
Using Reconfigurability to Achieve Real-Time Profiling for
Hardware/Software Codesign

Lesley Shannon and Paul Chow
Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON, Canada M5S 3G4

{lesley, pc}@eecg.toronto.edu

ABSTRACT
Embedded systems combine a processor with dedicated logic
to meet design specifications at a reasonable cost. The at-
tempt to amalgamate two distinct design environments in-
troduces many problems, one being how to partition a single
design for the two platforms to achieve the best performance
with the least effort. Since the latest FPGA technology al-
lows the integration of soft or hard CPU cores with dedi-
cated logic on a single chip, this presents new opportuni-
ties for addressing hardware/software codesign issues in the
FPGA design process by utilizing the reconfigurable envi-
ronment.

This paper introduces SnoopP, a non-intrusive, real time,
profiling tool. The user is able to obtain a clock cycle ac-
curate profile of the real time performance of a software
program running on a soft-core processor instantiated on an
FPGA. SnoopP is an essential tool for hardware/software
codesign on a reconfigurable platform. It allows the user
to quickly obtain accurate profiling information that may
greatly influence the partitioning of the design.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—optimization;
C.4 [Computer Systems Organization]: Performance of
Systems—Measurement Techniques

General Terms
Design, Measurement, Performance

Keywords
FPGA, embedded processor, hardware/software codesign,
performance measurement, profiling, soft processor

MicroBlaze, EDK, and MDM are registered trademarks of Xilinx

Incorporated. SOPC Builder, Quartus II, and Nios are registered
trademarks of the Altera Corporation. VTune is a registered trade-

mark of the Intel Corporation. ModelSim is a registered trademark
of the Mentor Graphics Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’04 February 22-24, 2004, Monterey, California, USA
Copyright 2004 ACM 1-58113-829-6/04/0002 ...$5.00.

1. INTRODUCTION
In recent years, FPGA companies [1, 2] introduced prod-

ucts that enable a user to implement a complete embed-
ded computing system on a single chip. Embedded system
designs are often complicated by strict performance, area,
and power constraints. This has led to the study of hard-
ware/software codesign issues such as cospecification, cosyn-
thesis, and cosimulation. These issues traditionally arise
from partitioning portions of a design into hardware and
software components.

The newest FPGA technology allows a designer to use a
single reconfigurable platform to instantiate both the pro-
cessor and the required dedicated logic. To implement an
embedded system with ASIC technology, the designer needs
to perform initial studies, simulations, and prototyping to
ensure that a working design is sent for fabrication the first
time. Obviously the need to be completely right the first
time is not as much of a concern in the reconfigurable do-
main as the user can easily redesign the embedded system
avoiding further non-recurring costs.

This raises the possibility of a different codesign approach
that can be more incremental, such that system development
can occur on the final implementation technology. This con-
cept is familiar to software developers who typically design
an application on a workstation that is representative of the
platform for the final product, not a simulator that models
the implementation technology.

Designing on the target technology is equally attractive
for FPGA designs. Their potential size and complexity
makes simulation a very time consuming process that takes
orders of magnitude longer than on-chip execution. Hem-
mert et al. [3] introduced a debugger for hardware designs
capable of running on an FPGA for the benefit of acceler-
ated speed of execution during the debugging process. This
upholds the approach of an on-chip design methodology for
FPGAs. What is required is a means of understanding the
tradeoffs in embedded system designs. Thus, it is interest-
ing to develop tools to facilitate the efficient design of hard-
ware/software codesign applications implemented on FPGA
technology.

This paper presents SnoopP, a real-time, non-intrusive
Snooping Profiler (SnoopP) for software applications run-
ning on a soft-core processor instantiated on an FPGA.
SnoopP allows a designer to precisely measure the number
of clock cycles spent executing specified code regions. The
objective is to quickly provide the designer with accurate
profiling information that helps to identify the portions of

a design that are too slow to be implemented in software
when timing constraints are critical. This enables the user
to take less time making partitioning choices thus speeding
up the design process. Hence, SnoopP is the basis of a suite
of tools for designing embedded systems on FPGAs that
allows the user to evaluate the design implementation and
how to adapt it to meet the given constraints.

The remaining sections of this paper are structured as
follows. Section 2 summarizes the previous work done on
hardware/software codesign using reconfigurable platforms
and cosimulation. It also describes gprof, a GNU software
profiling tool, and the current tools available for designing
embedded systems on FPGAs. Section 3 introduces SnoopP
and Section 4 focuses on an implementation of SnoopP, out-
lining the interface to a MicroBlaze system, the user param-
eters, and the actual hardware circuitry. A methodology for
using SnoopP to obtain profiling results is given in Section 5.
Finally, the conclusions and future work for this project are
summarized in Section 6.

2. BACKGROUND
Hardware/software codesign implementations arise from

applications where there are fixed constraints that cannot
be met in software but do not warrant a fully hardware so-
lution. The basic design flow starts with a description of
the application that is partitioned into hardware and soft-
ware components. The processes running on each compo-
nent are scheduled to provide the necessary communication
between modules. The behaviour of the two environments
and their interface can be approximated using cosimulation
techniques. If this model of the system does not meet the
necessary specifications, the designer may need to return to
the first phase of the process and re-partition the design.
However, if the design constraints appear to be met, the
design can be cosynthesized and implemented on the target
platform. Hardware/software codesign research aspires to
address the challenges resulting from each of these complex
problems.

This section describes the previous research that uses re-
configurable technology in hardware/software codesigns. It
continues with a discussion of how these designs are mod-
elled to provide the designer with the necessary feedback for
making appropriate design decisions. Subsequently, there is
a description of the GNU tool gprof [4], an intrusive software
profiler used to obtain statistics on application performance,
followed by an outline of some of the commercial tools avail-
able for implementing hardware/software codesigns on FP-
GAs. The section concludes with a summary of the problems
arising from these techniques.

