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Abstract

Intellectual Property (IP) design is a rapidly growing industry and designers and users

are being challenged to develop infrastructure and standard interfaces for this new indus-

try. This research studies the impact that Intellectual Property cores have on the design

of Systems-on-Chip (SoC) implemented on Field Programmable Gate Arrays (FPGAs).

To obtain an understanding of the current state of core technology, a system was built us-

ing multiple IP cores. A core was designed to learn about core design issues while the

remaining cores were obtained from vendors.

The results were slightly discouraging as it is not a simple process to incorporate third

party cores into a design, nor was it easy to obtain cores for the system. Still, the experi-

ence has provided much insight as to what problems must be addressed in the IP industry to

facilitate a design methodology that includes the use of IP. These challenges include basic

concerns such as interfacing difficulties as well as documentation problems that have been

grossly underestimated. Yet the issue remains: circuits are becoming too complex to cus-

tom design and achieve the desired time-to-market of a product; so how can we interface

IP from vendors to a system design in a methodical and timely fashion?
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Chapter 1

Introduction

Recently, it became apparent to the members of the chip design community that a “design

gap” is forming– a gap between what gates an engineer could design per day and the

actual number of gates available [1]. As there has not been a major breakthrough in the

Electronic Design Automation (EDA) community’s design tools, the number of gates an

engineer can design per day has increased minimally while the gate density and speeds

of the chips available to the market have been following Moore’s law. Since an engineer

is only capable of designing so many new gates per day with the tools that are presently

available, the idea of design reuse in system designs has become very popular.

Traditionally, systems have been implemented on printed circuit boards using off-the-

shelf Integrated Circuits (ICs) from different vendors. These chips contained the Intellec-

tual Property (IP) of the company that produced them and were used to provide a certain

functionality to the system into which they were incorporated. ICs were easily mixed

because an infrastructure of interface standards had been developed. This infrastructure in-

cluded testing, selection and verification of components so that mixing ICs from multiple

vendors into one system design would not increase the final product’s time-to-market. At

that time, Field Programmable Gate Arrays (FPGAs) were used to implement glue logic to

interface the different ICs and simple logic functions due to the restrictions of their small

sizes.

Since that time, the smaller process technologies for ICs have achieved greater den-

sities allowing whole systems to be implemented on one or two chips. Now, System-
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on-Chip (SoC) design is considered the trend for the future where a chip has at least one

programmable microcontroller core and memory. Application Specific Integrated Circuits

(ASICs) are becoming multi-million gate devices with more than 80% of their content

determined by reusable hardware and software blocks (Virtual Components) supplied as

cores [2]. Similarly, FPGAs have also increased in size such that their gate counts are ap-

proaching the millions, which allow designers to use FPGAs to implement entire systems.

Designers want the same benefits for their SoC designs as they had for designs imple-

mented on circuit boards. The designers want the cores to hide the detailed functionality

of the components so that they can more easily incorporate different components from

various vendors to create the system design. FPGAs are also becoming popular as a substi-

tute for ASICs as they allow the vendor to lower Non-Recurring Engineering (NRE) costs

while still increasing functionality. They also allow the added benefit of reprogrammabil-

ity, which can lower re-engineering costs if the design must be changed in the future.

In the competitive electronics industry, shorter product time-to-market may be essen-

tial to obtaining a niche in the market. To combat the relative loss of designer productiv-

ity due to the design gap, creating circuits from pre-designed blocks of IP, known as IP

blocks, cores, or virtual components (VCs), is being explored. The theory is that these

pre-designed blocks could be used in SoCs in the same way that off-the-shelf ICs are used

to create systems on printed circuit boards. To further the growth of SoC designs and to

simplify their implementation on FPGAs, both Altera and Xilinx have recently announced

the release of a new FPGA architecture that includes both an embedded processor core and

reprogrammable technology on one chip [3].

SoCs designs are presently hindered in their efficient and economical usage in industry

by the lack of an infrastructure similar to that which is already in place for ICs. There is

no support for the development and verification of cores for the designer and there is no

standard way of interfacing cores from multiple vendors. Each core vendor creates cores,

even ones with the same functionality, such that they require different logic to interface

with the rest of the system design. This creates many difficulties when a designer tries to

rapidly integrate these cores from multiple sources into a single design, as it increases the

overall design time.
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When the concept of reuse took off a few years ago, the buzzwords “intellectual prop-

erty” (IP) created a whole new market niche. Steve Wolfe, editor of CAD Report newslet-

ter, commented at Design Automation Conference (DAC) ’98, that everyone was talking

about IP – it was going to be big business and transform the EDA industry. Ironically, he

noted at DAC 2000, that people were not taking such a sunny view of IP– jokingly calling

it the “Incredible Pain”. Many of the IP vendor businesses are losing money and the ques-

tion that seems to be prevalent to the industry is: “Why doesn’t the IP business work?”.

It is commonly agreed that it is a waste of valuable design time for a designer to rewrite

standard cores, but market numbers suggest that the benefits of design reuse are failing to

materialize as envisioned [4].

Obviously, designers realize the present condition of the IP industry is not providing

the desired speed up in the time-to-market of a product. The question then becomes, why

is this happening and what do vendors and users of IP have to do to make the usage of IP

in their design methodology a seamless and painless procedure. This new technology has

the potential to simplify and shorten the design process, but the problem issues must be

addressed for this methodology to succeed.

1.1 Motivation

The motivation of this study is to explore the issues involved in using IP cores in the design

of a circuit. These concerns include:

• What constitutes a core and what are the deliverables that accompany it?

• How difficult is it to use cores in a design?

• From where could a user obtain a core?

• What are the metrics that can be used to measure and quantify the quality of a core?

• Is there a design methodology for using cores in a system design?

• What are the methods and tools for testing cores?
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There are multiple reasons that this study focuses on FPGAs as opposed to ASICs. First

of all, the number of gates on an FPGA has increased to the point where they may be used

to implement SoC designs and so it is possible to use multiple cores in one design. The fact

that FPGAs are now large enough for implementing an entire system on chip, as opposed

to just glue logic, makes the study of creating systems on this technology worthwhile.

IP cores have also become recently available for FPGAs, which should shorten the design

time of new products. Finally, the tools and hardware for FPGAs are more easily accessible

than ASICs.

1.2 Objective

The objective of this research is to study the impact that Intellectual Property cores have on

the design of Systems-on-Chip implemented on Field Programmable Gate Arrays. The first

step is to learn more about cores by building several systems using cores. This will provide

the design experience to discover the issues related to designing with cores. In conjunction

with designing systems using cores, an actual core is designed to better comprehend the

challenges and limitations of core design.

