap, Frank. 1997.
Automated synthesis of analog electrical circuits by means of ggretiramming.|EEE
Transactions on Evolutionary Computatioh(2).

Koza, John R., Deb, Kalyanmoy, Dorigo, Marco, Fogel, David B., Garzon, Max, IbahiHitos
and Riolo, Rick L. (editors). 199Genetic Programming 1997: Proceedings of the Second
Annual Conference, July 13-16, 1997, Stanford Universgn Francisco, CA: Morgan
Kaufmann.

Langdon, W. B. 1996. Using data structures within genetic programming. In BazaR.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 199Benetic

24

Programming 1996: Proceedings of the First Annual Conference, July 28-31, 1996,
Stanford University Cambridge, MA: MIT Press.

Luke, Sean and Spector, Lee. 1996. Evolving teamwork and coordination with genetic
programming. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L.
(editors). 1996.Genetic Programming 1996: Proceedings of the First Annual Conference,
July 28-31, 1996, Stanford Universit¢ambridge, MA: MIT Press. Pages 150-156.

Man, K. F., Tang, K. S., Kwong, S., and Halang, W. A. 19Génetic Algorithms for Control
and Signal ProcessingLondon: Springer-Verlag.

Michalewicz, Z. 1992. Genetic Algorithms + Data Structures = Evolution ProgranBerlin:
Springer-Verlag.

Mitchell, Melanie. 1996.An Introduction to Genetic AlgorithmsCambridge, MA: The MIT
Press.

Nordin, Peter. 1994. A compiling genetic programming system that dineethipulates the
machine code. In Kinnear, Kenneth E. Jr. (editor). 198dvances in Genetic
Programming Cambridge, MA: The MIT Press.

Ohno, SusumuEvolution by Gene DuplicationNew York: Springer-Verlag 1970.

Pal, Sankar K. and Wang, Paul P. 19%enetic Algorithms and Pattern RecognitioBoca
Raton, FL: CRC Press.

Pearson, D. W., Steele, N. C., and Albrecht, R. F. 18®6ficial Neural Nets and Genetic
Algorithms Vienna: Springer-Verlag.

Poli, Riccardo and Langdon, W. B. 1997. A new schema theory for genetic pnoigigmith
one-point crossover and point mutation. In Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors). 1996enetic Programming 1996: Proceedings of
the First Annual Conference, July 28-31, 1996, Stanford Univer§igmbridge, MA: MIT
Press. Pages 278 — 285.

25

Pollack, Jordan B. and Blair, Alan D. 1996. Coevolution of a backgammon playetificial
Life V: Proceedings of the Fifth International Workshop on the SynthesiSiamdation of
Living SystemsCambridge, MA: The MIT Press.

Rosca, Justinian P. 1995. Genetic programming exploratory power and the mjiscbve
functions. In McDonnell, John R., Reynolds, Robert G., and Fogel, David B. (editors)
1995. Evolutionary Programming IV: Proceedings of the Fourth Annual Conference on
Evolutionary Programming Cambridge, MA: The MIT Press.

Samuel, Arthur L. 1959. Some studies in machine learning using the gacheobkrs.IBM
Journal of Research and Developme3{B): 210-229.

Sanchez, Eduardo and Tomassini, Marco (editors). 19®@ards Evolvable Hardware
Lecture Notes in Computer Science, Volume 1062. Berlin: Springer-Verlag.

Spector, Lee. 1996. Simultaneous evolution of programs and their contrdurgsuc In
Angeline, Peter J. and Kinnear, Kenneth E. Jr. (editors). 1A86ances in Genetic
Programming 2 Cambridge, MA: The MIT Press.

Soule, Terence, Foster, James A., and Dickinson, John. 1996. Code growth in genetic
programming. In Koza, John R., Goldberg, David E., Fogel, David B., and Riolo, Rick L.
(editors). 1996.Genetic Programming 1996: Proceedings of the First Annual Conference,
July 28-31, 1996, Stanford Universit¢ambridge, MA: MIT Press.

Stender, Joachim (editor). 19%arallel Genetic Algorithms Amsterdam: IOS Publishing.

Stender, Joachim, Hillebrand, and Kingdon, J. (editors). 19@lenetic Algorithms in
Optimization, Simulation, and ModelingAmsterdam: 10S Publishing.

Teller, A. 1994. Turing completeness in the language of genetic programningndexed
memory.Proceedings of The First IEEE Conference on Evolutionary Computal&it
Press. Volume |. Pages 136-141.

Teller, Astro and Veloso Manuela. 1996. PADO: A new learning acthie for object
recognition. In lkeuchi, Katsushi and Veloso, Manuela (editor§ymbolic Visual

Learning Oxford University Press.

26

Thompson, Adrian. 1996. Silicon evolution. In Koza, John R., Goldberg, David E., Fogel,
David B., and Riolo, Rick L. (editors)Genetic Programming 1996: Proceedings of the
First Annual Conference, July 28-31, 1996, Stanford Univers@ambridge, MA: MIT
Press.

Voigt, Hans-Michael, Ebeling, Werner, Rechenberg, Ingo, and Schwefel, Hahgeddors).
1996.Parallel Problem Solving from Nature — PPSN IBerlin: Springer-Verlag.

Walsh, Paul and Ryan, Conor. 1996. Paragen: A novel technique for the autogatialtebf
sequential programs using genetic programming. In Koza, John R., Goldberg, David E
Fogel, David B., and Riolo, Rick L. (editors). 19965enetic Programming 1996:
Proceedings of the First Annual Conference, July 28-31, 1996, Stanford University
Cambridge, MA: MIT Press.

Wang, Paul P. (editor). 199Proceedings of Joint Conference of Information Sciences

Whigham, Peter A. Search bias, language bias, and genetic programmikKgzalnJohn R.,
Goldberg, David E., Fogel, David B., and Riolo, Rick L. (editors). 199Benetic
Programming 1996: Proceedings of the First Annual Conference, July 28-31, 1996,
Stanford University Cambridge, MA: MIT Press.

Yao, Xin, Kim, J.-H. and Furuhashi, T. (editors). 19%imulated Evolution and Learning

Lecture Notes in Artificial Intelligence, Volume 1285. Heidelberg: Springetader