2.1 Using FPGAs in Hardware/Software
Codesign

As FPGAs grow in size, they are able to implement an
increasing number of large applications. Most of the pre-
vious work on hardware/software codesign uses FPGAs to
speed up the portions of an application that fail to meet
required specifications. These systems use one or more FP-
GAs that are configured once per application [5], or dynam-
ically reconfigured on Dynamically Programmable Gate Ar-
rays (DPGAs) at runtime [6], to implement different func-
tions. Programmable Active Memories (PAMs) are also used
as dynamically reconfigurable coprocessors [7]. These sys-
tems benefit from the lower redesign costs of reconfigurable

technology, but they do not utilize the technology to obtain
feedback as to the actual performance of their design.

The recent advent of soft processor cores for FPGAs en-
ables the customization of a processor core as an application
specific embedded processor [8]. Hebert et al. use soft-cores
to simplify the creation of application-tailored processors
by reducing the design time and removing the need for pro-
cessor specific emulators. In this case, the designers use
reconfigurable technology for prototyping [8].

Tools developed for embedded systems with reconfigurable
hardware include a partitioner for dynamically reconfigurable
systems that minimizes the energy-delay cost due to compu-
tation and configuration by Rakhmatov et al. [9]. Noguera
and Badia [10] also present a dynamic scheduling methodol-
ogy for runtime reconfigurable architectures in hardware/soft-
ware codesign. To obtain a schedule that minimizes run-
time reconfiguration overhead, the scheduler relies on a par-
titioner to create a good mapping of the algorithm to hard-
ware and software. The partitioner’s choices are based on
delay and area estimates and data from software profiling
tools.

A common problem in hardware/software codesign is that
the quality of the design is dependent on the partitioner’s
allocation of resources. However, the partitioner must make
its choices based on estimates or models. Since partitioning
occurs at the very beginning of the design process, there is
no precise feedback available to the partitioner. The next
section contains a brief discussion of some codesign simula-
tion tools and how they partition a design.

2.2 Simulating and Partitioning
Hardware/Software Codesigns

Conventional cosimulation environments emulate systems
that combine a microcontroller with dedicated hardware to
implement an embedded system [11, 12]. However, their
simulation techniques result in only an approximation of the
actual system performance. Some of the more recent hard-
ware/software codesign research uses reconfigurable proces-
sors as the platform for implementation [13, 14]. These ar-
chitectures combine a reconfigurable functional unit with
the microprocessor, but do not use the reconfigurability to
provide runtime performance information to benefit the par-
titioning process. Although the precise details of how ap-
plications are profiled for all of these projects are not pro-
vided, they attempt to simulate system performance to ob-
tain this data. Mentor Graphics offers Seamless [15], a
hardware/software co-verification simulation tool that en-
ables a designer to interface Instruction Set Simulators (ISS)
with memory and dedicated logic to detect scheduling prob-
lems. However, the cost of simulating both hardware and
software causes simulations to run at 1000 to 5000 instruc-
tions/second.

Profiling and simulation are integral methods for acquir-
ing performance information about an application, varying
in both speed and accuracy. The most accurate method
is simulating a system’s performance on a cycle-accurate
simulator. However, this accuracy incurs significant over-
head, and consequently, may be too slow for large systems.
Instruction-level simulators provide a coarser level of granu-
larity of simulation, sacrificing accuracy for faster execution.

Designers can also profile an application during execution
to measure aspects of performance. Most modern micropro-
cessor’s include a limited number of hardware performance

counters that can be used to count “Events”. A Perfor-
mance Application Programming Interface (PAPI) [16] pro-
vides users with a high-level interface for the usage of these
counters. By annotating the application with calls to PAPI
functions, the user can count numerous different kinds of
Events [17]. The accuracy of PAPI’s results is dependent
on a large enough code space such that the overhead of
the PAPI sampling code doesn’t dominate the counter val-
ues [18]. Intel provides a commercial performance analyzer,
VTune, that allows users to utilize the hardware counters on
their processors to profile performance [19]. Another popu-
lar profiling tool for measuring performance from GNU [4]
is described in the following section. Unlike PAPI, it is a
statistical profiler that does not use the hardware counters.
However, similar to PAPI, the results are of limited preci-
sion.

2.3 GNU’s gprof
When creating an embedded system, one approach is to

implement the entire design in software and then profile
it. Using this information, a designer moves components
to hardware to meet the necessary performance constraints.
Another approach is to assume that the entire design is in
hardware, and then move as many components into software
as possible such that the specified constraints are still met.
Assuming the former approach, tools such as gprof can mea-
sure the performance of a software implementation as well
as determine the characteristics of an application’s execu-
tion [20]. This profiling may be done on a different system
from the actual target system, which leads to inaccuracies
in the results. Changing the platform affects the Instruction
Set Architecture (ISA), the microarchitecture, the compiler
and potential optimizations, resulting in variances in the
executable that is profiled.

To use gprof, the designer must compile and link the ap-
plication with the profiling options enabled. Unlike PAPI,
where the user manually inserts the profiling routines into
the application, the compiler automatically generates the
extra code necessary for generating the profile information
used by gprof. It inserts this code into the application to
count the function calls and to generate an interrupt that
samples the Program Counter (PC). While this method al-
lows a precise tabulation of the number of times each func-
tion is called, the timing information it obtains from the
execution is not as accurate.

At specific intervals, normally every 10 ms, gprof samples
the PC [20]. Depending on the value of the PC, it incre-
ments the execution time of the appropriate function by the
sample time. This means that unless the total runtime of the
application is significantly larger than the sampling period,
the measured execution time for each function may be mis-
representative of the actual execution time. Therefore, for
smaller executables, applications are run numerous times so
that the profiling information accumulates for a substantial
runtime.