Having constructed multiple basic systems using cores, the next stage is to create a set

of metrics to qualify and quantify cores and their effects on system design. These metrics

are then applied to the systems to obtain a measure of the quality of the cores and the

systems that use them. To fully understand the system designs, the parameters of each of

the different cores are varied to create multiple versions of each system.

1.3 Contributions

Initially, I had intended to build multiple systems to determine the state of the new technol-

ogy in industry. Unfortunately, I had naively believed that it would be easy to get a large

number of cores from various sources so that it would be possible to construct different

industry size systems. This belief was unjustified and it proved impossible to obtain the

number of cores required to build multiple systems. Instead, only one system was created
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using the cores that were available at the time of the design.

Secondly, a convolutional encoder core was designed as a parameterizable module to

learn the drawbacks of designing in VHDL and the facility of including a core designed

in-house in a system design. Metrics were created to characterize a system design method-

ology that uses cores as well as a core design methodology. By varying the parameters of

the cores in the circuits, multiple versions of the system were implemented. These differ-

ent versions were then tested against the metrics developed for this study. The results were

used to draw conclusions as to what is the state of the present state of IP technology in

industry.

1.4 Thesis Organization

This thesis is divided into six chapters. Chapter 2 looks first at the state of IP technology

in industry today, outlining the definition of a core, the different individuals involved in the

core industry, and the opinion of both industry and researchers as to issues of using cores in

designs. Chapter 3 discusses the circuits used in this study. Chapter 4 describes the metrics

used to characterize the designs to be tested. Chapter 5 presents the results obtained for

each design and Chapter 6 concludes this thesis with suggestions for future work.



Chapter 2

Overview of the Present IP Industry

This chapter provides a summary of the state of IP technology presently used in systems

designs. The different types of cores are described as are the different individuals involved

in the IP industry. Finally, the different organizations and programs that have been devel-

oped by industry to promote the design reuse strategy are described. Before beginning this

discussion, it is important to understand the definition of a core and what separates it from

a normal custom design.

An IP core is a proprietary module of functionality that meets a certain specification

allowing design reusability. The core may or may not be parameterized depending on

its functionality, but there must be some documentation and a method of verifying the

core functionality provided by the vendor. Unfortunately, the definition is made somewhat

ambiguous by the word, “specification”, as there is presently no industry wide standard.

Different companies require that their cores meet different specifications, which is one

reason why it is so difficult to incorporate cores from multiple vendors into a single design.

Although different organizations have suggested standards that cores should meet, unless

they become accepted by the IP industry as a whole, the problem of integration remains.

2.1 Types of Cores

IP cores are implemented at different hardware description levels, which has resulted in the

creation of three categories of cores: soft, firm, and hard [5]. A core is categorized by the

6
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form of its deliverable and each of the three choices offers certain advantages.

Soft cores are delivered in the form of synthesizable HDL and, therefore offer the ben-

efits of being flexible and process independent. Their major disadvantage is the lack of

predictability in terms of timing, area, and power. Security may be another issue as the

source code must be provided, although potentially encrypted, for integration into the final

design. Hard cores are delivered as netlists that have been fully placed and routed. These

cores have the advantage of being predictable and can potentially be optimized for minimal

power and size for a specific process/vendor. Consequently, the lack of flexibility makes

them less portable but also easier to protect because there is no requirement to supply RTL.

Firm cores offer a compromise between these two extremes and are defined as any core

that is neither a soft nor hard core by specification, such as a core provided as a netlist.

Most IP cores for FPGAs are provided as soft cores. This provides the possibility for

the user to adjust parameters, creating greater reuse potential. The soft cores are often

supplied in an encrypted format, so that the actual Register Transfer Level (RTL) is not

visible to the user but the placement and routing are still flexible. In these instances, if the

core is parameterized, a header file or Graphical User Interface (GUI) is used to provide

the user with access to the parameters. For cores with timing-critical aspects, such as PCI

interface cores, certain signals may be pre-routed or assigned to specific routing resources

to meet timing specifications. These cores may be categorized as firm cores.

Since a core is a pre-designed block of code, it is possible that this will affect the design

into which it is being included. The setup and hold times along with the handshaking

signals of the core may be unchangeable, which means that the rest of the circuit must be

designed to properly interface with the core. If a core has a fixed placement or a partially-

fixed placement, then this may affect the placement of the rest of the circuit. The maximum

clock rate of the final circuit could be set by the core, which cannot be pipelined any further.

2.2 Stakeholders in the Core Industry

The people who are interested in the IP core industry may be divided into three groups:

third party IP vendors, third party IP users, and captive IP designers and users. The third
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party IP vendors are those companies who are solely interested in developing cores to sell

as a finished product or to complement the sale of silicon. This group of individuals is not

concerned with trying to interface the core-product into a bigger design but, instead, works

as a vendor. The Reusable Application-Specific Intellectual Property Developers (RAPID)

is an association that represents both IP suppliers and integrators, giving the third party IP

vendors a voice in industry [6].

The third party IP users work for companies who are trying to implement a large de-

sign. They wish to leverage the advantage of using a core created by an external source so

as to speed the time-to-market of their product. IP users are developing application spe-

cific products and are not interested in developing in-house cores as there is a low chance

for reuse by the company. Finally, there are the captive IP designers and users who work

for companies who do extensive in-house design of products for a specific market. These

individuals have many opportunities for design reuse as their design focus is on one par-

ticular market. Their companies have developed a design reuse culture for cores designed

in-house. The company may also purchase cores developed externally as an investment to

complement those developed by internal personnel.

2.3 Design Reuse Organizations and Programs

Since IP has become a fixture in the chip design industry, different organizations have

been formed to promote design reuse standards. Their goal is to develop a set of industry

standards to facilitate the usage of IP in designs and to simplify the interfacing of external

IP to a design. The following describes groups interested in the developments of standards

and their promotion to industry.

2.3.1 The VSIA

While design reuse appears to be the next innovation for the systems design industry, the

innate challenges to creating a new set of industry standards have resulted in the formation

of the Virtual Socket Interface Alliance (VSIA) in September of 1996. The Alliance was

created with the vision of accelerating SoC development by specifying open standards that
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facilitate the “mix and match” of IP cores from multiple sources [2]. The membership con-

sists of representatives from the systems, semiconductor, Intellectual Property, and EDA

segments of industry.

