Simplifying the Integration of Processing Elements in
Computing Systems using a Programmable Controller

Lesley Shannon and Paul Chow
Department of Electrical and Computer Engineering
University of Toronto
Toronto, ON, Canada M5S 3G4

{lesley, pc}@eecg.toronto.edu

ABSTRACT

As technology sizes decrease and die area increases, design-
ers are creating increasingly complex computing systems us-
ing FPGAs. To reduce design time for new products, the
reuse of previously designed Intellectual Property (IP) cores
is essential. However, since no universally accepted inter-
face standards exist for IP cores, there is often a certain
amount of redesign necessary before they are incorporated
into the new system. Furthermore, the core’s functionality
may need updating to support the requirements of the new
application.

This paper demonstrates how the SIMPPL system model
allows designers to rapidly implement on-chip systems com-
prising multiple Computing Elements (CEs). Furthermore,
using a controller-based interface to manage inter-CE trans-
fers enables users to easily adapt the control sequence of
individual CEs to suit the needs of new applications with-
out necessitating the redesign of other elements in the sys-
tem. Two systems using three different hardware modules
adapted to CEs are described to illustrate the power and
simplicity of the SIMPPL model. It required a total of six
hours to implement both designs on-chip once the individual
CEs had been designed.

1. INTRODUCTION

Commercial Field Programmable Gate Arrays (FPGAs)
are now large enough to support designs comprising multi-
ple processors and dedicated hardware modules. To mini-
mize the design time for such complex circuits, designers try
to reuse previously designed modules, known as Intellectual
Property (IP) cores. For example, an MPEG-4 design uses
cores such as the DCT, IDCT, and Frame Store (memory)
that are common to other multimedia applications. While
this system may be viewed as dedicated hardware, it can also
be thought of as a computing system that uses direct com-
munication between different types of Processing Elements
(PEs), as shown in Figure 1 [1]. The goal of achieving the
rapid development of custom computing systems requires
that low-level hardware design be minimized.

Integrating PEs at the physical level necessitates the de-
velopment of a hardware interface that provides synchro-
nization, control, and data transfer between cores. Synchro-
nization supplies the handshaking needed to indicate when
there is a valid data transfer and the control signals direct
the operations to be performed and report the current sta-
tus of the core. Finally, the data transferred between cores
must be in the required format and sequence to be correctly

motion -
+ video
texture -
_ N multiplex
1| coding

Motion
estimation

Shape
coding

Figure 1: Block diagram of the possible PEs in an
MPEG4 encoder.

interpreted by the receiving cores.

To simplify the physical level connections (physical inter-
face) between PEs, a standardized hardware interface and
communication structure is required. Currently, IP cores
are connected together using direct communication, often
implemented as random glue logic, or by adapting the cores
to a common standard, such as a bus. However, designs
that pass data from one module to the next, as in Figure 3,
typically use a direct communication structure.

Previous work introduced the need for standardizing the
physical interconnect between system modules so that the
user can abstract the physical design information from the
data transferred between modules [2]. Modelling designs
as Systems Integrating Modules with Predefined Physical
Links (SIMPPL) allows each module to represent a ded-
icated hardware or processor-based (software) Computing
Element (CE) that connects to other CEs via fixed commu-
nication links. A CE combines a PE, an IP core that per-
forms some given function, with the control sequence that
dictates how the PE is used by the rest of the system.

Since the communication links are fixed in the SIMPPL
model, the actual physical interfacing of CEs is a trivial
problem. With a fixed physical interface, the mechanism
for the physical transfer of data across a link is provided
so that the designer can focus on the meaning of the data
transfers, rather than how to connect the wires. This is sim-
ilar to the software world where, when using procedures, a
programmer is never concerned with the use of the stack or
the format of the stack frame for the specific implementa-

H/W IP H/W IP
to to IP Interface
OCP OCP

H/W IP H/W IP

[ocPtoBusA | [ocPtoBusB |

(e (it

(b)

Figure 2: Standardizing the IP interface using (a)
OCP for different bus standards and (b) SIMMPL
for point-to-point communications.

tion platform. Using a standard hardware interface enables
hardware designers to similarly concentrate on adapting the
application-specific control sequence of each CE to the new
application.

This paper discusses the details of the SIMPPL model and
describes how to adapt different IP cores to programmable
hardware CEs. Each core has a controller that generates and
interprets the communication protocols for internal links.
The sequence of operations performed by the controller is
dictated by a program and the requests received over the
input links. Thus, the designer can change the control se-
quence of any CE in the system simply by changing the
program run by its controller. This is demonstrated using
three hardware CEs to create two variations of a system
on-chip in only six hours.

The remainder of this paper is structured as follows. Sec-
tion 2 provides an overview of communication and IP core
standards along with a summary of the SIMPPL model at
the system level followed by Section 3, which describes the
details of the SIMPPL controller for hardware CEs. The im-
plementation of three different types of IP cores using this
controller is outlined in Section 4 and Section 5 describes
the platform-specific implementation details for the systems
using these cores. Finally, Section 6 concludes the paper
along with providing suggestions for future work.

2. BACKGROUND

The following is a discussion of some previous work in-
vestigating on-chip interconnect structures and methods of
simplifying IP reuse. The section closes with a system-level
description of the SIMPPL system architecture.

2.1 1P Reuse

Multiple books exist discussing the complexities involved
in reusing legacy IP in new designs [3, 4]. The challenges of
using IP to reduce design time due to problems that arise
when incorporating previously designed modules into new
designs are of significant concern. This has led to the de-
velopment of well-defined IP design methodologies [5, 6] to
ensure reusability of cores with fixed interfaces and fixed
functionality. It does not, however, address the common
situation where a module has defined functionality but re-
quires the ability to interface with different communication
structures.