Obviously, there is a measurable cost to using a runtime
profiler on software executing on a processor. The values are
imprecise and there is overhead to running the profiling soft-
ware. However, the runtime profiling overhead is negligible
compared with the time required to provide cycle accurate
information by simulation. In other words, while gprof may
add additional seconds or minutes to a software applica-
tion’s execution, cycle-accurate simulation requires seconds

to minutes to simulate each cycle of a hardware system, de-
pending on its complexity. Both Altera and Xilinx provide
versions of gprof that are able to run locally on their soft
processors. They also supply other design tools, some of
which are described in the subsequent section.

2.4 Designing Embedded Systems on FPGAs
Xilinx and Altera both support the design of systems

combining a processor with dedicated hardware. Altera
provides designers with the System On a Programmable
Chip (SOPC) Builder [21], which hooks into the Quartus
II tools [22]. The user specifies a complete system from IP
and user designed components and then the SOPC Builder
generates the system.

Having created a design, the user can both debug and sim-
ulate its performance. ModelSim [23] can simulate a Nios
system design, including the peripherals. This is done by
simulating the entire system, including the processor, at the
RTL or gate-level. While it provides cycle-accurate infor-
mation, it is extremely slow making the simulation of larger
applications prohibitive. To facilitate on-board debugging
of the software, Altera provides multiple options. A sim-
ple monitor program called GERMS allows basic debugging
operations, and for more complex options, there is GNU’s
gdb, but it can only run on a processor instantiated on an
FPGA. Finally, Altera has partnered with First Silicon So-
lutions [24] to provide a core that connects to the Nios pro-
cessor and acts as a system analyzer.

Xilinx provides users with a similar tool set, the Embed-
ded Development Kit (EDK). It is available as a separate
environment for designing embedded systems on FPGAs.
Similar to the Altera SOPC Builder, it generates the neces-
sary hardware and software interfaces to facilitate the design
of an embedded system.

To simplify the debugging of designs run on a MicroBlaze
processor, Xilinx provides an Instruction Set Simulator that
may be run in a cycle-accurate mode on a host computer.
Unfortunately, this cycle-accurate simulation does not sup-
port peripherals at present, which would allow for faster
simulation of the processor when embedded with the rest of
the hardware. As with Nios, the complete design, including
the processor, must be simulated at the HDL/gate level to
obtain a complete simulation.

The users can also insert a Xilinx command stub (xmd-
stub) into their design, which attaches a monitor program to
the design so that the user is able to debug the executable
on the board. They access their executable via the XMD
command window or the gdb interface on the host. As the
XMD window is a TCL shell, users can add their own com-
mands to interface with a design implemented on an FPGA.
Finally, Xilinx supports an IP core, the Microprocessor De-
bug Module (MDM) that enables the user to perform JTAG
based debugging on a configurable number of MicroBlaze
processors.

Both companies provide numerous tools for debugging ap-
plication software. However, neither supply tools capable
of providing cycle accurate performance information for an
application running in real time on a soft processor core
instantiated on an FPGA. This is a factor in embedded sys-
tem design. The importance of obtaining precise perfor-
mance measurements for quality design implementation ne-
cessitates performance-based tools for designs that are pro-
hibitively large for proper simulation.

CPU
valid_PC

Segment 0

Segment 1

bus
read

Clock

Counter:
Increment Enable

Segment N-1

PC Comparators:

..

.

PC

PC<=hi address

PC>=lo address

Code Segment

Counters:
Clock Cycle

Figure 1: The Generic SnoopP Architecture.

2.5 Summary
To create a good partition of hardware and software com-

ponents, the partitioner requires accurate feedback as to the
performance of the design. Currently, the partition deci-
sions rely on simulated performance and profile data. As de-
scribed in Section 2.3, depending on how the profiler works,
its data may not be very accurate. Furthermore, simulators
must estimate and model performance, which means that
they can only approximate final system performance.

3. ON-CHIP PROFILING:
A NEW APPROACH

SnoopP is an approach to profiling that is targeted specif-
ically at reconfigurable technology. The goal is to be able
to precisely profile an application running in software. The
premise is that simulating the cycle-accurate performance
of a reconfigurable circuit is extremely computationally in-
tensive and should only be used to determine preliminary
functionality and not performance. Since the design plat-
form is reconfigurable, measuring performance is possible as
long as the user is able to obtain direct feedback on the
design’s actual behavior. By using the reconfigurable envi-
ronment to test the system, instead of a simulator, design
time can be reduced. The subsequent sections describe the
generic architecture of SnoopP and how it benefits the de-
sign process.

3.1 General Architecture
Figure 1 illustrates the general structure of SnoopP. As

seen in the diagram, the hardware module monitors the PC
to see if it accesses specified code segments. Another signal,
such as valid PC may be required to indicate when the value
in the PC is valid. The user can vary the number of code
segment counters to suit the particular application being
profiled.

Segment N-1 is magnified to illustrate the internal work-
ings of a code segment’s cycle counter. To determine if the
PC is in range, comparators check to see if the present PC
value is between the specified low and high addresses. If
the PC is valid and is presently accessing an address within

Start

Done

No

Yes

Profile

Simulate
Functionality

Specs ?

Met
Design

Software
Write Software/

Hardware

Rewrite

Figure 2: The Proposed Reconfigurable Hard-
ware/Software Design Flow.

these bounds, then the counter value is incremented. The
user reads and resets the counters in software through their
connection to an external read bus. Thus, SnoopP allows
the designer to measure the exact number of clock cycles
the program spends executing each specified code segment
at runtime.

3.2 Benefits to the Design Process
Presently SnoopP is only able to profile software, however,

the long term objective is to create a tool that allows the
user to measure the real time performance of both the soft-
ware and the hardware on a reconfigurable platform. Ideally,
SnoopP allows the designer to assess which aspects of the
design, in software or hardware, fail to meet the required
specifications. This leads to the introduction of the design
flow shown in Figure 2.

The process begins by describing the entire application in
software. Once the software is functionally verified, SnoopP
profiles it on-chip. If a software implementation fails to meet
the design specifications, the profiling information is used
by a partitioner or the designer to select which components
should be moved to hardware. The design is then re-written
to comprise hardware and software components. Again, the
user performs functional verification to ensure that the de-
sign is correct.