The basic philosophy is that if physical components can be rapidly mixed and matched

on a printed circuit board, IP cores in a standardized “Virtual Component” (VC) form

should also be easily mixed and matched within an SoC. The VSIA hopes to create this

environment by specifying “open” interface standards so that VCs (the VSIA term for IP

cores) can be easily fit into “Virtual Sockets” with minimal (or no) glue logic. They require

that this fit be established at both the functional and physical levels [2].

VSIA standards include those that are already industry standards, or open or proprietary

data formats. The VSIA only develops new industry standards when none actually exist.

Their goal is to create a standard format for core deliverables so that a core is independent

of the unique design flow of each customer.

2.3.2 OpenMORE

Synopsys and Mentor Graphics have formed a collaboration known as the Open Measure

of Reuse Excellence (OpenMORE) program [7]. It is an assessment program based on

the Reuse Methodology Manual (RMM) that was jointly authored by the two founding

companies. OpenMORE was released at the IP99 Europe SoC Conference, in November

of 1999 [8]. They have chosen to define an IP core as a design that may be viewed as a

stand-alone sub-component of a complete SoC design. Furthermore, the RMM defines soft

cores are defined as soft macros or a core delivered as synthesizable RTL code, and hard

cores as hard macros or a core delivered as a GDSII file. Hard cores are considered to be

fully designed, placed and routed [9].

When designers decide to purchase IP cores for their designs, IP evaluation becomes an

important stage of the design process. The OpenMORE program is supposed to facilitate

the evaluation process by providing a format for a structured assessment of the reuse quality

of the core. An IP developer enters data into a worksheet outlining rules and guidelines

for both hard and soft cores. The final score obtained from this process allows the user to

evaluate the developer’s method of core design.
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The worksheet assessment is aimed at improving core reusability, thereby improving

the speed and predictability of IP integration into the final SoC design. It must be re-

membered that while individual companies are developing IP design standards, they do not

ensure that the desired core and actual core functionality may be easily communicated to

others [9]. This is because there are no guarantees that an external company will have the

same design reuse culture as a company who not only purchases third party IP but also

designs their own IP.

The majority of OpenMORE users are systems companies that typically reuse inter-

nally developed cores as well as third party IP. Vendors are also using OpenMORE to try

and make their cores easier to use for their customers, so as to reduce the number of hours

spent on customer support. They also feel that strong reuse practices will help counteract

the reputation that third party IP is hard to use [7].

2.3.3 RAPID and the VCX

Reusable Application-Specific Intellectual Property Developers (RAPID) was founded in

1996 by a group of companies that develop and sell IP. The main function of this asso-

ciation is to promote the use and acceptance of external IP products by the electronics

industry. The goals of this organization are to establish guidelines and encourage the use

of good business and design practices among members when working either within the

electronics industry or with industry standards organizations to make IP easier to use and

more accessible to designers [6].

The Virtual Component Exchange’s (VCX) mission is to facilitate transactions of Vir-

tual Components (VCs) within an efficient, international and open market infrastructure.

As an industry-backed initiative, they have organized a “marketplace” for the buying and

selling of VCs adopting the best features, services and structure of a mature stock and

commodities market [10].

These two organizations have created joint ventures to speed the development by VCX

of a global IP business infrastructure. The hope is that the input from RAPID will provide

VCX with a broader perspective on important business and legal issues that will aid its

product development [11]. There is also a private company called Design & Reuse which
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has created a Catalog and Yellow Pages to provide information on IP and SoCs. They also

hope to leverage the IP business by providing e-Software but unlike the VCX, they are not

focusing on providing solutions to the business and legal aspects of core transactions [12].

2.4 Perceptions of IP Cores

In the past few years, both the industry and research sectors have commented on the contri-

bution of IP to the design process. Both the practical and theoretical impact on the design

of SoCs has been argued. Even though the introduction of IP cores to the market is not

recent, the place of cores in the market has not yet been established, and users and vendors

in the core industry are experiencing the difficulties of this maturing period.

2.4.1 Industry User Sentiments

People involved in core-based design have many serious concerns about the lack of infras-

tructure. When using third-party cores, the most problematic element is documentation,

which is closely followed by a desire for testbenches that provide 100% coverage so that

the core design can be verified. Designers who purchase IP cores regard it as more than

just an RTL file and want a guarantee of performance for their designs [13].

Systems designers find the advantage of using third-party IP questionable due to li-

censing problems as well as design integration process problems – especially if cores from

multiple vendors are used in one design. These problems often introduce considerable

delays that seem to negate the suggested advantage that the use of external IP can help

designers achieve a shorter time-to-market.

Companies who are thoroughly committed to the use of IP in the design process have

put considerable resources into developing their own internal IP policies and requirements.

Not only does internally developed IP need to follow the design methodology, but external

IP should be thoroughly evaluated before being purchased. The process of evaluating IP is

lengthy – taking anywhere from weeks to months [14]. Obviously, the cost of evaluating

IP is considerable. This can make the incorporation of IP into a smaller company’s design

process prohibitive.
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Philips Semiconductors has devoted an entire organization to the job of acquiring IP,

assessing its reusability, and disseminating it to the groups that deploy its products [14].

They have an internal design reuse methodology, but this does not mean that externally

designed IP can be easily incorporated into their internal designs. Since there are no indus-

try standards for IP core designs, the design methodology adopted by each company will

differ, making IP integration more difficult.

2.4.2 Industry Vendor Sentiments

The experience an IP user has with the first core purchased from an IP vendor is crucially

important. With the IP industry still in a relative stage of infancy, engineer-to-engineer

“word of mouth” is key. In fact, some of the IP vendors claim that up to 80% of their sales

result from word of mouth contacts [13]. Obviously, good relations with customers are

essential, but the IP industry is also looking to the Internet. Not only are the vendors using

the Internet as a place to list their products, it is also being used as method of delivery [13].

Programmable logic companies are also devoting major resources to developing IP.

Companies like Altera and Xilinx view the development of a successful IP program as

a key factor in the success of their new lines of million-gate devices. They have each

developed IP design techniques to aid their customers’ understanding of this new design

approach, as well as programs to offer cores to customers by making deals with third party

IP suppliers. These two companies are also developing cores and design tools of their

own [13].

Although these companies sell IP cores, their goal is to decrease FPGA design time so

as to sell more silicon. Licenses for cores may be sold such that the core is node-locked

for a one year period. This allows the user to use the core in as many designs as they want

during that year. Other silicon vendors will sell their cores for unlimited use in any design

while some allow use in a specific design and charge a nominal fee for reusing the core

in other designs. Third party IP vendors who sell IP as their main product have chosen

different sales techniques. They may sell a core for a set fee, giving the user the ability to

use it for a specific design or for any future design. They may also choose to sell a core on

a royalty basis, limiting the risk of the consumer in purchasing the core. A combination of
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these two models is also used [14].