The VSI Alliance has proposed the Open Core Protocol
(OCP) [7] to enable the separation of external core com-
munications from the IP core’s functionality, similar to the
SIMMPL model. Both communication models are illus-
trated in Figure 2. OCP is used to provide a well-defined
socket interface for IP that allows the designer to easily at-
tach fixed interface modules that support different bus stan-

dards. This allows a designer to easily connect a core to
all bus types supported by the standard. In contrast, the
SIMPPL model targets the direct communication model us-
ing a fixed, point-to-point interconnect structure for all on-
chip communications.

More recently an Interface Adaptor Logic layer has been
proposed [8]. It is very similar to the OCP, using a fixed
socket interface for IP modules, however unlike OCP, it is
aimed at IP reuse in reconfigurable SoCs. FPGA companies
also recognize the importance of simplifying the inclusion of
previously designed IP into newer system designs. Xilinx
even provides its own bus-interface module for IP with a
defined socket interface [9]. These protocols make it easier
to port IP among different bus standards, whereas SIMPPL
addresses the problems of adapting an IP core’s functionality
to the requirements of a new application.

2.2 On-Chip Communication Structures

Multiple different on-chip interconnect strategies have been
proposed for SoC design, including hierarchical buses that
use bridges to connect to each other [10, 11, 12]. These bus
structures can all be mapped to an FPGA, but the maxi-
mum bandwidth for each bus is limited by the number of
modules connected to it. The WISHBONE [13] SoC Inter-
connect architecture provides multiple different interconnect
structures that can also be mapped to an FPGA, thereby
allowing the designer to select the bus architecture for a par-
ticular system. Since all are designed as single-level buses,
the standard provides the user with a simpler design ap-
proach, unless components running at different clock rates
must share the same bus.

Berkeley’s SCORE [14] architecture divides system com-
putations into fixed-size pages and uses the data abstraction
of streams to pass data between pages. Streams provide
a high-level description of point-to-point communication,
comparable to the SIMPPL internal communication link,
without defining a physical connection. Adaptive System-
on-chip (aSOC) [15] uses a physical implementation of a
point-to-point communication architecture for heterogeneous
systems, where unlike the SIMPPL model, the communica-
tion interface for each module is tailored in hardware to
optimize the module’s performance.

Networks provide another form of on-chip communica-
tion. MicroNetwork [16] has a pipelined data network to
communicate between modules. It also includes the pre-
viously described OCP socket as an interface for the het-
erogeneous system modules and rotates the communications
resources among the inter-module transfer requests. A Stan-
ford project on scalable network fabrics [17] also uses a com-
mon network for passing data between modules. The system
is partitioned into tiled modules and the routing network is
associated with the tiles such that packets are rerouted at
each tile. This idea of using data packets is similar to the
data-passing method used in the SIMPPL model, but the
lack of flexibility in a predefined placement and structured
network architecture is not as suitable to SoC designs on FP-
GAs as the point-to-point communications of the SIMPPL
model.

2.3 SIMPPL Computing System Model

Figure 3 illustrates the previously proposed macro-level
description of a system built using the SIMPPL architec-
tural model [2]. The solid arrows indicate internal links and
the dotted arrows indicate 1/O communication links to ex-

i off-chip
on-chip

Figure 3: A generic computing system described us-
ing the SIMPPL model.

Rx Tx Internal Rx and Tx

Communication Links
(FIFOs)

SIMPPL AN\ SIMPPL Control
Controller [N~ V|Sequencer (SCS)

JL AT
PE

(Hardware IP) Computing
= Element (CE)

External I/O Signals

1
if
"
"
(N}
y
yPid

Figure 4: The internal structure of a hardware CE.

ternal devices. The I/O communication links and protocols
between a CE and an off-chip device are determined by the
off-chip device, however, the internal communication links
are fixed and the communication protocols between modules
are abstracted from the physical links and may be adapted
to the requirements of each CE.

An n-bit wide asynchronous FIFO is used as the standard
internal link for this investigation of the SIMPPL model.
Asynchronous FIFOs provide clocking flexibility to system
designers as they allow CEs to send and transmit data at in-
dependent data rates. This decouples the CE’s inter-module
communications from processing, thereby allowing indepen-
dent clock domains for individual CEs without complicating
the system level design. Since the number and type of data
words transmitted or received by a CE is dependent on the
nature of its computation, the width and depth of the FIFO
can be altered to provide greater bandwidth and support
data packets of varying lengths. To support the communi-
cation protocols described in the following section, the FIFO
data-width is currently set to 33-bits but the depth is left
variable.

3. SIMPPL CONTROLLER

The SIMPPL controller architecture provides the physi-
cal interface to the IP core and supports an instruction set
designed to facilitate reprogramming the core’s operations
for different applications. For example, a CE that has an
audio sampling PE can be reprogrammed to sample the sig-
nal received from an external audio device at different rates
depending on the requirements of the computing system.
Details and an example of how the controller supports re-
programming are given below.

3.1 Controller Architecture

Figure 4 illustrates the main components of a hardware
CE. The PE is used to perform a specific function, be it com-

SIMPPL Controller
Internal
RX =t E
Link X
> —
|
Prog R
Instr
50
£Q >
§% g
28 Internal
oac —
g3 Controller a0 > Tx
5 8 [status Link
n Bits R
| E
G
Received Transmitted
Data Optional Data
Asynchronous
FIFOs
A

Processing Element
(Hardware IP)

Figure 5: An overview of the SIMPPL controller
datapath architecture.