When SnoopP reprofiles the system, the designer again
determines if the required design specifications have been
met. If not, the designer iterates between retuning the hard-
ware/software codesign and profiling its performance until
all specifications are met. In this fashion, SnoopP allows the
user to quickly obtain feedback about design performance.

Although, SnoopP currently only profiles program exe-
cution, it can easily be adapted to profile data accesses in
specified memory regions. Yet, unlike most software profil-
ers that must insert extra code into an application to ob-
tain profiling data, SnoopP is non-intrusive in that it does
not alter the user’s software executable. It is an indepen-
dent hardware module, a Snooping Profiler (SnoopP), that
observes the executed PC to determine if any of the coun-
ters should be incremented. While the additional hardware
circuitry that monitors the processor may be viewed as in-
trusive to the hardware system, it does not affect software
execution.

This technique not only ensures that software performance
is unchanged by the addition of the profiler, it also enables
a much more precise measure of execution time. Where
profilers such as gprof sample the program counter to ap-
proximate the portion of time spent executing each function,
SnoopP counts actual clock cycles and does it very quickly.

The most important benefits to designing hardware/soft-
ware codesigns on an FPGA are that there is no need to
finalize the partitioning of the design at the beginning of
the design process or to create a complex cosimulation en-
vironment to model communication between hardware and
software. The system can be run on the reconfigurable fabric
where the precise interaction between hardware and software
can be tested and it is easy to iterate between partitioning
and profiling the design. Furthermore, by profiling the sys-
tem on-chip it is possible to obtain exact measures of perfor-
mance and thus provide better feedback for the partitioning
process.

4. TOOL DESCRIPTION
This section describes an implementation of SnoopP for

the Xilinx MicroBlaze processor.

4.1 Experimental Platform
For this study, the Xilinx Multimedia Board with a Virtex

II 2000 was used to implement MicroBlaze designs. SnoopP
is designed to complement the existing Xilinx tools, using
the xmdstub and xmd monitor program as the user interface.
Although this implementation of SnoopP is intended to run
with MicroBlaze processors, all it requires to profile the per-
formance of a software application is access to the executing
PC of the processor and an indication of when the PC is
valid. To port SnoopP to a different design platform, it may
also be necessary to adapt the present I/O interface to new
system bus protocols to make the counter values accessible.

The Xilinx MicroBlaze processor is a soft-core that can be
configured to best support the application that is being run
on the system. However, since the objective of this study
was to develop a real-time, non-intrusive, on-chip profiler
for software running on a soft core processor, the default
values for the MicroBlaze core were adequate. This includes
using the software implementation of the multiply instruc-
tion, even though the hardware version is supported on the
Virtex II architecture.

4.2 The SnoopP Circuit
Figure 3 illustrates how SnoopP interfaces with a MicroB-

laze system. It connects to the On-Chip Peripheral Bus
(OPB) as a slave device. The counters are memory mapped,
which enables the contents to be read and reset from the
xmd monitor interface. SnoopP also connects to the Mi-

O
n-

C
hi

p
Pe

ri
ph

er
al

 B
us

 (
O

PB
) MicroBlaze

.

Other
Peripherals

..

PC_EX valid_instr

SnoopP

user code

xmdstub

Figure 3: The Interface of SnoopP with a MicroB-
laze System.

. . .
Code
Segment
Counter 1

Code
Segment
Counter N-1

PC_EX

valid_instr

Code
Segment
Counter 0

Figure 4: The Architecture of the Code Segment
Counting Component.

On-Chip Peripheral Bus

. . .

select

reset

Address/
Function
Decoder

Code
Segment
Counter 0

Code
Segment
Counter 1

Code
Segment
Counter N-1

Figure 5: The Architecture of the OPB Interface
Component.

croBlaze processor to determine the addresses of executed
instructions during runtime.

The internal structure of SnoopP subdivides into two com-
ponents – the instruction counters and the OPB interface.
The former profiles the system with the user-specified num-
ber of counters while the latter provides software access to
their values. To profile the system, SnoopP connects to the
MicroBlaze processor, as seen in Figure 4. The MicroBlaze
processor has a PC EX bus that displays the executing pro-
gram counter and a valid instr signal that is high when the
value on the PC EX bus is valid. Thus a counter incre-
ments every time the value of the PC EX bus is both valid
and in range. This results in an accurate clock-cycle count
of the time spent in a code segment. For a cycle-accurate
profile of data region accesses, SnoopP simply needs to read
the address bus and look for a “valid data address” signal.
The OPB interface, illustrated in Figure 5, is responsible for
resetting the counters and writing their values to the OPB.

4.3 User Parameters
SnoopP allows the user to choose from a limited number of

counters to define independent instruction ranges. The user
can obtain the addresses for the upper and lower bound
parameters by assembling the code or reading the symbol
table. The HDL wrapper for SnoopP includes these values,
along with the number of counters, as parameter definitions.
Furthermore, parameters in the HDL wrapper enable the
user to memory map the counters to any address space that
is available in their design. Since all of these parameters are
hardwired during synthesis, the number of counters, their
individual address ranges and their location in the memory
map can only be set before circuit synthesis.

When using SnoopP, it is important to remember that
only instructions executed in contiguous regions of memory
are counted. For example, to accurately profile how long a
function A with subfunction calls X, Y, and Z takes to exe-
cute, the user must assign a counter to the function as well
as to each of the subfunctions called during it’s execution
(i.e. A, X, Y, and Z). Furthermore, if another function B
calls any of these subfunctions, for instance Y, it may not
be possible to distinguish which portion of the subfunction
Y ’s execution time is due to function A versus function B.

4.4 SnoopP interface
The standard EDK design flow can incorporate the SnoopP

logic block into the design as a separate module. Once the
design is downloaded onto the board, the xmd control win-
dow provides a software interface to the system design. The
commands available in xmd allow the user to control and
examine the SnoopP counters. This includes writing TCL
scripts that can initialize the circuit and analyze the results.