Altera generally sells only encrypted IP deliverables and does not allow the user to

make changes to the source code. The only instance in which a user may be able to see

the actual source code is if the product using the core is being migrated to an ASIC due

to high volume of production. In this instance, being able to see the core code would be

required. This will require the core user to pay an extra fee and is rarely done. Included

with the encrypted IP deliverable, Altera provides drivers, and additional testbenches. The

documentation for Altera’s IP cores is found online and may be downloaded before a pur-

chase is made. Altera’s IP Megastore allows the user to download a test version of a core

which the user may use in simulation. When compiled and synthesized, the test cores will

provide the user with everything but the assembly file required to program a part.

Memec Design Company sells soft cores allowing the purchasers to obtain a netlist or

the actual source code at a slightly greater cost. Memec chooses to allow their users to

purchase and view the source code at a low price but requires that the design using the

core be implemented on Xilinx FPGAs purchased from Memec or Insight. The company

does not intend to make profits off cores sales, but intends to increase silicon sales by

providing cores that a user needs in designing for their FPGAs. Although the development

costs of most of the older cores have been recouped, the core purchasers are required to

sign a license agreement that states that any improvements made to the core belong to

Memec and not to the core user. This is because if the improvement were patented by the

core purchasing company, the improvement could not be used by anyone else and it might

impede the usage of the core by other designers.

2.4.3 Research Sentiments

The research published thus far on IP cores and their contribution to SoC design is rela-

tively new. Much thought has been given to the protection of IP including watermarking

techniques [15, 16, 17, 18], fingerprinting techniques [19, 20], a forensic engineering tech-

nique [21], and public-key cryptography [22]. A study has also been done to analyze the

design lifecycle of core-based design [23] and some have suggested the need for a reor-

ganization of the semiconductor industry to incorporate design reuse [24]. A method of
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characterizing the functional timing analysis for IP has been proposed [25] and the issue

of the synthesis of interfaces between IP cores that use different signaling conventions has

been addressed [26].

Some of the concerns for soft core design are similar to software design and it has

been explained that certain concepts of software design and maintenance also applies to

soft cores [27]. In fact, some researchers have chosen to use a C++ based development

environment and an object oriented RTL model as opposed to dealing with structural reuse

at the VHDL level [28]. IP cores are also being used in hardware/software co-design for

embedded systems. A case study has been done using an existing commercially avail-

able engine control unit to delineate some of the design issues [29]. A hardware/software

partitioning approach for core-based embedded systems suggested by research from C&C

Research Laboratories has proven to lower power consumption [30].

There have been suggestions as to possible directions for IP development and its inclu-

sion into the overall design process. For instance, the possibility of creating a database for

IP cores, such as the DESPERADO project [31], has been made. The need for a database

and other tools for exploiting soft cores was also suggested [32] and an EDA tool, called

JavaCAD, has been developed that allows the user to simulate third party IP over the inter-

net whether it has been purchased or it is just being demonstrated [33]. The DSP Solutions

Group from Synopsys created a DSP system design environment for the commercial im-

plementation of an Adaptive Differential Pulse Code Modulation codec [34] and a new

library layer to support both IP based and traditional in-house design methodologies [35].

Researchers have studied aspects of SoC designs built using specific IP cores such as

microprocessors [36, 37, 38, 39, 40, 41], Application-Specific Instruction set Processors

(ASIPs) [42, 43], PCI buses [44], Viterbi Decoders [45], and ISDN network routers [46].

There has also been some research focusing on the testing of SoCs. A method of testing

embedded cores has been described, comparing the testing of an SoC to that of a System-

on-Board (SoB) [47], and an implementation of design for testability (DFT) structures has

been described that can reduce testing overhead [48].
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2.5 Summary

Obviously, previous research has provided a look at how specific types of cores may be in-

corporated into SoC design. It has not, however, characterized the cores themselves. Since

FPGAs have only recently been available in sizes large enough to support SoC design, all

of the previous research has been for SoCs implemented on ASICs.

This research can be differentiated from previous work not only by the fact that it

examines the overall effect of using cores in SoCs but also by the fact that all of these

previous studies have considered IP cores used to build SoCs implemented on ASICs.

Furthermore, an attempt is made to define a core and characterize the properties that should

be inherent to core design. Finally, two systems have been designed using off-the-shelf

cores to gain insight into the practical issues involved in using cores in system design.



Chapter 3

Circuits

This chapter describes the system built using IP cores. The system was composed of a

transmitter and a receiver circuit that used Forward Error Correction (FEC) methods to

correct both bit and burst errors. The IP cores were downloaded from Altera’s online IP

Megastore. Each core is available as an encrypted file that can be included in a design

created using MAX+plus II or Quartus tools. The MegaWizard design tool provides a GUI

for the newer cores that allows the user to access the parameters of the core and select the

HDL. Other older cores have an AHDL header file that the user edits to change the core

parameters to the desired settings.

When the design is compiled, an assembler file will not be created unless the user has

obtained a license from Altera. Although the downloaded version is available to anyone,

there is a fee for obtaining a license that allows the user to place and route the circuit.

The documentation for each core is also available online at the IP Megastore and may be

downloaded for free. When an individual purchases a core, testbenches may be included

to illustrate the operation of the core. While licenses were provided by Altera for the cores

used in this system design, no testbenches were made available.

To understand the issues involved with designing a core, a convolutional encoder was

designed and used in the transmitter design. Another convolutional encoder was created as

a custom design so that it could provide a benchmark for comparisons. While the custom

design uses a modular design structure, it differs from the core by not providing the user

with a header file that enables the changing of all the necessary parameters at an abstracted

16
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Figure 3.1: Block diagram of the transmitter-receiver system highlighting the convolutional

encoder.

level. There is no information hiding so the user must understand the complete function-

ality of the encoder to change it for use in a different design. Figure 3.1 provides a block

diagram of the complete transmitter/receiver system. The location of the Convolutional

Encoder core is outlined in relation to the overall system.

3.1 Transmitter Circuit

The transmitter circuit that was chosen is a design representative of transmitters that are

being designed and used in industry today. Transmitted data are susceptible to two types

of errors, both of which must be detectable and correctable by the receiver for the data to

be meaningful. One type of error is a burst error; this results when numerous adjacent bits

of transmitted data are destroyed. The other type of error is bit errors, caused by random

noise, which results in single bits of data being destroyed at random intervals. The ideal

transmitter circuit, illustrated in Figure 3.2, would allow the user to simply connect the

different IP cores to provide encoders that help protect the data from both types of errors.