putational or communication with an off-chip peripheral,
and interacts with the rest of the system via the SIMPPL
controller, which interfaces with the internal communication
links. The SIMPPL Control Sequencer (SCS) module rep-
resents the separation of the controller functionality from
communications enabled by the fixed interface and commu-
nication protocols. The SCS stores the program and sup-
plies the sequence of instructions to be executed by the con-
troller for each application. The instruction set supported
by the SIMPPL controller is described in Section 3.2 and
provides the flexibility required to adapt the CE to reflect
the requirements of each application. The protocol used to
communicate over the internal links requires that all trans-
missions must initiate with an instruction to indicate to the
receiving controller how to process the received information.
This condition enables a receiving CE to correctly interpret
the data packets sent from transmitting CEs and satisfies
the need for handshaking in inter-CE communications.
Figure 5 illustrates the SIMPPL controller’s datapath ar-
chitecture. The controller executes instructions received via
both the internal receive (Rx) link and the SCS, where the
Rx link instructions have higher priority than program in-
structions. This allows the controller to use handshaking
with other CEs to dictate the instructions to be executed.
Since the user must be able to properly order the arrival
of instructions to the controller from two sources, allow-
ing multiple instructions in the execution pipeline greatly
complicates the synchronization required to ensure that the
correct execution order is achieved. Therefore, the SIMPPL
controller is designed as a single-issue architecture, where
only one instruction is in flight at a time, to reduce design
complexity and to simplify program writing for the user.
The SIMPPL controller also provides status bits that can
be used by the SCS to determine if the program should

1 |Num Data Words (NDW) [opcode |} Instruction
0 Immediate Address } Optional
0 Data 0
0 Data 1
0 Data 2
. Data
Packet
0 Data NDW - 1
control bit program word

Figure 6: An internal link’s data packet format.

branch. The status bits are PE specific and are generated
based on the PE’s runtime status to better aid in the control
of program execution order.

The format of an output data packet sent via the internal
transmit (Tx) link is dictated by the instruction currently
being executed. The inputs multiplexed to the Tx link are
the instruction, the immediate address that is part of some
instructions, the address stored in the address register a0
and any data that the hardware IP transmits. Data can
only be received and transmitted via the internal links and
cannot originate in a controller’s program. Furthermore,
the controller can only send and receive discrete packets of
data, which may not be sufficient for certain types of PEs
requiring continuous data streaming. To solve this problem,
the controller supports the use of optional asynchronous FI-
FOs to buffer the data transmissions between the controller
and the PE. The designer can then clock the controller at
a faster rate than the PE to guarantee that it accurately
receives/produces at the necessary data rate.

3.2 Controller Instruction Set

While the current SIMPPL controller uses a 33-bit wide
FIFO, the data word is only 32-bits. The remaining bit is
used to indicate whether the transmitted word is an instruc-
tion or data. This is shown in Figure 6, which provides a
description of the generic data packet structure transmit-
ted over an internal link. The instruction word is divided
into the least significant byte, which is designated for the op-
code, and the upper 3 bytes, which represents the Number of
Data Words (NDW) sent or received in a data transmission
instruction. The current instruction set uses only the five
Least Significant Bits (LSBs) to represent the opcode. All
SIMPPL controller instructions require at most two words
— the instruction word and an optional immediate address
data word.

The instruction set is divided into two groups, instructions
that perform a control operation and those that transfer
data. Instructions resulting in data transfers are further
subdivided into three different categories. The first is the
read request. It is issued by the program of one CE and
sent to another CE requesting that data be transmitted back

Instruction Type Rd | Wr | Rx | Issue | Exec.
Instr | Instr
Imm. Data Transfer X X X P/R P/R
Imm. Data + Imm. Addr. | X X X P/R P/R
Addr. Reg. Initialization X P P
Addr. Reg. Arithmetic X P P
Imm. Data + Indir. Addr. X X X P P
Imm. Data + Autoinc. X X X P P
Wait Receive P P
No-op P R
Reset P R

Table 1: The current instruction set supported by
the SIMPPL controller.

to the original CE. Secondly, a receive instruction must be
generated as the first transmitted word to accompany the
data sent back to the first CE, since all transfers via internal
links start with an instruction. Finally, the program can
use a data write to accompany data words transmitted to
another CE.

Table 1 lists all the instructions currently supported by
the SIMPPL controller. The objective is to provide a mini-
mal instruction set, to reduce the size of the controller, that
still provides sufficient programmability such that the cores
are easily reconfigured for any potential application. While
instructions that are needed to fully support the reconfig-
urability of some types of hardware may be missing, the
instructions in Table 1 support the hardware CEs that have
been built to date. Furthermore, the controller supports the
expansion of the instruction set to meet future requirements.

The first column in Table 1 describes the operation being
performed by the instruction. Columns two through four
are used to indicate whether the different instruction types
can be used to request data (Rd), write data (Wr), or receive
data (Rx). Finally, the last two columns are used to denote
whether the instruction may be issued or executed from the
Program memory (P) or internal receive communication link
(R).

The first instruction type described in Table 1 is the imme-
diate data transfer instruction. It consists of one instruction
word of the format shown in Figure 6, where the two LSBs
of the opcode indicates whether the data transfer is a read
request, a write, or a receive. Similar to the immediate data
transfer instruction is the immediate data plus immediate
address instruction. The format is the same as the former
instruction except that an additional data word is required
as part of the instruction to indicate the address.

Instructions that use the a0 register may have a one or
two-word format, but are not transmitted as they only make
sense in the context of the local controller. For instance,
a two-word instruction initializes the local address register
with an immediate value, the first contains the opcode and
the second is the new address. The address register arith-
metic instructions are single word instructions used to add
or subtract an offset to the current local address register
value. The value in the address register can provide the im-
mediate address for any data transfer instructions sent to
other CEs, using indirect addressing or indirect addressing
with post-autoincrementing.

