
FUSE: Front-end user framework for O/S abstraction of hardware accelerators

Aws Ismail
School of Engineering Science

Simon Fraser University
Burnaby, Canada
Email: aii@sfu.ca

Lesley Shannon
School of Engineering Science

Simon Fraser University
Burnaby, Canada

Email: lshannon@ensc.sfu.ca

Abstract—SoCs can be implemented on a single FPGA,
offering designers a unique opportunity for Embedded Sys-
tems. Instead of defining a fixed architecture early in the
design process, the reconfigurable platform allows architec-
tural redesign to meet the system’s specific needs. However,
the ability to instantiate new modules in the reconfigurable
hardware provides a unique set of challenges for integration,
particularly to the software (SW) designer. Specifically, the
Operating System (OS) cannot automatically abstract these
platform changes without redesign.

In this paper, we present FUSE, a framework for HW
accelerator abstraction that provides: 1) transparency to the
SW designer at the application level; and 2) OS support
for easy HW accelerator integration. We illustrate FUSE as
an API for an embedded Linux OS with POSIX threads
on Xilinx’s MicroBlaze on a Virtex5. For three different
applications and HW accelerators, we achieve performance
speedups ranging from 6.4-37x.

I. INTRODUCTION

With the increasing density of Field Programmable Gate
Arrays (FPGAs), they are able to implement Systems-on-
Chip (SoCs) for embedded computing platforms. Thus,
FPGA companies provide soft processors that can be
integrated with custom HW accelerators on the same
device. To complement the increasing complexity of SoCs
implemented on FPGAs, improved software (SW) systems
support for embedded computing applications is needed.

Therefore, Operating Systems (OS) are becoming in-
creasingly common as they enable programming model
abstractions that simplify SW development by hiding
the low-level details of HW peripherals from the SW
designer [1]. By extending OS support to include HW
accelerators, the low-level HW interaction details can also
be masked, facilitating the development of applications
that use HW accelerators. Traditionally, this requires re-
designing and recompiling the OS kernel for each new HW
accelerator [2]. Instead, we propose customizing the OS at
runtime to support existing HW accelerators as additional
computing resources for SW designers, allowing the OS to
automatically schedule the application(s) to leverage them.

In this paper, we present a Front-end USEr framework,
FUSE, which abstracts embedded computing architectures
away from SW designers and their applications. This
is crucial for systems implemented on FPGAs, so HW
designers can create and update HW accelerators to suit
an application/user’s changing requirements, independent
of the SW designer. HW accelerators are virtualized from
SW designers as hardware tasks (HW tasks) similar to

[3] [4] in the context of a multithreading application.
FUSE combines this concept with a modular approach
to provide a customizable data/control communication
interface between HW accelerators and their OS kernel
support to enable on-demand instantiation of accelerators,
similar to a SW dynamically linked library (DLL).

The designer’s chosen HW accelerator interface (dis-
cussed in Section IV) is supported by the OS kernel
through a loadable kernel module (LKM) (see Section III).
The LKM acts as the low-level SW abstraction of the HW
accelerator interface, thus providing the communication
link across the HW/SW boundary in the system. By using
a layered, modular structure for the FUSE framework
design, we achieve the desired separation between the user
SW and the computing platform. As such, updates made
to a HW accelerator’s design can only result in changes
to its interface and its corresponding LKM, and will not
affect the user application and user-space part of FUSE.

To demonstrate FUSE, we have designed an API based
on the POSIX thread standard and integrated it with the
PetaLinux OS [5] as a user library for a Microblaze
CPU. We use a Xilinx V5 ML505 for three case studies.
We show performance speedups ranging from 6.4-37x,
excluding the overhead of loading LKMs at runtime.

The remainder of this paper is organized as follows.
Section II provides an overview of related work on OS
support for systems with HW accelerators on FPGAs.
Section III introduces the FUSE framework and its compo-
nents. Section IV describes the implementation of FUSE’s
components and its support for HW accelerator virtual-
ization. Section V demonstrates the use of FUSE, along
with its overhead and performance speedups for a few
case studies. Finally, Section VI concludes the paper and
outlines future work.

II. BACKGROUND

For an OS to provide efficient abstraction of communi-
cation between SW and HW tasks, it requires mechanisms
that allow user applications to access low-level HW in
a transparent and safe manner [6]. The remainder of
this section discusses the related work and contrasts our
contributions within this context.

A. Related research into accelerator/OS integration

Researchers have used several methods of encapsulating
HW resources in order to provide abstraction for recon-
figurable computing. For example, the BORPH project [7]

abstracts HW accelerators as UNIX processes that have ac-
cess to OS services and communicate using First-in-First-
out (FIFO) buffers. Similarly, Kociuszkiewicz et al. [8]
model HW tasks as drop-in replacements for SW tasks
by mapping them to synthesized coarse-grained processor
cores, which also communicate via FIFOs.

Extending the thread programming model to abstract
HW accelerators from user applications requires support
for synchronized communication between HW and SW
tasks. The ReconOS project [3] introduced an execution
environment that extends the POSIX multithreaded pro-
gramming model from the SW domain to reconfigurable
hardware. Also, the “HybridThreads” project [2] focused
on implementing the synchronization primitives provided
by the POSIX multithreaded programming model (e.g.
semaphores, mutexes, etc.) as dedicated HW cores. “Hy-
bridThreads” also presented a tool for generating sequen-
tial HW threads directly from SW code. Finally, Compton
et. al. [9] introduced a configurable HW interface for HW
tasks. The interface uses memory-mapped I/O to com-
municate with its accelerator, with each SW application
having access to only its own set of accelerators.