3.1.1 Overview of the Transmitter

To protect the transmitted signal from the two types of errors, two different encoders will

be used. First the input data will be encoded using a Reed Solomon Encoder, which will
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Figure 3.3: A picture of a Reed Solomon codeword.

generate a user defined number of check symbols for a specified number of data symbols.

For a symbol width of m bits, the codeword size, N, can be a maximum of (2m − 1) sym-

bols. If the user chooses to use 2t check symbols in each codeword, the Reed Solomon

decoder algorithm is then able to correct a maximum of t symbol errors in each codeword.

Figure 3.3 provides a pictorial description of a codeword to better illustrate the format of a

Reed Solomon codeword.

The codeword is then read from the encoder into an interleaver that permutes the data.

In this instance, it writes the data into the rows of memory after which the data is read from

the interleaver and written out onto the data bus by columns. The data symbols are then

latched into the convolutional encoder and each bit is encoded and transmitted serially.

The signals in Figure 3.2 labeled with asterisks are control signals that enable the modules

or change their mode of operation. This labeling convention will be used throughout this

thesis to indicate all signals that are generated dependent on the present state of the circuit,

using logic equations.

The number of errors in a Reed Solomon codeword are equal to the number of incorrect

symbols in a transmission and is independent of the number of bit errors per symbol. It

should be noted that the check symbols are able to correct errors in both the data symbols
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and the check symbols themselves. The Reed Solomon algorithm may also be used to

correct erasures. Erasures occur when a signal is received indicating that the corresponding

symbol value is uncertain. Each check symbol is able to correct one erasure.

The Reed Solomon core provided by Altera allows the user to choose to implement an

encoder that supports not only erasures, but variable encoding, which means that the length

of the codeword can be changed on the fly. While neither of these features was useful for

the purpose of this transmitter design, they provide a flexibility that enables the core to be

used in a greater number of designs.

By combining this error correction scheme, which encodes data as words, with an inter-

leaver to interleave the encoded output, the transmitted signal is more robust against burst

errors. If multiple codewords are interleaved together, the data symbols are permuted in

blocks or convolutionally. This protects the codeword from a burst error as fewer symbols

will be destroyed in each codeword. This makes the errors more likely to be correctable,

thus making the transmission more robust.

The second encoding format for the data helps protect the transmitted information from

random noise errors. It is a convolutional encoder that encodes each bit, producing two or

more output bits for each bit to be encoded. If one of these bits is altered, the other encoded

bits can be used to help determine the error. Obviously, this encoding method increases the

amount of data to be transmitted across the channel by at least a factor of two. To reduce the

transmission size, puncturing may be used to remove a specified fraction of the transmitted

data in a predefined format.

An overview of the convolutional encoder core is provided in Section 3.2.1 and a de-

scription of the decoding mechanism used in the receiver is found in Section 3.3.1. While

Figure 3.2 gives a general overview of the circuit functionality, Figure 3.4 illustrates a sim-

plified version of the actual circuit that was required to implement the transmitter due to

interfacing difficulties.

The Reed Solomon encoder is designed to receive a specific number of data symbols

before generating check symbols. It may be run in a continuous mode, meaning that a

codeword symbol, either a data or a check, will be on the rs out bus on each clock cycle.

Since this interleaver core is implemented in a fashion that allows it to either read in data
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Figure 3.4: The actual transmitter block diagram implemented with cores.

to be permuted or, upon filling the interleaver, write out the data in its new order, it cannot

receive new data while it is writing data to its output port. It is, therefore, necessary to

buffer the output of the Reed Solomon Encoder. This also means that the encoder cannot

run continuously and must be disabled when the interleaver cannot accept new data. Once

the interleaver is full, it writes the data out to the convolutional encoder, which encodes

the data serially from Most Significant Bit to Least Significant Bit. The settings of the

convolutional encoder determine the settings for the Viterbi decoder in the receiver.

3.1.2 Design Decisions

It should be noted that the FIFO used in this design had one clock and performed syn-

chronous reads and writes. To simplify the design, a look-ahead read was used to access

the data stored in the FIFO. Another interesting aspect of this design is that there is an in-

herent conversion of data from a parallel to serial format. The data is latched into the Reed

Solomon encoder as a data symbol and the convolutional encoder encodes the transmitted
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data bit by bit. This requires two clocks – one for the parallel data and another for the serial

data.

Initially, the circuit was implemented with a serial clock and the parallel clock was

derived on-chip. This was done to simplify the test vectors used to verify the chip’s func-

tionality. It was not the final implementation however, as clock division using on-chip

logic would create timing problems. This is because the second clock, the parallel clock,

would be using normal signal routing paths through the switches as opposed to the ded-

icated clock signal routing architecture. Therefore, when the final place and route of the

circuit was performed, the parallel clock signal was implemented as a circuit input.

As discussed at the beginning of the chapter, a convolutional encoder core was created

along with a custom design implementation. These two modules were interfaced to the

transmitter circuit by separate component declarations that were selectively instantiated.

Also, the interleaver allows users to select one of two methods for permuting data- either

in blocks or convolutionally. It was decided that for the purpose of this study, the simpler

circuit, the block encoder, would be used.

Finally, the encoded data produced by the convolutional encoder was left unpunctured.

For the purpose of this study, transmission size is unimportant, as is increasing or decreas-

ing the overall Bit Error Rate (BER) achieved by the receiver circuit. This is because the

focus is on the design experience, as opposed to designing the best possible final system.

3.2 Convolutional Encoder Core

The focus of this thesis is to determine how using cores affects the design methodology

used for SoCs. One underlying concept that must be addressed by the core design industry

is what the actual definition of a core is. While the difference between HDL modules

and hard cores is obvious, the difference between a soft core and an HDL module is a

more obscure area. It is the responsibility of the core industry to provide guidelines and

standards to differentiate between a core and normal HDL code. The VSIA is dedicated to

establishing standards to be used in the design industry [5].

A soft core should be designed with testbenches that the user may utilize to verify the
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functionality to guarantee that it meets their specifications. Soft core designs are modules

of code that are reusable in different applications. They have no fixed placement, which

means that there can be no performance guarantees, but they provide a greater degree of

flexibility. The designs may often be parameterizable, which enables the core to be used

in a larger number of applications by providing a greater degree of freedom. Documenta-

tion describing the operation of the module is also essential to enable third party users to

incorporate the core into their designs.