The remaining instructions provide control functionality
for the controller. The wait receive combined with the no-
op instructions can be used to provide handshaking controls
between CEs. For example, one controller can execute the

SIMPPL Control Sequencer (SCS)
Store Unit
(Program) pC
Program | o o Program
Control 9 Valid gral Status
. Word : Instruction P
Bit Instruction Bits
Read

|

SIMPPL Controller

Figure 7: The standard SIMPPL control sequencer
structure and interface to the SIMPPL controller.

wait instruction, which stalls the controller until an instruc-
tion is received via an internal link. When the instruction is
received, the wait will be cleared and the received instruc-
tion will then execute on the controller. In the case where
the user desires no operation to be performed, except the
termination of the wait instruction, a no-op should be used.
Finally, the reset instruction can be used to clear all the
status signals and registers for the controller.

3.3 SIMPPL Control Sequencer

The operation of a SIMPPL controller is analogous to a
generic processor, where the controller’s instruction set is
akin to assembly language. For a processor, programs con-
sist of the series of instructions used to perform the designed
operations. Execution order is dictated by the processor’s
Program Counter (PC), which commissions the next instruc-
tion of the program to be fetched from memory. While a
SIMPPL controller and program perform the equivalent op-
erations to a program running on a generic processor, the
controller uses a remote PC in the SCS to select the next
instruction to be fetched.

Figure 7 illustrates the SCS structure and its interface
with the SIMPPL controller via five standardized signals.
The 32-bit program word and the program control bit, used
to indicate if the program word is an instruction or address,
are only valid when the walid instruction bit is high. The
valid instruction signal is used in combination with the pro-
gram instruction read to execute an instruction fetch. Fi-
nally, the controller provides a PE-specific set of status bits
that are used by the PC to access the appropriate program
instruction from the Store Unit, which acts like a memory.

Since the PC has direct access to the control signals,
branches can be implemented implicitly as transitions in a
PC state machine. The PC state machine is application-
specific and selects the correct values for the next instruction
to be fetched from the store unit and sent to the controller
depending on the current instruction and status bit values.
This reduces the size of both the SIMPPL controller and the
program located in the store unit by eliminating the need
for branch instructions in the instruction set. Furthermore,
it reduces the performance overhead of using a controller as
an interface as it does not have to execute conditional or
explicit branch instructions. The following example demon-
strates how to write a program and use the SIMPPL con-
troller interface.

3.4 Example SIMPPL Control Sequencer
Assume a hardware system that consists of a memory and

a sensor unit used to measure multiple environmental quan-

tities at a set time interval. The total storage requirements

write start addr to a0;
for (i=0; i< 1024; i++)

{
while (!'valid_sensor_data);
write 8 data words starting at addr (a0);
a0 = a0 + 8;

}

Figure 8: Pseudocode for the sensor unit’s SIMPPL
controller program.

if (rst=1) {

PCstate <= Write a0 state;
else

PCstate <= nextPC;
}

//Next-state state machine for the PC:
case (PCstate) {
Write a0 state: //Instruction to initialize a0
if ((Instruction Read) && (rst=0))
nextPC = Write address state;
else
nextPC = Write a0 state;
Write address state: //New address for a0
if (Instruction Read)
nextPC = Write autoinc state;
else
nextPC = Write address state;
Write autoinc state: //Write data to (a0)+
if ((Instruction Read) && (SampleCntr=1024))
nextPC = Done state;
else
nextPC = Write autoinc state;
Done state:
nextPC = Done state;

}

Figure 9: Pseudo-HDL code to implement the state
machine for the sensor unit’s program counter.

for each set of measurements is 32 bytes and the memory
is large enough to store 1024 samples. The user wants to
store the first 1024 samples to experimentally measure when
the environmental system reaches steady state before de-
ciding how often to record samples and upload the results.
The SIMPPL controller for the sensor unit has a status
bit, valid_sensor_data indicating when a new set of measure-
ments is available for storage in memory. The pseudocode
for the sensor unit’s SIMPPL controller program is given in
Figure 8. Figures 9 and 10 provide pseudo-HDL implemen-
tations of the state machines and output signals that act as
the assembly program used in a SCS for the sensor unit.
The nextPC state only changes after an instruction has
been read or all 1024 samples have been written to memory.
Although the PC is commonly thought of as an address that
selects the memory location of the next instruction to be
executed, the store unit required for this example’s program
is small enough that a state machine is sufficient to store
the code. The wvalid_instruction signal is high during the
initialization of the address register. However, since the data
write instruction should only occur when the sensor has new
data to transmit to the memory, it is assigned the value of
the valid_sensor_data status bit in the Write autoinc state.
When the program has completed, the PC goes to the Done

//Sets the current program instruction and control bit
//output to the controller based on the state:
if (rst == 1°b1) {
//Instruction to write to aO:
program_word <= Write a0 instruction;
program_control_bit <= 1;
}
else {
case (PCstate) {
Write a0 state:
//Instruction to write to a0:
program_word <= Write a0 instruction;
program_control_bit <= 1;
Write address state:
//Address written to a0:
program_word <= Write address to a0;
program_control_bit <= 0;
Write autoinc state:
//Write 8 data words to (a0)+:
program_word <= Write data line instruction;
program_control_bit <= 1;
Done state:
//End of Program (Does not execute)
program_word <= Stall controller;
program_control_bit <= 0;
}
}

/*Used to indicate when the instruction is valid.
*Stalls the processor when there is no valid
*instruction. */

case (PCstate) {

Write a0 state:
valid_instruction = 1;
Write address state:
valid_instruction = 1;
Write autoinc state:
valid_instruction =
Done state:
valid_instruction = 0;

valid_sensor_data;

}

Figure 10: Pseudo-HDL code used to implement the
output signals from the sensor unit’s SCS.

state, where no further instructions are executed, and the
valid_instruction signal goes low permanently.