4.5 Design Decisions
The objective is to make the SnoopP circuit as small and

as fast as possible so that it doesn’t impact the embedded
system design. However, to be a useful software profiler, it
must allow the user flexibility in specifying address ranges
and the number of counters for the system. The decisions
outlined below are an attempt to balance these issues.

The maximum number of profiling counters is set to 16
to limit circuit size. Each counter requires two comparators
to determine if the 32-bit address is in a valid range. To
provide complete flexibility in specifying the code segments,

there is no minimum or maximum code segment size. This
means that a code segment could be anywhere from a single
instruction to an entire program. However, this flexibility
has potential performance costs as the comparators must be
large enough to differentiate between individual instruction
addresses. Thus, the number of counters and code segment
boundaries are hard-wired for each design. While it is desir-
able to be able to reload the boundaries between application
runs, it is potentially more important that the circuit not
limit the system’s clock speed. However, if speed is not a
concern, then the design can easily be changed to using pro-
grammable address ranges.

Since most software programs require many cycles for
completion, 64-bit counters are used to store the clock cycle
counts. The decision to count clock cycles, as opposed to the
number of executed instructions, is based on the desire to be
precise as to the actual time spent executing each code seg-
ment. Given that most code segments will include a branch
and/or a memory fetch, there will likely be pipeline stalls
that could significantly increase the time spent executing a
segment. This stall time is not accounted for if only the
number of executed instructions are counted.

While this architecture provides the user with significant
flexibility for profiling software, the hardware required to
implement SnoopP with the maximum 16 counters is un-
desirably large. The architectural decisions translate into
a maximum circuit size that utilizes 1129 flipflops and 1719
LUTs for logic. The 16 64-bit counters require 1024 flipflops,
accounting for 91% of the flipflops utilized by SnoopP. The
remaining flipflops latch internal control signals to prevent
the system’s critical path from being in SnoopP for this sys-
tem.

In the present MicroBlaze system, SnoopP does not limit
the maximum clock speed and, ideally, the profiling circuit
will never be on the system’s critical path. However, if the
design is approaching the capacity of the FPGA, it may be
unavoidable. If necessary, SnoopP can be pipelined to re-
duce the delay path in faster systems. This includes latch-
ing the PC EX and OPB ABus buses and the valid addr
and OPB select signals. These additions have not been in-
corporated into the present version of SnoopP as they are
unnecessary and increase the size of the circuit.

To implement the 32 32-bit comparators used to deter-
mine if an executing PC is within a code segment requires
1024 LUTs. This encompasses only 60% of the LUTs em-
ployed in the SnoopP, but does not include the logic required
to interface SnoopP to the OPB. The OPB interface must
use two comparators to resolve that the user has accessed the
SnoopP memory space. More logic is required to select the
counter operation and to implement a 16-to-1 multiplexer
that drives the appropriate value onto the OPB. Thus, the
resources necessary to implement SnoopP using 16 counters
is actually larger than what is required to implement a Mi-
croBlaze processor, and an area for future study is possible
methods of minimizing the size of SnoopP. These include re-
ducing the maximum number of counters, the counter size,
or the resolution of the address ranges.

5. PROFILING BENCHMARKS
This section illustrates how SnoopP is used to profile two

different benchmarks. It details the issues encountered when
profiling each application and concludes with a discussion of
the effectiveness of the SnoopP approach.

Function Name Total Calls

Func 1 300

Proc 7 300

Func 2 100

Func 3 100

Proc 1 100

Proc 2 100

Proc 3 100

Proc 4 100

Proc 5 100

Proc 6 100

Proc 8 100

main 1

Table 1: gprof Statistics on Functions compris-
ing the Dhrystone Benchmark after One Hundred
Passes.

5.1 Methodology
The first benchmark, Dhrystone [25], is a relatively small

application whereas the second, a cipher block chaining im-
plementation of the Rijndael algorithm (AES) [26], is sig-
nificantly larger. There are two possible methods of using
SnoopP to profile software performance. The first is to use
gprof to obtain an initial profile of executable performance.
This information can be used to try and assign the counters
to what gprof determines are the important regions of the
executable.

The other method is to perform all the profiling using
SnoopP. To do this, the user divides the software executable
into groups of functions forming continuous address blocks
and obtains an initial profile. The regions that require the
largest percentage of execution time can be subdivided fur-
ther to determine which specific functions take the most
execution time. Depending on the size of these regions, the
number of functions and the division of execution time, the
user may have to iterate through this process until a suitable
performance profile has been obtained.

Given that the design must be resynthesized every time
the counter range values change, it is preferable to limit the
number of times SnoopP must be reconfigured to profile the
system. Therefore, for this study, the application is initially
profiled with gprof on a Sun Blade 1000 running version
8 of the Solaris OS. The design is then run on a MicroB-
laze processor instantiated on the FPGA and profiled with
SnoopP for more precise performance information. Both ap-
plications are compiled using gcc -O3 for both the Sun and
MicroBlaze platforms. As the authors are unfamiliar with
the executional behaviour of both benchmarks, it prevents
the intentional assignment of the counters to known prob-
lem areas and ensures that the method is totally dependent
on profiling information.

5.2 Dhrystone
Dhrystone is a synthetic benchmark to test a system’s

integer performance that Xilinx uses to measure MicroBlaze
processor performance. The downloaded MicroBlaze version
of Dhrystone makes only one hundred passes through the
main loop. This means that gprof is unable to obtain any
statistical timing information as it completes execution in
less than 10ms on the workstation.