3.2.1 Overview of the Core

To obtain some insight into the present state of core design technology, a soft Convolutional

Encoder Core was designed using VHDL. This core encodes a transmitted bitstream with

specific convolutional codes for later error checking by a Viterbi receiver so that it may

resolve possible bit errors. By defining the available parameters in the core, the user selects

the minimal number of two generating polynomials as well as the convolutional codes. The

ports to the core are described in Table 3.1 and the user defined variables are outlined in

Table 3.2.

Figure 3.5 illustrates the functionality of the convolutional encoder module. As can

be seen from the diagram, the right side of the figure contains the actual convolutional

encoder that encodes the bits to transmit. The left half of the convolutional encoder module

contains a register, a counter, and a multiplexer. The register stores the input symbol from

the data in bus. The counter is used to select a bit of the symbol through the multiplexer.

This bit will be used by the convolutional encoder to generate the encoded output bits,

enc out.

The constraint length is equal to the number of registers less one in the encoding path.

The user provides the values of the generating polynomials for the circuit illustrated in

Figure 3.6. The bits set in the generating polynomial signify the connected taps to the

delay path. The most significant bit is connected to the input A and the least significant

bit is connected to the output B. A generating polynomial is required for each coded bit.

Figure 3.6 displays the encoding circuit for an encoder with two encoding bits, a constraint

length equal to five, and generating polynomials GA equal to 19 and GB equal to 29.
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Port Name Direction Function

sys clk in Rate at which the input words are read

clk in Rate at which the output bits are generated

(4x, 6x or 8x the sys clk)

reset in Asynchronous reset which occurs when reset = 1

enable in The convolutional encoder operates when this is

logic 1

data in in Input words are read in to be encoded

enc out out The encoded output bits generated by the

encoder

outvalid out Data on the enc out bus is only valid when this

signal is logic 1

Table 3.1: Inputs and outputs to the convolutional encoder core.

Parameter Valid Values Description

bus width 4 or 8 Width of the parallel input data bus

N 2, 3, or 4 The number of encoded output bits

const len 4 to 9 The constraint length

(L) (inclusive) (NumRegsinpath)+1

num sel lines 2 or 3 The base 2 logarithm of the bus width

GA, GB N/A These two generator polynomials are always used

GC N/A This generating polynomial is used when N > 2

GD N/A This generating polynomial is used when N = 4

Table 3.2: User defined core parameters for the convolutional encoder core.

Noting the binary values for each of the registered inputs, and the specified connections

given in Figure 3.6, the encoded output bits would equal 0 for GA and 1 for GB. As can be

seen from the diagram, the transmitted bits are only sent in encoded form and no systematic

bits, copies of the actual data bits, are sent. This differs from many other error checking
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schemes such as the Reed Solomon routine described in later sections.

Finally, Figure 3.7 contains a timing diagram to clarify any remaining questions as to

the operation of the convolutional encoder. The system requires two clock inputs and has

an active high reset for all of the registers and the counter in the encoder module. The

enable signal is also active high and is used to turn the encoder on and off. When the

encoder is enabled, the data symbols are latched from the data in bus on the rising edge

of the sys clk. Every rising edge from the clk signal clocks a bit from the registered data

symbol into the delay path and generates a new encoded output.

3.2.2 Design Decisions

The circuit is designed using two clock signals: one to load the data symbols, and one to

output the encoded bits serially. Two clocks are used so that the overall circuit can run

at faster speeds. If there were only one clock, it would have to be artificially divided by

the number of input bits in the circuit. This is because parallel symbols are latched into

the convolutional encoder and then encoded serially. This could significantly decrease the

throughput of the transmitter circuit because the limiting factor for the speed of both the

serial and parallel clock becomes the encoding circuit. If two clocks are used, then the

serial encoding of the data operates independently of the parallel portion of the circuit,

removing the timing dependencies.
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The core user is also responsible for setting the number of select lines for the mul-

tiplexer. This is due to the difficulty of providing an equation that could calculate the

number of select lines given the width of the data in bus. The problem arises from the fact

that VHDL does not support the logarithmic calculation necessary to determine how many

select lines are required for any given width of the data bus.

All the generating polynomials were set to a maximum width. The MAX+plus II com-

piler and synthesis tools had to be used to create these designs because the proprietary

cores are encrypted and only recognized by Altera tools. Unfortunately, the Altera com-

pilation tools do not support all of the VHDL design constructs. For instance, a design

cannot specify constant declarations in the entity declaration. This makes passing values

from top level of the design to the architecture level more cumbersome.

Therefore, Aldec’s Active-HDL, version 4.1, was used to design and test the convo-

lutional encoder core as it supports all of the VHDL language constructs. When the core

was compiled using Altera tools in the transmitter design, the core header file was edited

to remove the constant declarations from the entity declaration and the user was required

to specify necessary bus widths in both the entity declaration as well as in the constants in

the architecture definition.

Finally, there were also problems arising from the actual semantics of VHDL. It does

not allow a user to remove ports on a conditional basis. In other words, a bus cannot be

removed from a design by declaring it to be of width zero. With parameterizable cores,

it would often be useful to be able to remove a port from its core. For instance, the en-

coded output bits had to be transmitted on a single bus as opposed to separate buses for

each generating polynomial. Overall, the present semantics makes core design more chal-

lenging and an update to the language that would include some of these features should be

considered.

3.3 Receiver Circuit

The second circuit created using multiple cores was the receiver circuit, which served two

purposes. Primarily, it is a more complex circuit logically and would not have fit on the
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older FPGA devices if designed using industry standard sized components. The reason this

circuit is logically more complex than the transmitter is that large state machines are re-

quired to predict the expected value of a transmission and then to correct an erroneous bit.

The second purpose was that it enabled the verification of the transmitter circuit by encod-

ing data using the transmitter and verifying that the receiver decoded the same transmitted

data.

3.3.1 Overview of the Receiver

Figure 3.8 is a block diagram of the receiver circuit, assuming that the cores interface in

an ideal fashion. The serially transmitted bits, v in, are the input bit stream to the Viterbi

Decoder. Hard inputs were used for the decoder, which means that the encoder used one

bit to represent the “hard” logic values of ‘0’ and ‘1’. A second input bit was used by the

Viterbi decoder to indicate an erasure. If the data were received as soft inputs, the decoder

would quantize the input into multiple levels.