4. SAMPLE SIMPPL MODULES

This section discusses the three hardware CEs designed to
interface with three of the off-chip components on the Xil-
inx Multimedia board, the composite video input decoder,
the video Digital-to-Analog Converters (DAC) for the VGA
output, and two of the five 2MB ZBT memory chips. It
begins with an overview of the shared memory CE architec-
ture followed by a discussion of the implementation details
for all three CEs.

4.1 Shared Memory CE Architecture

Figure 11 provides a high level view of a shared memory
CE. For the two video applications described in Section 5,
memory is required to store both the current image being
written to the monitor and the next image being read in

Internal
Communication
Links to other CEs

A4 - v
SIMPPL SIMPPL
Controller | "€d "€d| Controller
Mem Bank A [« - Mem Bank B

B
Bt bt F Jd Lot
Lt

SCS A = e SCSB

M- —W3I>

Mem Bank 0 Mem Bank 1
Controller Controller
A A

Mem CE)]

. 1/0 Communication .

¥ Links to off-chip Memory ¥

Mem Bank 0 Mem Bank 1

Figure 11: The shared memory Computing Element.

from the video recorder. These two frame buffers are stored
on separate memory banks to allow parallel access to mem-
ory. Each memory bank has its own dedicated memory con-
troller and since the video decoder interface core (VidIn
CE) and SVGA output interface core (Vid_-Out CE) need
to make independent accesses to the memory banks, they
also have independent SIMPPL controllers running individ-
ual programs.

An arbiter module interfaces with both SIMPPL con-
trollers to service requests for memory bank accesses and
to acknowledge that control of a memory bank has been
granted. The arbiter is currently designed to give higher
priority to memory bank requests from the Vid_In CE than
from the Vid_Out CE. The Vid_In CE is given whichever
bank it requests as soon as it is available. However, the
Vid_Out CE is given the requested bank only when it is not
being used by the Vid_In CE, otherwise, the Vid_Out CE is
given access to the remaining bank. The arbiter generates
the select signals used to multiplex the I/O signals from the
two SIMPPL controllers to each of the two memory bank
controllers. The arbiter is designed as a separate module so
that the user can reuse the shared memory CE (Mem CE)
and adapt the arbiter to suit different applications.

4.2 CE Descriptions

The Vid_In CE interfaces with the video decoder and
reads in the data in YCrCb format and then converts it
to RGB format. The SIMPPL controller for the Vid_In CE
is clocked at 27MHz, the same frequency as the video in-
put sampling rate from the video decoder. The Vid_Out CE
communicates with the video DAC used to drive the SVGA
monitor. It receives the data in RGB format via an internal
link and writes the data to the video DAC driving the dis-
play. While the SVGA sampling rate is 25 MHz, the clock
for the SIMPPL controller runs at 50 MHz to guarantee that
there is always valid data to be written to the monitor. Fi-
nally, there is the Mem CE that is used to store video input
data and to send video output data. Both external memory
banks and SIMPPL controllers are clocked at 54MHz to en-
sure that the CE services memory requests faster than they
are made by the Vid_In CE and Vid_Out CEs.

Measured Quantity Vid_In | Vid_Out Mem

CE CE CE
Number of LUTSs 350 260 436
Number of flipflops 177 163 161
Instr. Fetch Overhead 1 cycle 1 cycle 1 cycle
Instr. Decode Overhead 1 cycle 1 cycle 1 cycle

Mem. Arb. Overhead N/A N/A 3 cycles
Instr. Execute Overhead | 2 cycles 4 cycles 2 cycle
Buffering. Overhead 1 cycle 1 cycle 1 cycle
Early Indication Cycles 4 cycles | 20 cycles N/A

Total Overhead 1 cycle | -13 cycles | 8 cycles

Table 2: Implementation Statistics for the Video In,
Video Out, and Memory CEs’ SIMPPL Controllers.

4.3 CE Implementation Results

Table 2 provides a summary of the results found by simu-
lating and synthesizing these three hardware CEs for a Vir-
tex IT 2000, where the first column describes the different
measured quantities for the SIMPPL controllers of each CE.
The first two rows of the table describe the number of LUTs
and flipflops required to implement the SIMPPL controller
interface for the three PEs. This does not include the SCS
as its size is completely dependent on the application into
which the CE is incorporated, and so the pertinent sizes are
reported in Section 5. However, the size of the SIMPPL
controller does provide a measure of the minimal overhead
incurred by using the controller as an interface in these CEs.
While the number of flipflops is relatively consistent for the
three implementations, the number of required LUTSs is sig-
nificantly lower for the Vid_In and Vid_Out CEs than the
Mem CE. This is because the Video CEs are not required
to support the full instruction set due to their PE’s func-
tionality. For example, the Vid_In CE does not support any
instructions that receive data transfers as there is no data
consumed by its PE. Similarly, the Video_Out CE does not
produce data and, therefore, does not implement the data
transmit instructions. The Memory banks, however, can
both read and write data and so their controllers require
the full instruction set, which almost doubles the number of
supported instructions.

The remainder of Table 2 is concerned with the number of
clock cycles of overhead incurred by adding an instruction
packet header to each data transmission. Both the Vid_In
and Vid_Out CEs use three-stage state machines to con-
trol instruction execution, where one cycle of overhead is
incurred during each of the fetch and decode stages, while
the execute phase overhead varies. The Mem CE, however,
uses a four-stage state machine to execute each instruction.
The first two are the fetch and decode stages, similar to the
Video CEs, but the third is a memory arbitration request
stage. For instructions that do not require access to mem-
ory, such as writes to the address register, the overhead is
one cycle. However, if the instruction accesses memory, then
the minimum overhead is three cycles, assuming no memory
request conflicts.