Additionally, extensive research has been conducted on
effective scheduling algorithms for managing HW tasks
on computing resources [10] [11] [12] [13]. In particular,
the MOLEN/SESAME project [12] [13] uses profiling
information to decide whether to schedule tasks to run
in SW or HW. More complex scheduling policies of
reconfigurable hardware tasks are introduced by Compton
et. al. [11] including task preemption and the concept of
saving the restoring the HW task’s context. While these
works simulate runtime reconfiguration of HW tasks, San-
tambrogio et. al. [10] introduced a run-time environment
that is able to dynamically place and/or remove HW tasks
on demand. They use online partial bitstream manipulation
for proper placement of tasks on a multi-FPGA system.

B. Comparison between FUSE and previous work

Adding OS support to virtualize HW resources in
FPGA-based SoC platforms is challenging because they
have greater heterogeneity and their resources can be
dynamically reconfigured at run-time. SW designers tar-
geting these embedded computing platforms wish to
leverage their unique HW accelerators without requiring
knowledge of low-level architectural details. This requires
OS support for SoCs with either static HW accelerators
or using dynamic partial reconfiguration (DPR). FUSE
gives a unified view of available processing resources
as well as communication between processor(s) and HW
accelerators. Unlike BORPH [7] and Kociuszkiewicz et
al. [8], we do not fix the type of physical link used for
communication. Furthermore, our model virtualizes HW
accelerators as tasks, instead of processes like BORPH [7].

The two closest works to ours are the ReconOS [3]
project, and the work by Compton et al. [9]. We use a
shared memory model as recommended in [3] to reduce
data communication overhead between SW and HW tasks.
As outlined in [3], data transfers between SW and HW

threads are complicated by the fact that the OS usually
employs virtual memory; shared memory buffers set aside
by an application to transfer data to or from HW threads
are not necessarily contiguous. However, we do not as-
sume virtual memory is available. In FUSE, we allocate a
contiguous buffer in kernel memory, map it to user space,
and provide HW tasks with its physical address.

Unlike ReconOS [3], which uses a statically loaded
abstraction layer, FUSE allows users to dynamically load
the OS abstraction for HW tasks at run-time. Further-
more, whereas ReconOS requires user-space SW delegate
threads for each HW thread, we do not. Finally, unlike
ReconOS, we do not require each HW thread to adhere to
a strict HW interface or a fixed signalling protocol for OS
calls from HW to SW. Instead, each HW accelerator can
have customized interfaces, encapsulating communication
protocols in their low-level OS support.

In comparison to Compton et al.’s [9] work, where the
OS support is registered at OS boot-time, FUSE treats each
HW accelerator and its OS support as a general system
resource that can be included/updated at runtime and is
available to all applications. HW accelerators are viewed
as memory-mapped I/O devices; the OS can load their
abstraction on-demand without rebuilding and rebooting
the OS. Additionally, while the work in [9] has been
implemented within a simulation environment, our work
has been prototyped on a platform FPGA.

The additional OS support provided by FUSE allows
existing SW synchronization mechanisms in the OS to
support HW/SW task synchronization in comparison to
“HybridThreads” [2]. FUSE also incorporates the idea
of tasks as units of execution across the HW bound-
ary but, unlike [2] and [3], is not integrated with a
specific programming model (e.g. Pthreads). Instead, we
adopt a more generalized OS approach to reduce the
SW changes required to port a user application to use
existing and newly added HW accelerators. Finally, the
“HybridThreads” project’s ability to generate sequential
HW tasks from SW code is complimentary to our work.
Both this work and ours aim to insulate the SW designer
from the expertise of HW design be it via automated tools
or an independent HW designer.

Finally, as mentioned earlier, several recent projects
looked into effective scheduling algorithms for
managing reconfigurable computing resources, where
HW accelerators are dynamically instantiated on the
FPGA [10] [11] [12] [13]. We view the work presented
in this paper as complementary to these projects. Our
objective is to provide a framework for OS abstraction of
the underlying architectural configuration to run hardware
tasks, as opposed to a new scheduling algorithm.

III. PROPOSED FUSE FRAMEWORK

Operating systems typically support concurrency using
multithreading programming models. In addition, most
recent concurrency models decompose an application into
multiple units of execution called tasks—defined as indi-
visible pieces of work. FUSE abstracts HW accelerators

Top-Level FUSE Component (TLFC)

SW Application

S
W

H
W

Low-Level FUSE Component (LLFC)

HWTask LKM

SW Task SW Task

HW Accelerator Interface

run_context()
destroy_context()

Helper Functions

OS Kernel Space

OS User Space

link_LKM() unlink_LKM()

 . . .

init_context()
create_context()

thread_create()

HWTask LKM

HW Accelerator Interface

HW Accelerator LogicHW Accelerator Logic

Figure 1. FUSE System Architecture

along with their FUSE support as HW tasks, sharing the
resources available to SW tasks. We use multithreading
programming models to provide SW designers with ac-
cess to HW accelerators, enabling them to be viewed as
additional computing resources to the CPU. FUSE’s new
higher-level of abstraction allows SW designers to create
their applications with no knowledge of the platform’s HW
accelerators. This allows SW designers to program using
the multithreading programming model’s API function
calls. The FUSE API includes additional function calls
to create and destroy SW/HW tasks. They act as wrap-
pers for the “create”/“destroy” functions to augment their
abilities to support HW tasks when a platform contains
HW accelerators. This provides a clean and simple way
to utilize existing HW accelerators. Furthermore, FUSE
introduces no changes incompatible to the underlying OS
layer: the programming concept of a task as a unit of
execution remains unchanged whether it is scheduled to
run as a SW task or a HW task. Figure 1 shows FUSE’s
two main components, which span the OS user and kernel
layers to insulate changes to user and kernel SW from
each other, and facilitate portability.