Multibit inputs represent the degree of probability that the input was either a ‘0’ or

a ‘1’. It would be used by the Viterbi Decoder to determine the output values based on

probabilities as opposed to assumptions. While the use of hard inputs simplifies the circuit,

the performance is worse than a circuit that uses soft inputs because by using a degree of

probability as the input value as opposed to a binary value, the decoder is better able to

resolve the bit errors. The design of the Viterbi algorithm makes it unlikely to correct burst

errors because as the number of consecutive incorrect bits increases, the algorithm assumes

that it has traveled farther and farther in the wrong direction.

The output from the Viterbi Decoder is deinterleaved so that the original ordering of
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Figure 3.9: The actual receiver block diagram implemented with cores.

the symbols in the codeword could be regained. Then the Reed Solomon Decoder is used

to correct any burst errors that had occurred during transmission. Recalling that the Reed

Solomon Decoder does not differentiate between a single incorrect bit in a symbol and

multiple incorrect bits per symbol, the algorithm is then able to correct a symbol regardless

of the number of incorrect bits, subject to the number of symbols that can be corrected

per codeword. The decoder indicates the number of errors corrected in a codeword via

the numerr signal or if it fails to decode the codeword because there are too many errors,

the decfail signal goes high. The output from the Reed Solomon Decoder is the initial

codeword created by the encoder circuit. Both the data and check symbols remain and the

designer must implement extra logic to strip off the check symbols from the codeword.

This circuit required extra logic to be implemented for interfacing purposes; Figure 3.9 is

a simplified version of the actual block diagram of the circuit.

The Viterbi core is coded to have a specific constraint length. To ensure that the decoder

is able to determine what the convolutionally encoded bits were, the traceback depth must

be set to at least five times the constraint length [49]. Since the Viterbi decoder outputs

one or two bits at a time, the traceback length should be an even number. If not, when

the designer trys to restore the serial transmission to its initial parallel format, it is more
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difficult to realign the bits. The number of output bits from the Viterbi decoder is equal to

ceil(v/(2L−1)), where v is the traceback depth and L is the constraint length.

The output bit(s) from the Viterbi decoder are then stored in a register to reconstruct

the symbols from the serial transmission. Once all the bits of a symbol have been decoded,

the symbol is stored in FIFO A as shown in Figure 3.9. These symbols are read into the

deinterleaver when it is able to receive data. When the deinterleaver is full, the valid output

is read into FIFO B. Values are read from FIFO B into the Reed Solomon Decoder when

it is ready to decode the next codeword. The Receiver output is the decoded codewords

from the Reed Solomon Decoder. These codewords still include both the check and data

symbols and should, therefore be the same as the output from the Reed Solomon encoder.

3.3.2 Design Decisions

The transmitted bits were assumed to be hard inputs. This was because even though there

is signal degradation over a noisy channel, it was not addressed, as dealing with transmis-

sion losses are beyond the scope of this study. Furthermore, no erasures were introduced

because the size of the transmission was irrelevant. Instead, this research was more con-

cerned with the actual size of the receiving circuit. Again, the FIFOs used in this design

had one clock and performed synchronous reads and writes. To simplify the design, a

look-ahead read was used to access the data stored in the FIFOs. This circuit required a

significant amount of buffering between cores, which visibly increased the amount of glue

logic. This was done to try and pipeline the circuit to increase the data throughput of the

circuit. It was significantly slower due to the decoding speed of the Viterbi decoder, which

required a large amount of time to decode the bits. Comparatively, the time required by

the deinterleaver was negligible and even the Reed Solomon Decoder time was relatively

insignificant.

The transmitter-receiver system was implemented assuming Reed Solomon data sym-

bol sizes of 4, 6, and 8 bits. Although it would have been preferable to implement systems

that used symbols with widths all equal to powers of two, the Reed Solomon circuit would

be too large for 16-bit data symbol widths and two-bit data symbols are not useful to trans-

mit. This is why a six-bit data symbol size was chosen as the third option. The Reed
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Solomon Circuit was also available in three different formats– discrete, streaming and con-

tinuous. The streaming format was chosen because it allowed for some pipelining of the

circuit, where as the discrete circuit would have caused a bottleneck in the circuit. The

continuous decoder was not used due to its size, which would have required that only the

largest devices of the newest parts could be used.

3.4 Summary of Design Experience

The third party IP cores used in these circuits reduced the the total number of gates that

were left to be designed. Unfortunately, much of the benefit of the cores was lost due

to incomplete documentation. The time saved by not designing the cores in-house was

partially lost in trying to determine their actual functionality. In fact, learning the operation

of the interleaver and deinterleaver may have been more time consuming then if they had

been created as part of this research.

Over 75% of the design time was spent trying to understand how the cores functioned.

Although it is reasonable to expect that becoming familiar with the cores should be a sig-

nificant portion of the design, much of this time was wasted on determining the importance

of undescribed input pins, comprehending unexplained output formats, and guessing the

throughput time of the core. This meant that some of the abstraction that should have been

provided by the core was lost. The main benefit of using the cores was that a scaled-down

version of each of the circuits could be create by changing the core parameters. This sim-

pler circuit could be verified first and once it proved operational, it was relatively simple to

scale up the circuits to create the larger system circuits.

The design of the in-house core provided the opportunity to view IP cores from the

designer’s point of view. There were two main challenges – language restriction and using

the available tools for core design and placement. The problem with VHDL as a language

used for core design is that it does not offer the flexibility necessary to fully abstract the

core. The other problem was that while the Active-HDL tool from Aldec provided a good

environment for designing the core, the fact that MAX+plus II does not fully support the

language which means that the initial design had to be changed.



Chapter 4

Tests and Observations

This chapter describes the metrics that were designed to address the different issues in-

volved in using cores in system design. The procedures used to design, verify, and test

the circuits for these attributes are outlined in Section 4.1. The metrics have been divided

into two sections, the quantitative tests and the qualitative characteristics. The quantitative

tests are outlined in Section 4.2 and the results are described in Chapter 5. The qualitative

issues of using cores in systems design are discussed in Section 4.3, addressing concerns

and problems that are faced by both core designers and core users.

4.1 Experimental Procedure

The design procedure can be broken down into three basic portions . The first concern was

obtaining cores for the design of different systems. The next was the testing of each core

and the overall system. Finally, the issue of choosing tool settings is addressed as they

will affect the place and route algorithm, and therefore the numerical results obtained and

described in Chapter 5.

The first problem was obtaining third party cores. Initially, it had been hoped that

cores could be obtained from both Altera and Xilinx to build multiple systems on both

platforms. This would allow a comparison of systems implementation using IP cores on

both of the major industrial architectures. Unfortunately, the limited availability of cores

that could be used to create systems has resulted in only one system. The second design

31
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restriction created by using cores in the circuit designs was that all of the research had to be

performed on a personal computer running a Microsoft Windows operating system, in this

case Windows NT version 4.1. This platform was necessary because Altera did provide

most of their cores in a format that was compatible with the Unix versions of MAX+plus

II.