The execution stage of the SIMPPL controller requires
a different maximum number of clock cycles in overhead
depending on the CE’s functionality. The Vid_In CE and
the Mem CE require at most two extra cycles in the exe-
cute stage, which occurs when an instruction requires the
controller to transmit a write instruction plus a destination
address via internal link. In the case of the Vid_-Out CE,
a read request that uses indirect addressing and autoincre-

Mem Mem
Bank Bank
0 1

Figure 12: The system connections for the two sam-
ple systems.

menting is the most costly instruction in the execute stage,
requiring an extra four cycles. A final clock cycle of over-
head is incurred by both Video CEs as they buffer the data
sent /received by their PEs to guarantee proper functional-
ity. Since the data read from memory is also buffered, the
memory incurs an extra cycle of overhead during memory
reads but not during memory writes.

Table 2’s penultimate row indicates the number of clock
cycles of advanced warning that can be provided to the con-
troller to indicate that a data transfer is imminent. In the
case of the Mem CE, there can be no warning as memory
accesses are non-deterministic from system to system. How-
ever, the Video CEs require data transfers at set intervals,
so it is possible to use the control signals to indicate that
the controller should be initiating a data transfer earlier to
mask the overhead. In the case of the VidIn CE, there
are only four clock cycles warning as that is the number of
stages in the pipeline used to convert the data from YCrChb
to RGB. The Vid_Out CE is able to provide a user defined
amount of warning by setting the Hardware IP core’s param-
eter NUM_CYCLES_PREFETCH. Currently, this parame-
ter is set to 20 clock cycles, which is found to be more than
sufficient for both of the sample systems.

Finally, the last row of the table indicates the total num-
ber of clock cycles of overhead incurred by using the SIMPPL
controller interface for each of the CEs. The Vid_In con-
troller incurs only one clock cycle of overhead, which dis-
appears if the buffering between the PE and the controller
is eliminated. The Vid_Out CE is recorded as having nega-
tive overhead because it can mask the cost of the SIMPPL
communication protocol. It avoids any effective overhead
by having sufficient warning before any data transfers are
required. Finally, the Mem SIMPPL controllers accrue a
minimum of eight cycles of overhead during memory reads,
which can only be masked from the rest of the system by
clocking the Memory CE faster than the rest of the system.
In the two sample systems, the only possible data corrup-
tion arises from missing data transmitted by the Vid_In CE
to the Mem CE. However, with the buffering built into the
system and the Video CEs having large down-times between
data transfers, the Mem CE is able to ensure that all mem-
ory requests are properly serviced.

5. SAMPLE DESIGNS

This section describes the two sample systems implement-
edusing the CEs described in Section 4. Figure 12 illustrates
the basic architecture for the two systems. The only differ-

frame = O;
field = 0; // O = odd field; 1 = even field
while (1) {
//*x*Write-Frame-to-Memory Loop***
while(!done_frame)

{

if ((field==0) && (frame==0))
a0 = 0x800000000;

else if ((field==1) && (frame==0))
a0 = 0x800000280;

else if ((field==0) && (frame==1))
a0 = 0x400000000;

else // ((field==1) && (frame==1))
a0 = 0x400000280;

while(!done_field) {
while(wait_for_next_line);
num_pixels = 640;
while ((valid_video_data)

&& (num_pixel > 0)) {
write data word to (a0)+;
num_pixels--;

}
a0 = a0 + 640; //skip next line
}
field = “field;
}
frame = “frame;

//***End of Write-Frame-to-Memory Loop***

}

Figure 13: Pseudocode for the Vid_In CE in the
streaming video design.

ence in the system-level circuitry is highlighted in the the
dotted box, a switch connected to the Vid_In CE to request
that the next snap shot should be taken. The SIMPPL con-
trol sequencers used by the individual CEs abstract the re-
quired control sequence changes from the system-level hard-
ware design.

5.1 Streaming Video

The first design implements a video streaming design,
where each new video frame is stored in a memory bank.
The following new frame is stored in the other memory bank
so that the previously received frame can be concurrently
written to the SVGA monitor. Since the user is able to
write individual programs to control the operation of the
Vid_In, Vid_Out, and Mem CEs, there are multiple ways to
implement this system. The most obvious method would
be to have the Vid_In and Vid_Out CEs become active as
soon as the system comes out of reset, and have the Mem
CE only execute the memory reads and writes requested via
the internal links from the Video CEs. However, this would
not guarantee synchronization between the video data be-
ing received and the video data written to the SVGA. This
is because the video recorder may not be at the start of a
video frame when the system comes out of reset.

Therefore, to achieve synchronization between the two
Video CEs, the Vid.In CE starts running as soon as the
system comes out of reset and the Vid_Out CE stalls, wait-
ing for an indication that the Vid_In CE has started writ-
ing a new frame to the Mem CE. Figure 13 illustrates the

pseudocode for the Vid_In CE, which uses 29 LUTs and 20
flipflops in its SCS. Note that the base address for Memory
Bank 0 is denoted as 0x80000000 and the base address for
Memory Bank 1 is 0x40000000. Because the video input
signal is interleaved, all the odd lines of the video frame are
transmitted first followed by the even lines. Since the mon-
itor used for these systems has a line length of 640 pixels,
only the first 640 pixels received from the video recorder
are stored to memory. However, this parameter in the SCS
program can be changed if a different monitor is used. The
program uses an indirect write plus autoincrement to Tx the
line of data from the Vid_In CE to the memory and then in-
crements a0 by 640 a second time so that the video data
can be stored in sequential display order.