As can be seen from Table 1, Func 1 and Proc 7 are called
three times more than the other procedures in the bench-
mark. However, this does not provide any indication as to

Function Percent Self Cumulative Total

Name Time Seconds Seconds Calls

internal mcount 39.0 0.76 0.76 —

Proc 8 12.8 0.25 1.01 1000000

main 8.7 0.17 1.18 1

Func 1 5.6 0.11 1.29 3000000

mcount 5.6 0.11 1.40 —

Proc 7 5.1 0.10 1.50 3000000

Proc 1 5.1 0.10 1.60 1000000

Proc 2 4.1 0.08 1.68 1000000

Proc 4 3.6 0.07 1.75 1000000

Func 2 3.1 0.06 1.81 1000000

Proc 3 2.1 0.04 1.85 1000000

Proc 6 2.1 0.04 1.89 1000000

Func 3 1.5 0.03 1.92 1000000

Proc 5 1.5 0.03 1.95 1000000

Table 2: gprof Statistics on Functions comprising
the Dhrystone Benchmark after a Million Passes.

Counter Function Number of

Number Name Instructions

0 main 368

1 Proc 1 65

2 Proc 2 13

3 Proc 3 17

4 Proc 4 17

5 Proc 5 7

6 Proc 6 41

7 Proc 7 5

8 Proc 8 65

9 Func 1 10

A Func 2 47

B Func 3 7

C divsi3 proc 38

D malloc 10

E mulsi3 proc 22

F strcmp 32

Table 3: Dhrystone SnoopP Counter Assignments.

which functions are the most costly to implement in soft-
ware. By increasing the number of passes to a million, gprof
is able to obtain the data in Table 2

The functions internal mcount and mcount are part of
the profiler and count the number of times a function is
called during execution. While gprof does not report the
number of times these functions are called, their combined
overhead accounts for 44.6% of the execution time calculated
by gprof. Although this data dominates the results, the
increased execution time provides a clearer picture of where
most of the execution time is probably spent. It is also
interesting to note that while Func 1 and Proc 7 have three
times the number of function calls, the executable appears
to spend more than twice their respective execution times
in Proc 8.

Since this application only has a few functions, it is pos-
sible to assign the counters in SnoopP to almost every func-
tion. Table 3 outlines how the application is partitioned
into profiling segments. It includes the number of instruc-
tions per code segment to indicate the static size of the code
and to give better context to the profiling results. The table
also illustrates that main accounts for 48% of the static code
size whereas Proc 8 is only 8.5%. When selecting which re-
gions should be profiled, all the initialization and clean up
portions of the executable were ignored as they add little
overhead and cannot be moved to hardware.

Function Percentage Percentage Percentage

Name of Execution of Execution of Execution

Time Time Time

(100 Passes) (A Million (100 Passes)

Passes) HW multiply

mulsi3 proc 29.31 29.34 —

divsi3 proc 14.93 14.95 22.41

main 12.81 12.75 18.40

strcmp 10.32 10.33 15.49

Proc 1 8.23 8.24 12.36

Proc 8 7.69 7.69 6.43

Func 2 4.06 4.07 6.10

Proc 6 3.07 3.08 4.45

Proc 3 1.87 1.87 2.80

Proc 4 1.87 1.87 2.80

Proc 7 1.65 1.65 2.47

Proc 2 1.43 1.43 2.14

Func 1 1.32 1.32 1.98

Proc 5 0.77 0.77 1.15

Func 3 0.66 0.66 0.99

malloc 0.02 0.00 0.03

Table 4: Cycle-Accurate Results using SnoopP to
Profile Dhrystone on MicroBlaze systems that in-
clude and exclude the Hardware Multiplier.

Table 4 contains the results obtained from profiling the
Dhrystone benchmark on the FPGA. The percentages are
based on assuming that the total execution time can be ap-
proximated by summing the time spent executing the func-
tions within the user written portion of the executable. No-
tice that there is a significant difference between results ob-
tained by SnoopP versus gprof. Not only are the execution
time percentages different, but gprof ranks Proc 8, Func 1,
and Proc 7 as the top three of the application’s functions
consuming processing time. In contrast, SnoopP proves that
excluding the library functions, Proc 1, Proc 8, and Func 2
actually consume the most processing time. Therefore, if
the designer bases the partitioning of the design on the re-
sults from gprof, the designer does not select the appropriate
functions to implement in hardware.

Comparing columns two and three illustrate the consis-
tency of profiling information obtained using SnoopP. While
gprof obtained different profiles by executing the Dhrystone
main loop one hundred times versus a million times, SnoopP
obtained results that vary by no more than 0.06%. The re-
sulting variance is easily explained by the diminishing sig-
nificance of initialization code with respect to the longer
execution time of the main loop. Therefore, SnoopP is able
to obtain more accurate and consistent results in only 0.01%
of the execution time.

The two functions requiring the largest percentage of the
execution time are mulsi3 proc and divsi3 proc. These im-
plement software versions of the integer multiply and divide
functions respectively. The divide function is only called in
main whereas the multiply function is called in both main
and Proc 8. Column 4 illustrates how the inclusion of the
hardware multiplier can affect the performance profile.

The removal of the software multiply instruction reduces
the overall instruction count, which generally increases the
percentage execution time of all of the functions except for
Proc 8. Since Proc 8 calls mulsi3 proc, these results are
not intuitive. However, the reason for the decrease in ex-
ecution time is mainly due to the fact that the number of
instructions in the function dropped from 65 to 34 due to

Function Percent Self Cumulative Total

Name Time Seconds Seconds Calls

MixColumns 48.9 0.23 0.23 180000

rijndaelEncrypt 42.6 0.20 0.43 20000

internal mcount 4.3 0.02 0.45 —

blockEncrypt 2.1 0.01 0.46 20000

cipherInit 2.1 0.01 0.47 20000

makeKey 0.0 0.00 0.47 2

rijndaelKeySched 0.0 0.00 0.47 2

main 0.0 0.00 0.47 1

rijndaelCBC MCT 0.0 0.00 0.47 1

Table 5: gprof Statistics on Functions Comprising
the AES Benchmark for 2 Different Keys with 10
Thousand Blocks Each.

optimizations that were possible with the removal of the
software multiply.