A. Top-Level FUSE Component (TLFC)

The Top-Level FUSE Component (TLFC) provides
middleware between the SW designers and platform
HW designers. SW designers are able to port existing
FUSE-enabled multithreaded applications to any platform,
whether or not it provides HW acceleration. HW designers
determine which SW task(s) provide the best performance
gains if they can be executed using HW accelerators.
The TLFC is provided as a user-space header library
that SW designers include to act as a wrapper for their
multithreading model’s header library. In particular, this
header library includes equivalent wrapper functions for
creating and destroying HW tasks in lieu of SW tasks on
FUSE-enabled platforms.

In addition to these wrapper functions, the TLFC con-
tains “helper functions” (see Figure 1) used to communi-
cate with the Low-Level FUSE Component. They create,
initialize, run and destroy contexts; they also dynamically
load/unload the necessary low-level OS support for a HW
accelerator to kernel. FUSE’s helper functions utilize the
concept of a context to store a dynamic snapshot of the

HA Match ?

create_context ()

pthread_create (SW)

NoYes

LKM Loaded ?

NoYes

HA In Use ?

Load LKM

No

Yes

init_context ()

pthread_exit ()

destroy_context () run_context ()

thread_create ()

pthread_create (HW)

SW/HW Mapping Policy

LKM = Loadable Kernel Module
HA = HW Accelerator

Figure 2. Decision Flow for Top-Level FUSE Component

current state of a running task for use within the API
wrapper functions; they are not exposed to the end user.

The semantics of creating and destroying tasks of ex-
ecution within an application remain the same as FUSE
preserves the original program flow independent of HW
acceleration. Minimal code porting is required though by
the SW designer in order to use FUSE. We discuss the
implementation details of these function calls and outline
what changes the SW designer are required to perform
in Section IV. To determine if a task is run in SW
or HW, the TLFC follows the decision flow shown in
Figure 2. While FUSE allows designers to implement any
of the existing algorithms for mapping tasks to SW or
HW (e.g. [11] [12]), we use a simple mapping policy to
facilitate our discussion. Each time a call to create a task is
made, the TLFC decision flow is evaluated to enable adap-
tation to the current state of all existing accelerators while
the system remains live. Nevertheless, the SW designer’s
perspective of the created tasks remains unchanged: all
tasks are created and executed upon request. If a task is
not mapped to a HW accelerator, then FUSE reverts to
creating a normal SW task.

From Figure 2, FUSE first checks if a matching HW
accelerator exists for the SW task (HA Match?). If no
match exists, then FUSE creates a SW task using the
original multithreading model’s “create” function. How-
ever, if an accelerator exists, then a check is made to
see if its corresponding OS support (i.e. LKM) is already
loaded. If it is not loaded, then the accelerator is idle
and FUSE proceeds to load OS support and run the task
in HW. However, if OS support is loaded, then FUSE
checks to see if the accelerator is in use by another task.
If not, a HW task is created. The case where matching
HW accelerator(s) exist, but are in use by other tasks, is
also handled; FUSE creates a SW task instead. While our
proof of concept of FUSE does not require DPR support,
this mapping policy can easily be altered to check and see
if an additional HW accelerator can be instantiated. All
the necessary OS support for reconfigurable computing
systems using DPR (e.g. [10]) currently exists in FUSE.

B. Low-Level FUSE Component (LLFC)

The second part of the framework, the Low-Level FUSE
Component (LLFC), consists of the low-level support
added to the OS kernel (see Figure 1). It exposes HW
accelerators on the FPGA’s fabric to the TLFC using run-
time loadable device drivers (i.e. LKMs) [14]. The drivers

implement the low-level communication mechanisms that
enable the TLFC to load, initialize, and perform data or
control I/O transactions with HW accelerators.

As mentioned earlier in Section I, each HW accelerator
attaches to the system via a HW interface (discussed
in Section IV) that is accessible by its own LKM (see
Figure 1). The LKM provides a low-level SW abstrac-
tion of the HW accelerator interface, thus providing the
communication link between the HW/SW boundary in the
system. Given the modular layered structure of the FUSE
framework, changes made during the design process to
one LKM will not effect other modules in the system.
This modular approach also applies to the HW design:
changes to a HW accelerator need only conform with its
corresponding HW accelerator interface. If necessary, its
LKM can be patched in order to expose the new function-
ality. However, FUSE’s ability to dynamically load/unload
new LKMs will provide faster, possibly live, integration
of new/updated HW accelerators and their LKMs into
existing applications as the TLFC and application SW
remain unchanged.

IV. IMPLEMENTATION OF THE FUSE FRAMEWORK

In this section, we detail the implementation of the
FUSE framework. We also outline our design choices and
how they affect the overall design outcome. To demon-
strate our FUSE concept, we use an embedded Linux
OS [5] as our run-time environment and POSIX threads
(Pthreads), a widely used multithreading programming
model. The Pthreads API contains an extensive list of
functions that allow SW designers to add concurrency into
their application code. One of the most important functions
is pthread create(), which creates a new concurrent thread
of execution. The user-space header library provided by
the TLFC is called <fuse.h> and includes the definition
of the thread create() function call. thread create() acts
as a wrapper for Pthreads’ pthread create(), incorporating
additional policies to enable transparent migration of tasks
to HW accelerator(s).