The Mem CE has two SIMPPL controllers,
SIMPPL_MemA and SIMPPL_MemB. The SIMPPL_MemA
controller is connected via an internal link to the Vid_In CE
and the SIMPPL_MemB controller is responsible for servic-
ing the data needs for the Vid_Out CE. Since the Vid_In
CE supplies all the data to be stored by SIMPPL_MemA, it
has a null program, requiring no logic or memory resources
on-chip and only executes the instructions received through
the internal link. The SIMPPL_MemB’s SCS uses 42 LUTs
and 19 flipflops as the program is very similar to the Vid_In
CE’s program excluding the fact that the SVGA video DAC
writes sequential lines of video data to the monitor. The
other significant difference is that the program stalls the con-
troller until the first Vid_In CE data packet is being written
to memory by SIMPPL_MemA before transmitting the first
line of video output to be written to the Vid_Out CE. All the
subsequent lines of video data will only be transmitted when
the Vid_Out CE requests another line. Thus, the synchro-
nization of the two Video CEs is achieved indirectly without
any direct physical connections between the two CEs. The
SIMPPL_MemB program knows when the Vid_In CE is ac-
cessing memory due to the four status bits available to both
memory SIMPPL controllers. Two bits are used to indicate
if the Vid_In CE is using either Memory Bank 0 or 1 and the
other two to indicate if the Vid_-Out CE is using Memory
Bank 0 or 1.

When the system comes out of reset, the Vid_-Out CE ex-
ecutes a wait rr instruction to stall the controller until it re-
ceives the first line of video output from SIMPPL_MemB to
signify that the Vid_Out CE should start writing data to the
SVGA to synchronize with the video input received by the
Vid_In CE. The SCS for the Vid_-Out CE requires 2 LUTs
and 3 flip flops. After receiving the first line of video, the
Vid_Out CE transmits a no-op to get the SIMPPL_MemB
controller to prefetch the next line of video output data. It
only took 4.5 hours to design this video streaming system
and have it run on the board. This includes making all the
system connections and verifying the individual programs
for the CEs.

5.2 Video Camera Snap Shots

The objective for this system is to have the video camera
behave as a still-shots camera. The user can indicate when
a picture should be taken by toggling a switch on the board.
Figure 14 illustrates the pseudocode for the the Vid_In CE,
which uses 34 LUTs and 23 flipflops in its SCS. The only
changes required to the control sequence are the addition of
three lines to the main loop. Line A is used to wait for a
snapshot request from the user and is implemented using a

frame = O;

field = 0; //odd field

while (1) {
while(!take_picture_request); //A
clear(take_picture_request); //B
while(!start_of_new_frame); //C

//*x*Write-Frame-to-Memory Loop
//from Figure 13

Figure 14: Pseudocode for the Vid_In CE in the
snapshot video design.

wait rr instruction. When the user toggles the switch, a no-
op is transmitted to the Vid_In CE clearing the wait request
(Line B) and then the controller waits for the start of the
next valid frame to transmit to memory (Line C). The code
used to transmit the frame to memory is the same as the
“Write-Frame-to-Memory” loop used in the streaming video
application shown in Figure 13.

As in the video streaming system, the SIMPPL_MemA
controller has a null program since all the necessary data
transfers are initiated by the Vid_In CE. SIMPPL_MemB’s
controller requires 40 LUTs and 22 flipflops to implement the
SCS, which also runs a program (shown in Figure 15) similar
to the previous system. Since the SIMPPL_MemB controller
has status bits that can indicate when the Vid_In core is ac-
cessing a memory bank, it is responsible for selecting and
writing the current video frame to the Vid_Out CE line by
line. In between frames, the program for SIMPPL_MemB
checks the new_frame variable to see if the Vid_In has ac-
cessed a memory bank. This variable is updated in paral-
lel with the program’s execution by using a separate state
machine to check the controller’s status bits for memory ac-
cesses by the Vid_In CE. If the new_frame variable is set,
the memory writes the current frame to the Vid_Out CE
again and then switches to writing the video frame stored
in the other memory bank. The program delays switching
the memory banks by a frame to ensure that the Video_In
controller has finished writing the new frame to the new
bank. In this system, the Vid_Out CE again only needs to
indicate when a new line of video data should be written
to the monitor, by clearing the wait_for_next_line request,
and then waiting for the data to arrive. This means that
Vid_Out’s SCS can also remain unchanged at 2 LUTs and 3
flipflops. Since the snapshot video system had virtually the
same system level connections and by using the programs
created for the streaming video system as a starting point,
the new video system required approximately another 1.5
hours to get running on the board.

5.3 Summary

Although the two video systems are quite similar, the
high-level interface to the PE provided by the SIMPPL con-
troller and SCS makes both the initial system design and the
application specific changes trivial. For example, the video
decoder’s control signals are used to generate done_field and
done_frame status bits. This makes it possible to change
the Vid_In CE program’s control sequence without having
a low-level understanding of the hardware’s synchronization
and control signals. Furthermore, if the designer wishes to

//new_frame is set and cleared in a separate
//process.

clear_request (new_frame) ;

switch_frame = 0;

current_bank = 1;
while (1) {
if (switch_frame==1)
current_bank = “current_bank;

//Set the address from which the next frame

//is written to the SVGA
if (current_bank==0)
a0 = 0x800000000;
else // (current_bank==1)
a0 = 0x400000000;

//Set the switch frame variable if a new

//frame has started being written to memory

switch_frame = new_frame;

//Send a clear request as a new_frame
//will be written after the current frame.
clear_request (new_frame) ;

while(!done_frame) {
num_pixels = 640;
while(wait_for_next_line);
while ((valid_video_data)
&& (num_pixel > 0)) {
write data word from (a0)+;
num_pixels—-;

Figure 15: Pseudocode for the SIMPPL_MEMB
controller program in the snapshot video design.

add another CE to pre-process the data before writing it to
memory, the system-level interconnect can be easily changed
to incorporate the new CE as show in Figure 16. Then the
user need only update the SCSs of the appropriate CEs to
create a new working computing system.

The cost in logic resources of the reprogrammable SCS
depends on a CE’s usage in an application. In these two
systems, The SCS increases the resource usage overhead by
a maximum of 40 LUTs and 22 flipflops per controller. By
implementing the program and program counter as state
machines, the logic optimizer in the synthesis tools is able
to reduce the size of the SCS logic to less than the number of
memory bits required to store the instructions in a program.