In summary, the difference between the results obtained
on the FPGA with SnoopP and those obtained using gprof
highlight the inaccuracy of sampling the program counter
to determine which functions require the longest execution
time. Moreover, the on-chip results only required one hun-
dred passes of the main loop in Dhrystone whereas a million
passes were needed to obtain statistical timing information
using gprof.

5.3 AES
AES is a more realistic benchmark for SnoopP to pro-

file [27]. Like Dhrystone, it also uses only integer math-
ematical operations. However, it is a popular design for
hardware, which can greatly increase the throughput rate of
the encryption.

Originally, gprof profiled the application with two differ-
ent keys encrypting ten thousand blocks each. However,
since the internal mcount function ranked third in terms of
processing time, the number of keys used to encrypt the ten
thousand blocks was increased to four hundred. The results
from these different runs are found in Tables 5 and 6 re-
spectively. As can be seen from these tables, the percentage
of execution time for each function changes as the execu-
tion time is increased. Furthermore, the longer run of the
executable resulted in rijndaelCBC MCT accruing a larger
percentage of the execution time than in the shorter pass.
Another side effect of increasing the number of keys to 400
is that the timing interrupt resulted in mcount being sam-
pled.

The AES executable is significantly larger than that of
Dhrystone, hence it is impossible to assign individual coun-
ters to each of the functions. Instead, one counter is assigned
to count all the clock cycles used in the executable and the
rest are assigned to functions deemed important in the pro-
filing results from gprof. Remembering that the counters will
only increment when the program is inside their respective
code segments, counters are also assigned to the functions
called by these main functions. Table 7 summarizes what
functions are chosen for profiling and number of instructions
comprising each.

Table 8 summarizes the results obtained using SnoopP to
profile AES when only two keys are used and when four hun-
dred keys are used. There is only one column of results as
there is no change in any of the values when the number of
keys is increased, reinforcing the fact that the on-chip pro-
filing provides valuable information with significantly less

Function Percent Self Cumulative Total

Name Time Seconds Seconds Calls

MixColumns 56.5 43.75 43.75 36000000

rijndaelEncrypt 32.8 25.34 69.09 4000000

blockEncrypt 3.5 2.67 71.76 4000000

internal mcount 3.2 2.46 74.22 —

cipherInit 2.8 2.16 76.38 4000000

rijndaelCBC MCT 1.2 0.90 77.28 1

mcount 0.1 0.09 77.37 —

makeKey 0.0 0.00 77.37 400

rijndaelKeySched 0.0 0.00 77.37 400

main 0.0 0.00 77.37 1

Table 6: gprof Statistics on Functions Comprising
the AES Benchmark 400 Different Keys with 10
Thousand Blocks Each.

Counter Function Number of

Number Name Instructions

0 Entire Program 13840

1 MixColumns 139

2 rijndaelEncrypt 308

3 blockEncrypt 309

4 cipherInit 97

5 makeKey 149

6 rijndaelKeySched 301

7 main 14

8 rijndaelCBC MCT 445

9 modsi3 proc 38

A mulsi3 proc 22

B divsi3 proc 38

C strncpy 66

D memcpy 11

E sprintf 26

F vfprintf r 1652

Table 7: AES SnoopP Counter Assignments.

loop iterations. The majority of the execution time is spent
in the modsi3 proc. This function is called in MixColumns,
rijndaelEncrypt, rijndaelKeySched, and mul, which explains
its dominance. modsi3 proc is an internal function used to
implement a software version of the modulus function, sim-
ilar to mulsi3 proc, and divsi3 proc.

MixColumns and rijndaelEncrypt, ranked first and second
by gprof in terms of sampled execution time, are expected
to require significant execution time. Although their execu-
tion does not obviously dominate the results obtained using
SnoopP, the reason is that the time spent in function calls
is not counted in these percentages. This includes the time
spent in modsi3 proc, which is called twice from both Mix-
Columns and rijndaelEncrypt.

The percentage of the total execution time measured by
the SnoopP counters equaled 96.72%. Since one counter is
used to measure the application’s total execution time and
the remaining fifteen are assigned to look at specific func-
tions, this is reasonably good coverage. It translates into
monitoring only 3555 instructions, which is 26% of the total
application to achieve over 95% of the executional time cov-
erage. This coverage is partially due to the compiler inlining
function calls so that the executable contains functions, such
as mul, that are never called during program execution.

Profiling AES demonstrates that the initial profile gprof
provides is a valuable indicator of potential performance hot
spots. The on-chip profiling results suggest that the first
function to implement as hardware would be the modulus

Function Percentage of

Name Execution Time

modsi3 proc 65.24

MixColumns 14.13

rijndaelEncrypt 7.78

vfprintf r 5.71

blockEncrypt 1.16

cipherInit 0.93

mulsi3 proc 0.62

sprintf 0.46

rijndaelCBC MCT 0.32

memcpy 0.19

divsi3 proc 0.17

rindaelKeySched 0.00

makeKey 0.00

strncpy 0.00

main 0.00

Table 8: The Results from Profiling AES on-chip
with SnoopP for Both 2 and 400 Keys.

function. It has the largest execution time and is called from
multiple functions. The other most obvious function to im-
plement in hardware is MixColumns, which requires almost
twice the execution time of the next most time consuming
function and is at the core of the encryption algorithm.

5.4 Results of using SnoopP
Using SnoopP to profile a system produces consistent,

fast, clock cycle accurate profiles of execution performance
as demonstrated by the results of profiling Dhrystone and
AES. While, gprof is able to obtain a basic overview of
software performance, it needs numerous more loops of the
main algorithm to obtain its percentage of execution time
per function. Moreover, this data is statistical and does not
match the exact results measured by SnoopP. However, the
initial profile from gprof is very useful in determining which
code segments likely require the most execution time. It
greatly facilitates the assignment of the SnoopP counters to
the appropriate code segments.