A. User-space Implementation of TLFC

During the OS startup, HW accelerators attached to the
system are detected and an initial housekeeping step is
performed for each of them that includes registering their
corresponding LKM. Additional LKMs can be loaded at
runtime as desired. Information about existing accelerators
is saved into a look-up table stored in the OS, which is
continually updated to indicate the current state of all the
accelerators in the system. During application execution,
FUSE uses the look up table to associate the task’s func-
tion name with an existing HW accelerator. HW designers
name each HW accelerator to match the corresponding
function name specified by the SW developer as part of
the parameter list of the pthread create() function. The
only application SW changes required to enable FUSE
support are: 1) each pthread create() call is replaced
with the FUSE-based version thread create() call, and
2) <fuse.h> is included instead of <pthread.h>. For

1 /*	 Example	 of	 a	 user	 program	 */
2
3 #include	 <stdio.h>
4 #include	 <FUSE.H>
5
6 void*	 rbg2yuv_thread_function(void	 *arg);	 //color	 conversion	 thread	 in	 SW
7 void*	 dct_thread_function(void	 *arg);	 //Discrete-‐Cosine	 Transform	 in	 SW
8
9
10 thread_param	 param[data_size];	 //global	 (shared	 between	 threads)
11
12 int	 main()	
13 {
14
15 pthread_t	 sw_thread_1;
16 pthread_t	 sw_thread_2;
17
18 hwthread_attr_t	 	 sw_thread_attr;
19 	 	
20 int	 sw_ret_1,	 sw_ret_2;
21 void*	 sw_thread_result_1;
22 void*	 hw_thread_result_2;
23
24 //two	 threads	 are	 crated	 joinable.
25
26 sw_ret_1	 =	 thread_create(&sw_thread_1,	 NULL,	 rgb2yuv_thread_function,	 ¶m);
27 sw_ret_2	 =	 thread_create(&sw_thread_2,	 NULL,	 dct_thread_function,	 ¶m);
28
29
30
31 sw_ret_1	 =	 pthread_join(sw_thread_1,	 &sw_thread_result_1);
32 sw_ret_2	 =	 pthread_join(sw_thread_2,	 &sw_thread_result_2);
33
34
35 }
36
37 void*	 dct_thread_function(void*	 arg)	 {	
38	 	 	 	 /*	 initial	 function	 code	 by	 the	 SW	 designer	 before	 using	 FUSE	 (Left	 unchanged)
39 }

Figure 3. Partial source-code of an application using FUSE

1 /*	 Inside	 FUSE.H	 */
2
3 #include	 <stdio.h>
4 #include	 <stdlib.h>
5 #include	 <unistd.h>
6 #include	 <sys/mman.h>	 /*	 MMAP_SHARED	 for	 shared	 memory	 */
7 #include	 <linux/autoconf.h>	 /*	 memory	 map	 used	 to	 populate	 table	 of	 accelerators	 */
8 #include	 <pthread.h>
9
10 #typedef	 hw_task_t	 __u32;
11 #typedef	 hw_task_attr	 __u32;
12
13 pthread_mutex_t	 context_mutex;
14
15 void*	 hw_task(context_structure*	 cs)
16 {
17 	 	 	 	 init_context(&cs);
18 	 	 	 	 mutex_lock(&context_mutex);
19 	 	 	 	 run_context(&cs);
20 	 	 	 	 mutex_unlock(&context_mutex);
21 	 	 	 	 return	 NULL;
22 }
23
24 int	 thread_create(pthread_t	 *t,pthread_attr_t	 *attr	 ,	 void*	 (*fname)	 (void*),	 void	 *arg)
25 {
26 	 	 int	 ret;
27 	 	 char*	 hw_task;	 /*	 the	 hardware	 accelerator's	 function	 name	 */
28 	 	 struct	 context_structure*	 cs;	 /*	 context	 structure	 */
29 	 	
30 	 	 create_context(&cs);
31 	 	
32 	 	 accelerator_table_query(&fname,	 &hw_task);	 /*	 (HA_Match?)	 step	 */
33
34 	 	 if(accelerator_loaded(&hw_task)	 &&	 !accelerator_idle(&hw_task))
35 	 	 {	
36 	 	 	 	 ret	 =	 pthread_create(&t,	 &attr,	 hw_task,	 &cs);
37 	 	 }
38 	 	 else
39 	 	 {	
40 	 	 	 	 ret	 =	 pthread_create(&t,	 &attr,	 fname,	 arg);
41 	 	 }
42 	 	 destroy_context(&cs);
43 	 	 return	 ret;
44 }

Figure 4. thread create() inside <fuse.h> header file

example, Figure 3 shows part of a user application that
includes the FUSE header library (Line 4) and creates
two threads of execution using thread create() (Line 26
and 27) that have the same four parameters as the original
pthread create().

As part of the thread create() function, FUSE uses
several internal “helper functions”, that exist in the Top-
Level FUSE Component (See Figure 2), to manage thread
creation. Figure 4 shows part of the SW implementation
for the thread create() function in the FUSE header li-
brary. This implementation uses the concept of a context,
which stores a dynamic snapshot of the current state of a
running thread. FUSE utilizes four “helper functions” to
create, initialize, run and destroy contexts (Lines 30, 17,
19 and 42 respectively).

When creating a thread, FUSE uses create context()
(Line 30) to allocate a context structure (Line 28) to hold
information related to the thread, such as the function

name, user data, and current state. Then the look-up table
is checked via accelerator table query() (Line 32) to find
a matching accelerator name. The accelerator loaded()
and accelerator idle() (Line 34) functions assert whether
a matching accelerator can be locked to this context. If an
accelerator exists and is currently not in use, then FUSE
creates a thread that performs HW task initialization (Line
36).