In contrast, consider if the designer is required to build
both the video streaming and snap-shot video systems, with-
out the SIMPPL model. The user would be provided with
the Hardware IP cores, but be required to develop the sys-
tem infrastructure and the controllers for each application.
Although, the streaming video system can be designed to
limit the necessary redesign for the snap-shot system if that
is part of the initial specification, the system-level design
requires significantly more work than using the SIMPPL
model. The user must develop a hardware interface and
communication protocols among the three cores before cre-
ating the control sequence for each system.

'
.

. A

+ switch

Mem Mem
Bank Bank
0 1

Figure 16: The system connections for the two sam-
ple systems.

6.

CONCLUSIONS AND FUTURE WORK

The SIMPPL controller for hardware CEs facilitates the

reprogramming of CEs to suit different applications. Fur-
thermore, the fixed internal communication links simplify
the physical interfacing of each CE into the system. These
two benefits greatly reduce the redesign time required to
reuse the hardware CEs. Three different hardware CEs have
been used to implement two systems with varied control se-
quences in a total of six hours on a Xilinx Virtex II FPGA.

By incorporating the SIMPPL controller into hardware

CE designs, it is possible to create a library of cores that
can be used to reduce the design time for future custom
computing systems. Currently, an image processing group
at the University of Toronto is investigating the idea of using
the SIMPPL controller to help create a library of image
processing IP cores.

The next phase of the project is to develop a design method-

ology for creating systems using the SIMPPL model. While
WOoDSTOCK [2] allows designers to measure the perfor-
mance of systems built using the SIMPPL model, it is im-
portant to create tools for verifying the system level design

and CE operation at runtime.

Future work will focus on

further reducing the design time of new systems. To this
end, the development of tools that can be used to auto-
generate application-specific CE control sequencers, instead
of having to generate the HDL “assembly” code by hand,
and SIMPPL controllers with instruction sets customized to
specific PEs will be investigated.

Acknowledgments

This research was supported by the Natural Sciences and
Engineering Research Council and an OGS fellowship from
the Government of Ontario. The authors would like to thank
Nathalie Chan King Choy for her design contributions and
Tomasz Czajkowski, Tan Kuon, Peter Jamieson, and the
anonymous reviewers for their many helpful comments and
suggestions. Finally, thanks to CMC/SOCRN for providing
the prototyping system and Xilinx for providing the CAD
tools.

7.

REFERENCES

[1] International Organisation for Standardisation.

Mpeg-4 overview - v.21. http://www.chiariglione.org/
mpeg/standards/mpeg-4/mpeg-4.htm.

2]

5]

(6]

[7]

(8]

(9]

(14]

(17]

L. Shannon and P. Chow. Maximizing System
Performance: Using Reconfigurability to Monitor
System Communications. In IEEE Int. Conference on
Field- Programmable Technology, pages 231-238,
December 2004.

M. Keating and P. Bricaud. Reuse Methodology
Manual for System-on-a-Chip Designs. Kluwer
Academic Publishers, San Francisco, California, 1998.
H. Chang, L. Cooke, M. Hung, G. Martin, A. J.
McNelly, and L. Todd. Surviving the SOC revolution:
A Guide to Platform-Based Design. Kluwer Academic
Publishers, Norwell, Massachusetts, 1999.

W. Savage, J. Chilton, and R. Camposano. IP Reuse
in the System on a Chip Era. In Proc. from the 13th
Int. Symposium on System Synthesis, pages 2—7,
September 2000.

G. Martin. Design methodologies for system level IP.
In Proc. of IEEE Conference on Design Automation
and Test in Furope, pages 286-302, February 1998.
VSIA Home Page. Online: http://www.vsia.org.

T. Lee and N. W. Bergmann. An Interface
Methodology for Retargettable FPGA Perihperals. In
Int. Conference on Engineering of Reconfigurable
Systems and Algorithms, pages 1-7, July 2003.
Xilinx. OPB IPIF Architecture, 2003. Online:
http://www.xilinx.com/ipcenter /catalog/logicore/docs/
opb_ipif.pdf.

P. J. Aldworth. System-on-a-Chip Bus Architecture
for Embedded Applications. In Proc. IEEE Int. Conf.
on Computer Design, pages 297-298, October 1999.
D. Flynn. AMBA: Enabling reusable on-chip design.
IEEE Micro, 17(1):20-27, July 1997.

IBM Corporation. The CoreConnect bus architecture.
Online: www.ibm.com/chips/products/coreconnect.
OpenCores. Specification for the WISHBONE
System-on-Chip (SoC) Interconnect Architecture for
Portable IP cores, Revision B.3, September 2002.
Online: http://www.opencores.org/projects.cgi
/web/wishbone/wbspec_b3.pdf.

E. Caspi, M. Chu, R. Huang, J. Yeh, J. Wawrzynek,
and A. DeHon. Stream Computations Organized for
Reconfigurable Execution (SCORE): Extended
Abstract. In Int. Conference on Field Programmable
Logic and Applications, pages 605614, August 2000.
(For more information on SCORE, goto
http://brass.cs.berkeley.edu/documents/
score_tutorial.pdf).

J. Liang, A. Laffely, S. Srinivasan, and R. Tessier. An
Architecture and Compiler for Scalable On-Chip
Communication. IEEE Transactions on VLSI
Systems, 12(7):711-726, July 2004.

D. Wingard. MicroNetwork-based integration for
SoCs. In Proc. for the ACM/IEEE Design Automation
Conference, pages 673-677, June 2001.

W. J. Dally and B. Towles. Route packets, not wires:
On-chip interconnect networks. In Proc. for the
ACM/IEEE Design Automation Conference, pages
684-689, June 2001.