6. CONCLUSIONS AND FUTURE WORK
SnoopP is a real-time, non-intrusive, on-chip software pro-

filer for soft core processors on a reconfigurable platform. It
provides clock-cycle accurate results at speeds much faster
than possible by simulation without altering the executable.
It is proposed as part of an approach to a new system de-
sign flow where the design performance is not simulated but
measured on-chip. An implementation of SnoopP on a Xil-
inx Virtex II FPGA with the MicroBlaze processor has been
used to profile two benchmarks that are unfamiliar to both
authors to demonstrate the facility of its use. Furthermore,
the modular design of the circuit makes it easily adaptable
to other platforms.

The future direction of this project is to adapt SnoopP to
profile systems that comprise both software and hardware
components. Research towards reducing the area and delay
of SnoopP is currently underway. Finally, if the profiler
runs fast enough, soft loadable boundaries would reduce the
number of times a design might need to be resynthesized to
profile the different desired code segments.

Acknowledgments
This research was supported by the Natural Sciences and
Engineering Research Council and the Ontario Government.
The authors would like to thank Tor Aamodt, Anish Alex,
Jason Anderson, Tomasz Czajkowski, Ian Kuon, and the
anonymous reviewers for their many helpful comments and
suggestions. The authors would also like to acknowledge
Goran Bilski, Satish Ganesan, Ram Subramanian, and Ralph
Wittig from Xilinx for providing additional information on
MicroBlaze and their embedded system design tools.

7. REFERENCES
[1] Altera’s Home Page. Online: http://www.altera.com.

[2] Xilinx’s Home Page. Online: http://www.xilinx.com.

[3] K. S. Hemmert, J. L. Tripp, B. Hutchings, and P. A.
Jackson. Source Level Debugger for the Sea Cucumber
Synthesizing Compiler. In IEEE Symposium on
Field-Programmable Custom Computing Machines,
April 2003.

[4] GNU’s Not Unix! The GNU Project and Free Software
Foundation (FSF). Online: http://www.gnu.org.

[5] S. Kimura, Y. Itou, and M. Hirao. A
Hardware/Software Codesign Method for a General
Purpose Reconfigurable Co-Processor. In 5th
International Workshop on Hardware/Software
Co-Design (Codes/CASHE ’97), March 1997.

[6] J. Fleischmann, K. Buchenrieder, and R. Kress.
Codesign of Embedded Systems Based on Java and
Reconfigurable Hardware Components. In Design
Automation and Test in Europe, March 1999.

[7] J. Vuillemin, P. Bertin, D. Roncin, M. Shand,
H. Touati, and P. Boucard. Programmable Active
Memories: Reconfigurable Systems Come of Age.
IEEE Transactions on VLSI Systems, 4(1), 1996.

[8] O. Hebert, I. C. K., and Y. Savaria. A Method to
Derive Application-Specific Embedded Processing
Cores. In Proceedings of the Eighth International
Symposium on Hardware/Software Codesign, May
2000.

[9] D. N. Rakhmatov and S. B. K. Vrudhula.
Hardware/Software Bipartitioning for Dynamically
Reconfigurable Systems. In Proceedings of the Tenth
International Symposium on Hardware/Software
Codesign, May 2002.

[10] J. Noguera and R. M. Badia. Dynamic Run-Time
HW/SW Scheduling Techniques for Reconfigurable
Architectures. In Proceedings of the Tenth
International Symposium on Hardware/Software
Codesign, May 2002.

[11] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh,
A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki,
and B. Tabbara. Hardware-Software Co-Design of
Embedded Systems: The Polis Approach. Kluwer
Academic Press, Dordrecht, The Netherlands, 1997.

[12] R. Ernst, J. Henkel, and T. Benner.
Hardware-Software Cosynthesis for Microcontrollers.
IEEE Design and Test of Computers, 10(4),
September 1993.

[13] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure,
and J. Stockwood. Hardware-Software Co-Design of
Embedded Reconfigurable Architectures. In Design
Automation Conference, June 2000.

[14] M. Baleani, F. Gennari, Y. Jiang, Y. Patel, R. K.
Brayton, and A. Sangiovanni-Vincentelli. HW/SW
Partitioning and Code Generation of Embedded
Control Applications on a Reconfigurable Architecture
Platform. In Proceedings of the Tenth International
Symposium on Hardware/Software Codesign, May
2002.

[15] Mentor Graphics. Seamless Co-verification Simulator.
Online: http://www.mentor.com/seamless.

[16] PAPI’s Home Page. Online:
http://icl.cs.utk.edu/projects/papi/.

[17] S. Browne, J.Dongarra, N. Garner, G. Ho, and
P. Mucci. A Portable Programming Interface for
Performance Evaluation on Modern Processors.
International Journal of High Performance Computing
Applications, 14(3), 2000.

[18] W. Korn, P.J. Teller, and G. Castillo. Just how
accurate are performance counters? In 20th IEEE
International Performance, Computing, and
Communications Conference, April 2001.

[19] B. Sprunt. Pentium 4 Performance-Monitoring
Features. IEEE Micro, 22(4), 2002.

[20] GNU gprof Manual. Online:
http://www.gnu.org/manual/gprof-2.9.1/gprof.html.

[21] Altera’s SOPC Builder. Online:
http://www.altera.com/products/software/system/
products/sopc/sop-index.html.

[22] Altera’s SOPC Builder. Online:
http://www.altera.com/products/software/pld/
products/q2/qts-index.html.

[23] Model Technology Home Page. Online:
http://www.model.com.

[24] First Silicon Solutions Home Page. Online:
http://www.fs2.com.

[25] R. P. Weicker. Dhrystone: A Synthetic Systems
Programming Benchmark. Communications of the
ACM, 27(10), 1984.

[26] J. Daemen and V. Rijmen. Rijndael, the Advanced
Encryption Standard. Dr. Dobb’s Journal, 26(3), 2001.

[27] Page: The Block Cipher Rijndael. Source Code
Download: Reference code in ANSI C v2.2. Online:
http://www.esat.kuleuven.ac.be/ rijmen/rijndael/.