This newly created thread will use init context() (Line
17) and run context() (Line 19) to run the HW accelerator.
init context() fills the context structure with the related
information (fetched from the look-up table) and loads
the corresponding LKM for that particular accelerator
using the insmod() system call provided by the OS. This
system call is made only once when the accelerator is first
instantiated. In addition, init context() opens a device file
handler to the accelerator’s device file using the open()
system call, and then performs memory mapping to the
accelerator’s local memory space via the device handler
using the mmap() system call. Each HW accelerator has
special implementations of these OS system calls defined
by their loaded LKM.

When the accelerator is ready to process data,
run context() (Line 19) performs data and control I/O
on the memory mapped space, along with proper data
marshalling, according to how the accelerator processes
data. This entails using the read()/write()/ioctl() system
calls for sending/receiving control signals in addition to
simple array dereferencing of the shared-memory space
when sending/receiving data values. Finally, FUSE calls
destroy context() (Line 42) to deallocate the context struc-
ture, update the look-up table, release the shared memory,
and close the device file handler. This is done after the HW
accelerator is finished processing any remaining data.

B. Kernel-space Implementation of LLFC

The OS kernel is structured as a collection of modules,
some of which can be automatically loaded and unloaded
on demand. The Low-Level FUSE Component (LLFC)
resides in the OS kernel space and handles the direct
abstraction of the HW accelerator resources through their
HW accelerator interface. Therefore, to accommodate HW
accelerator functionality that can be loaded/unloaded per
request, the kernel-space implementation of the FUSE
framework maps a loadable kernel module (LKM) to
each HW accelerator. Thus, HW accelerators become
miscellaneous platform devices that appear as autonomous
entities in the system and have direct addressing from the
CPU; each LKM is an object file, with code that can be
loaded and unloaded from the kernel during runtime while
the kernel is already in memory and executing.

A HW accelerator’s LKM implements miscellaneous
device driver functionality that treats the accelerator as
a memory-mapped I/O device peripheral. The memory-
mapped I/O implements communications between the
CPU and the system peripherals using a common instruc-
tion set to simplify system design. In a system containing
memory-mapped I/O devices, the OS creates an address

1 /*	 LKM	 Code	 */
2 #include	 <linux/module.h>
3 #include	 <linux/kernel.h>
4 #include	 <linux/errno.h>
5 #include	 <linux/mm.h>
6 #include	 <linux/init.h>
7 #include	 <linux/list.h>
8 #include	 <linux/miscdevice.h>
9 #include	 <linux/xilinx_devices.h>
10 #include	 <linux/platform_device.h>
11 //asm	 refers	 asm-‐microblaze
12 #include	 <asm/io.h>
13 #include	 <asm/uaccess.h>
14 //xilinx	 dependent	 definitions
15 #include	 "hwtask_dct.h"
16 #include	 <asm/hwtask_ioctl.h>
17 #define	 BUFSIZE 10	 //we	 have	 10	 slave	 registers	 in	 HWthread	 PLB	 IP	 core
18 #define	 DEBUG 0
19 //hardware	 task	 module	 isntance
20 struct	 hwtask_instance	 {
21 struct	 list_head	 link; /*	 for	 the	 linked	 list	 of	 hwthread	 instances	 */
22 unsigned	 long	 base_phys;	 /*	 hwthread	 IP	 core	 base	 address	 -‐	 physical	 */
23 unsigned	 int	 	 base_addr;	 /*	 virtual	 addr.	 for	 the	 regfile	 IO	 MEM	 resource	 */
24 unsigned	 long	 remap_size;
25 u32	 device_id;
26 wait_queue_head_t	 wait;	 /*	 wait	 queue	 for	 Blocking	 I/O	 read	 or	 write	 */
27 int	 is_inuse;
28 unsigned	 int	 buf[BUFSIZE];	 /*	 register	 file	 (10	 slave	 regs,	 32-‐bit	 each)	 */
29 struct	 miscdevice	 *miscdev;
30 };
31 static	 struct	 file_operations	 hwthread_fops	 =	 {
32 owner:THIS_MODULE,
33 ioctl:hwthread_ioctl,
34 open:hwthread_open,
35 read:hwthread_read,
36 write:hwthread_write,
37 mmap:hwthread_mmap,
38 release:hwthread_release
39 };

Figure 5. partial code showing part of the LKM implementation

space map that assigns different parts of the memory
space to different components of the system. The OS uses
FUSE’s LLFC to abstract such memory-mapped devices
from the user-space as device files that can be opened,
read, written and closed. As shown in Figure 5, the LKM
uses a special structure called the hwthread instance (Line
20), which contains the physical base address of the
memory-mapped device. This allows the kernel-space side
of FUSE, the LLFC, to recognize each HW accelerator
by its base physical address in the address space map.
Meanwhile the user-space FUSE implementation (TLFC)
treats each LKM as a file that can be operated upon.
Furthermore, each LKM exports a set of file operations
that are used by the helper functions inside the top-level
FUSE component. As shown in Figure 5, each LKM
provides services for open, close, read, write, ioctl, and
mmap system calls (Lines 33 to 38). These calls are used in
the implementation of the helper functions, init context()
and run context(), in the user-space part of the FUSE
framework (i.e. TLFC).

C. Hardware Accelerator Interface

The HW accelerator interface physically connects the
accelerator’s logic to the system’s communication net-
work, but does not presume a specific communication
network. Furthermore, the HW interface’s design can be
created to reflect the needs of the accelerator. Its LKM
is then customized to abstract the interface’s architecture
from the rest of the system (See Figure 1). To demonstrate
how FUSE enables HW accelerators with LKM support to
mimic SW threads, we used the example HW accelerator
interface shown in Figure 6 for the shared-bus used in the
experimental system discussed in Section V.

Our example HW accelerator interface is comprised of
a Bus Interface, which performs the appropriate address
decoding and signal control for the system communication

M
A

IN
 B

U
S

Address
Decoding

Logic

Bus Interface

Clock

Reset
Data
Control

Function Interface

Command Reg.
Status Reg.

GP Reg.
GP Reg.
GP Reg.

Context FSM

Write FIFO
Read FIFO

Bus2Accel_Data

Accel2Bus_Data

Clock

Enable

Data_IN
Data_Out

HW Accelerator Interface

Reset

 . . . Accelerator
User Logic

Figure 6. HW Accelerator Interface

network, and the accelerator’s Function Interface (see
Figure 6). The Function Interface handles the OS kernel
communication with the accelerator’s logic using a finite
state machine (FSM), read/write buffers, and a register
file. The size of the 32-bit register file is configurable to
meet our application’s requirement, with a minimum of
two registers for status and control.

Control values written from the FUSE API to the Com-
mand Reg. indicate the desired execution state for the HW
accelerator, while data read from the Status Reg. shows its
current execution state. These execution states are similar
to those of a POSIX SW thread (e.g. IDLE, RUNNING,
and BUSY) and controlled via the Context FSM. The
TLFC reads the Status Reg. to update its HW accelerators’
look-up table. In the TLFC implementation described in
Section IV, the run context() helper function uses LKM-
supported system calls to send commands (e.g. RESET,
RUN, and STOP) to the Command Reg. Marshalled data
is sent to the accelerator via a write FIFO buffer to speed
up communication and returned via a read FIFO buffer to
be read back by the TLFC. Other possible HW interface
designs may include autonomous memory access, in the
form of Direct Memory Access (DMA), for better data
marshalling. Our current experimental system does not use
DMA and is left for future work.

V. EVALUATION AND EXPERIMENTAL RESULTS

This section outlines the current system configuration
used to demonstrate the FUSE framework with three SW
case studies that utilize HW accelerators accessed via
FUSE. We discuss the overhead incurred from migrating
a SW thread to a HW accelerator, and quantify the
resource utilization of each HW accelerator with respect
to the entire platform. Finally, we outline the performance
speedups obtained from using FUSE in conjunction with
HW accelerators for each application.

A. Experimental Setup

We demonstrate FUSE using version 2.6.20 of the Petal-
inux [5] kernel, an embedded version of Linux. Figure 7
highlights the key components of our HW system, adapted
from a Petalinux example built on a Xilinx Virtex 5
LX50T FPGA [5] using Xilinx’s EDK 10.1.02. System
peripherals that are only used during the OS boot process
(e.g. the GPIO, FLASH controller, and ethernet controller)
are not shown. Our design uses a Xilinx MicroBlaze
32-bit soft-processor and three HW accelerators that are

DDR
RAM

Memory
Controller

FPGA

PLB
Arbiter

MicroBlaze CPU
SW Task

PetaLinux OS
 . . .

HW Accelerator I/FHW Accelerator I/F HW Accelerator I/F

UARTTimer

Interrupt Cntrl

SW Task

HWTask_DCT HWTask_3DES HWTask_Sobel

Figure 7. Experimental System Architecture

connected to a shared system bus through HW accelerator
interfaces. The MicroBlaze CPU is configured with an
MMU, a 4KB data cache and a 2KB instruction cache. As
in the example system, the CPU is clocked at 125 MHz,
while the Processor Local Bus (PLB) runs at 100 MHz. A
256MB DDR RAM is used by the system as the physical
memory through Xilinx’s multi-port memory controller.

B. Case Studies

Three multithreaded application examples are
implemented: JPEG image compression, Triple-DES
encryption–and–decryption, and an image filter. Three
HW accelerators are integrated into our system with the
example HW accelerator interface shown in Figure 6. Each
provides specific functionality for a given application:
the JPEG image compression application uses a Discrete
Cosine Transform (DCT) accelerator; the Triple-DES
(3DES) application uses an encryption accelerator; and
the image filtering application uses a SOBEL edge
detection accelerator. Table I outlines the resource
utilization for the accelerators and their LKMs, along
with the overall experimental system, on the Virtex 5
LX50T. These SW tasks comprise the majority of their
application’s execution time and require minimal HW
resource utilization, making them logical choices for HW
acceleration. The corresponding LKM size is dependent
on the nature of the HW task being abstracted.

Our objective is to quantify the overhead of the runtime
abstraction of HW accelerator(s) in the OS. This has two
possible uses: 1) static SoC configurations with unique
HW accelerator(s) and 2) SoC configurations with DPR
support. To isolate the overhead incurred by FUSE from
the reconfiguration overhead of DPR, we opted for stati-
cally configured SoC platforms. This allows us to separate
the impact of FUSE’s overhead on performance speedup
from the additional bitstream reconfiguration overhead,
which has been quantified by the vendor [15]. Our baseline
execution time is for the SW versions of these applications
using the Pthreads library executing on the CPU without
any HW acceleration. On the same platform, we compared
these to using <fuse.h>. The overhead of running an ap-
plication using FUSE when there are no HW accelerators
is incurred by the check for a (HA Match?) (see Figure 2);
each check takes ∼100us. For these three applications, us-
ing FUSE without HW accelerators increases the runtime
negligibly (<0.99%). When HW accelerator(s) exist, the
overhead incurred from using FUSE is divided into: 1)
the overhead of loading the LKM(s) the first time a HW
accelerator is used (12 ms), 2) calling the open(), mmap(),
ioctl(), and close() functions to communicate with the HW
accelerator (0.97ms), and 3) the potential unloading of

Table I
RESOURCE UTILIZATION ON A VIRTEX5 LX50T

Application HWTask LKM Size Flip/Flops LUTs DSP48E BRAMs
JPEG Encoder DCT 7.3 KB 1329 (4%) 1635 (5%) 4 (8%) 8 (13%)
3DES Encryption 6.9 KB 1260 (3%) 1550 (5%) 4 (8%) 8 (13%)
Image Filter SOBEL 6.9 KB 960 (2%) 1620 (5%) 2 (4%) 8 (13%)
Overall System 16416 (57%) 16992 (59%) 10 (20%) 28(43%)

0

50

100

150

200

250

300

350

400

450

500

1 8 64 128 256 512 1024 2048 4096

E
xe

cu
tio

n
T

im
e

(m
s)

of Macroblocks (8x8 blocks of pixel data values)

DCT (SW Task)

DCT (HW Task) (IOCTL access without LKM Loading Overhead)

DCT (HW Task) (MMAP access without LKM Loading Overhead)

DCT (HW Task) (MMAP access with LKM Loading Overhead)

Figure 8. Execution Time of the JPEG Encoder application with
different implementations for the DCT task

the LKM (12ms). For static systems, only the runtime
system function calls (e.g. open(), etc.) contribute to the
runtime overhead as the LKM support would be loaded
to the OS upon booting. However, systems supporting
DPR would also need to include the overhead of loading
their LKMs at runtime. Unloading a LKM would only
be performed if the OS is running out of memory space
(i.e. 100s of unique LKMs have been loaded at runtime) or
when replacing an existing LKM with an updated version.
Thus, we consider this scenario an irregular contributor to
the runtime overhead.

Image Compression Application: The multithreaded
image compression application implements the JPEG com-
pression standard on sample images of varying sizes. The
compression algorithm is divided into multiple threads:
colour-conversion, 2D-DCT transformation, quantization,
Huffman encoding, and a main thread that handles other
operations such as read and write. The image is divided
into macroblocks that are processed concurrently; each
macroblock is an 8x8 pixel set, where each pixel has a
16 bit value. When the DCT HW accelerator is present,
FUSE detects the accelerator’s availability and migrates
the SW thread into HW. Figure 8 shows the execution
time of the JPEG encoder application for different DCT
implementations with increasing image sizes and thus,
an increased number of macroblocks. Two methods of
data access supported in the DCT accelerator’s LKM
are investigated: 1) using the IOCTL system call, which
reads/writes individual data words to the HW accelerator
via its interface; and 2) the MMAP system call, which
establishes a direct memory map to the accelerator’s
address space and enables arrays of data to be copied in a
single access. Figure 8 summarizes the execution times of
the application using only SW threads compared to using
the DCT HW accelerator for both of these access methods
excluding runtime LKM loading overhead.

The IOCTL approach generally requires a longer ex-
ecution time than even the SW approach. This is due
to the overhead of the individual system calls required
to read/write each data word, which increases as the
data set increases. This overhead counteracts the potential
performance speedup to be gained from HW acceleration.

0

20

40

60

80

100

120

140

160

180

256 512 1024 2048 4096 8192 16384 32768

E
xe

cu
tio

n
T

im
e

(m
s)

Cipher Text Data Size (Bytes)

Encryption (SW Task)

Encryption (HW Task) (MMAP access without LKM Loading Overhead)

Encryption (HW Task) (MMAP access with LKM Loading Overhead)

Figure 9. Execution Time of 3DES application with different imple-
mentations for the encryption task

Conversely, the MMAP approach allows entire data sets
to be copied with only one system call, greatly reducing
the overhead and enabling significant performance gains.
Consequently, we opted to use MMAP to set up memory-
mapped direct-access to the accelerator for data communi-
cations, while using the IOCTL call only for sending and
receiving individual control values to the HW accelerator
interface’s FSM.

Performance speedup compared to the SW implementa-
tion increases, for larger data sizes, to a maximum of 11x
for our static SoC configuration when the image has 4096
macroblocks. Including the LKM loading overhead that
would be incurred for DPR systems reduces the maximum
speedup to 8.7x.

3DES Encryption/Decryption Application: The
3DES SW application has three threads; the main thread
handles cipher text data read/write from a file, while the
two remaining threads perform encryption and decryption
on the data. When the encryption thread is created, FUSE
will migrate it to the HWTask 3DES accelerator. In this
example, only the MMAP approach is used due to its
reduced impact on execution time. Figure 9 shows the
execution time for the application with SW and HW
versions (with and without LKM loading overhead) of the
3DES encryption thread for varied sizes of the cipher text
data.

The HW accelerated versions have better performance
than the SW thread version for smaller data sizes when
only the overhead of the system function calls is included.
However, when including LKM loading overhead as well,
visible speedups occur for larger cipher texts (>4KB)
where the execution time is >25ms. A maximum perfor-
mance speedup of 37x is achieved without LKM loading
overhead, which is reduced to 10x when it is included.

Image Filtering Application: The third application
is a multithreaded image filtering application that has two
threads performing image edge detection and image sharp-
ening. The image edge detection thread uses a SOBEL
operator with a 3x3 window size. This thread is used
to detect horizontal and vertical edges of objects in an
image. The second thread sharpens the image contents

0

50

100

150

200

250

64 128 256 512 1024 2048 4096 8192

E
xe

cu
tio

n
T

im
e

(m
s)

Image size (pixels)

SOBEL (SW Task)

SOBEL (HW Task) (MMAP access without LKM Loading Overhead)

SOBEL (HW Task) (MMAP access with LKM Loading Overhead)

Figure 10. Execution Time of the Image Filter application with different
implementations of the SOBEL task

using a Laplacian operator. The edge detection SW thread
is migrated by FUSE to the HWTask SOBEL accelerator.
Data processed by the HW accelerator is sent to the
Laplacian thread in SW to complete the filtering process.
Figure 10 shows the execution times of the image filtering
application using a SOBEL task HW accelerator compared
to its original SW task using different image sizes. The
image size is given in terms of the number of pixels in
the image where each pixel has an 8-bit value.

When LKM loading overhead is included, only images
containing at least 1024 pixels achieve a visible perfor-
mance speedup with HW acceleration compared to the
SW-only implementation. The performance speedup for
SOBEL edge detection using an image with 8192 8-bit
pixels in HW is 6.4x excluding LKM loading overhead,
which reduces the speedup to 4.7x of the SW version.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented FUSE, a framework
that abstracts embedded computing architectures from
SW designers creating multithreaded applications. FUSE
provides transparent integration of HW accelerators into
the design by virtualizing HW accelerators from SW
designers so they can be treated as “HW tasks” of ex-
ecution. We have demonstrated FUSE on a FPGA-based
SoC platform running PetaLinux with FUSE for three dif-
ferent applications to achieve performance speedups with
HW accelerators. We have also quantified the execution
time overhead incurred from using this framework with
the MMAP approach and corresponding kernel support
for both static and DPR-based systems. An application’s
potential performance speedup is greatly affected by its ex-
ecution time. For our case studies, performance speedups
for static SoC platforms range from 6.4x-37x, dropping
to 4.7x-10x when LKM loading overhead is included.
To investigate how much performance improvement can
be obtained from enabling HW tasks to independently
marshal data during their execution, we are investigating
a HW accelerator interface that includes a DMA path
to the physical memory. We also plan to investigate
communication network structures other than the shared-
bus example we illustrated in this work and compare the
impact on the overhead. Finally, we are investigating how
the bitstreams for reconfiguring HW accelerators can be
loaded in parallel with their LKMs to mask some of the
runtime overhead.

ACKNOWLEDGMENTS

The authors thank the National Science and Engineering
Research Council, the Canadian Microelectronics Corpo-
ration, and Petalogix for their support of this project and
Dr. Katherine Compton and Dr. Mehrdad Moallem for
their advice.

REFERENCES

[1] S. Hauck and A. DeHon, Reconfigurable Computing:
The Theory and Practice of FPGA-Based Computation.
Burlington, MA: Morgan Kauffman, 2007.

[2] D. Andrews et al., “Programming Models for Hybrid
FPGA-CPU Computational Components: A Missing Link,”
IEEE Micro, vol. 24, pp. 42–53, Apr. 2004.

[3] E. Lübbers and M. Platzner, “ReconOS: Multithreaded
programming for reconfigurable computers,” ACM Trans.
Embed. Comput. Syst., vol. 9, no. 1, pp. 1–33, 2009.

[4] W. Peck, E. Anderson, J. Agron, J. Stevens, F. Baijot,
and D. Andrews, “Hthreads: A Computational Model for
Reconfigurable Devices,” in Proc. of the IEEE Intl. Conf.
on Field Programmable Logic and Applications, 2006.

[5] (2009, February). [Online]. Available: http://www.
petalogix.com

[6] K. Kosciuszkiewicz, F. Morgan, and K. Kepa, “Transparent
management of reconfigurable hardware in embedded oper-
ating systems,” in IEEE Computer Symposium on Emerging
VLSI Technologies and Architectures, vol. 00, Mar 2006,
pp. 432–433.

[7] H. K.-H. So and R. Brodersen, “A unified hard-
ware/software runtime environment for FPGA-based recon-
figurable computers using BORPH,” ACM Trans. Embed.
Comput. Syst., vol. 7, no. 2, pp. 1–28, 2008.

[8] K. Kosciuszkiewicz, F. Morgan, and K. Kepa, “Run-Time
Management of Reconfigurable Hardware Tasks Using
Embedded Linux,” in International Conference on Field-
Programmable Technology., Dec 2007, pp. 209–215.

[9] P. Garcia and K. Compton, “A reconfigurable hardware
interface for a modern computing system,” in IEEE Sym-
posium on Field-Programmable Custom Computing Ma-
chines., April 2007, pp. 73 –84.

[10] V. Rana, M. Santambrogio, D. Sciuto, B. Kettelhoit,
M. Koester, M. Porrmann, and U. Ruckert, “Partial dynamic
reconfiguration in a multi-FPGA clustered architecture
based on Linux,” in IEEE International Symposium on
Parallel and Distributed Processing., Mar 2007, pp. 1–8.

[11] K. Rupnow, W. Fu, and K. Compton, “Block, Drop or
Roll(back): Alternative preemption methods for RH multi-
tasking,” in IEEE Symposium on Field-Programmable Cus-
tom Computing Machines., 2009, pp. 63–70.

[12] V.-M. Sima and K. Bertels, “Runtime decision of hardware
or software execution on a heterogeneous reconfigurable
platform,” in IEEE International Symposium on Parallel
Distributed Processing., May 2009, pp. 1–6.

[13] K. Sigdel, M. Thompson, A. Pimentel, C. Galuzzi, and
K. Bertels, “System-level runtime mapping exploration of
reconfigurable architectures,” in IEEE Intl. Symposium on
Parallel Distributed Processing., May 2009, pp. 1–8.

[14] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device
Drivers, 3rd Edition. O’Reilly Media, Inc., 2005.

[15] P. Lysaght, B. Blodget, J. Mason, J. Young, and B. Bridge-
ford, “Enhanced Architecture, Design Methodologies and
CAD Tools for Dynamic Reconfiguration for Xilinx FP-
GAs,” in International Conference on Field Programmable
Logic and Applications (FPL), 2006, pp. 1–6.