Furthermore, it was not possible to obtain the necessary cores from Xilinx and its part-

ners to create another transmitter-receiver system, which resulted in only one system being

built and implemented using Altera IP cores. While this is disappointing, it is an indica-

tion of the availability of IP cores for FPGAs. The challenge involved in trying to obtain

cores for designs from third party vendors made it impossible to obtain all the necessary

IP blocks for the second system on a Xilinx platform.

The system was created and verified using version 9.25 of MAX+plus II. Since the

Altera software does not support the VHDL constructs for File IO, all of the verification

was done using the Waveform editor. This was not a problem when the verification was

being performed at the core level, but it did create many challenges for system verification.

This is mainly because verifying the operation of the Viterbi decoder requires the decoding

of thousands of bits, which would be very tedious to draw using the waveform editor.

One solution is to use vector files to generate inputs to the Waveform Editor, but the in-

puts must change at predictable time intervals. Since inputs to both circuits are dependent

on handshaking signals and do not have predictable timing characteristics, vector files can-

not be used to generate the input signals. As the Altera simulation tool was not providing

a simple method of verification, Aldec’s simulation tool Active-HDL version 4.1, which

does support file IO, was purchased to simplify the verification process. Unfortunately,

even though the company claims to support Altera designs, the tool does not support all of

Altera’s Megacores, which meant that the tool could not be used to verify the receiver cir-

cuit. In the end, MAX+plus II had to be used to verify the basic operation of the systems,

due to the lack of tools available for testing systems with cores.

Once the system had been verified to operate correctly, the tests described in Section 4.2

were performed. The tools were set to optimize the place and route algorithm for speed.

For the smaller circuits MAX+plus II, version 9.25, was used to place and route the circuits
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on the FLEX 10KA devices. The larger circuits had to be placed and routed on APEX

devices, which required that Quartus software be used. The Quartus software used for this

research was version 2000.5 which does not fully support core based design. The circuit

can be placed on an APEX 20K device but the timing analysis fails.

The FLEX 10KA devices were used because they offered high-speed performance and

would fit the majority of the circuits. For the larger receiver circuits, the APEX 20K device

was chosen because it had a larger number of programmable resources. When comparing

resource usage on these two types of devices, it is important to qualify the terminology as

MAX+plus II reports the number of Logic Cells (LCs) and Memory bits used to place a

circuit while Quartus states the number of Logic Elements (LEs) and Embedded System

Block bits (ESB bits) used in the circuit placement.

The data sheets for the FLEX 10K devices reveal that a Logic Cell is simply another

term for an Logic Element and they are equal units of measurement. Similarly, ESB bits

are comparable to the Memory bits. The final unit of the Altera FPGA architecture to

be discussed is the Logic Array Block (LAB). It is a combination of LEs and provides a

slightly higher level of architectural abstraction. It is important to note that Flex 10K LABs

are composed of 8 LEs while APEX 20K devices have 10 LEs in their LABs. Since there

is a faster interconnect running internal to the LAB, changing the number of LEs in the

LAB could effect the timing of the circuit after it has been fitted to a device.

4.2 Tests

The following section describes the metrics used to measure the quantitative values of a

core and a design that uses cores. In chip design, area usage and the maximum clock rate

of a design are important markers of the quality of the design. Obviously, this is also true

for designs that use cores but modifiability is also important to increase the reusability of

the core. These tests have been chosen to reflect the characteristics that are important to all

chip designs as well as characteristics that are uniquely identifiable with cores.
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4.2.1 Core Parameterization

Many cores have modifiable values that allow the user to scale the core or select different

functionalities of interest. This can encourage greater reusability for cores such as the

Reed Solomon and Viterbi Decoders as they can be used in different applications. To

test this characteristic of a core, multiple versions of each core were created to see the

effect each core parameter has on the number of logic blocks and memory bits required

for the placement of the core. If a core is well designed, it should scale its resource usage

proportionately to the increase of the calculation size or functionality.

The number of logic blocks and memory bits required for the convolutional encoder

core circuit were compared with those required to implement custom-designed versions of

the convolutional encoder. If the core is described in an efficient manner, the core and the

custom design should use approximately the same amount of resources. Qualitatively, the

facility of adjusting core parameters was also noted.

4.2.2 Core Packing

As previously described, cores should ideally be able to interface with little or no glue

code. Similarly, code designed to include cores should not require much extra code to fa-

cilitate the interface between an externally designed core and the rest of the design. The

systems were designed to minimize the code needed to interface the cores. The total num-

ber of Logic Cells and Memory bits required to implement the cores in the circuit were

determined and compared to the total number of Logic Cells and Memory bits required

to implement the whole circuit. The goal was to determine the percentage of resources

utilized to implement the cores versus the percentage wasted on connecting the different

cores. Obviously, the goal is to create designs that limit the resources used to connect the

cores so that more resources are available to the essential functional modules.

4.2.3 Predictable Timing

It is important that these circuits achieve consistent timing characteristics so that perfor-

mance is predictable. Multiple place and routes were performed on each circuit. Further-
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more, an attempt to optimize the speed of each circuit was done by using the timing-driven

routing option. Although this might not achieve the maximum speed that could be obtained

by manually adjusting the floorplan after the place and route, the objective of this study is

not to study the tools but to observe how the tools treat the cores. Ideally, the maximum

clock speed of the circuit should be approximately inversely proportional to the size of the

circuit.

4.2.4 Area Usage

A core with a specific set of parameters should require the same amount of memory and

logic resources independent of the overall system design and FPGA size, therefore, its

performance should not degrade when the circuit using the core is implemented on a larger

device. The tools should be smart enough to place the circuit so that the maximum speed

of the circuit remains relatively constant or even improves due to the increased availability

of resources. By examining the maximum clock frequency for a circuit and the floorplan

obtained by the place and route algorithm, it should be evident if the cores are treated as

modules of circuitry implemented separately in their own space.

4.3 Observations

The following describes characteristics of core design that are not quantifiable by the met-

rics of the previous section. They are equally important when choosing to implement a

core in an SoC design or to create a core as they can drastically affect the design time and,

therefore, the time-to-market of a product.

4.3.1 Implementation Language

There are numerous languages used to create Hardware Designs such as VHDL [50], Ver-

ilog [51], AHDL [52], and C++. Of these four, VHDL and Verilog are the most popular

in industry today, with Verilog more common to North America and VHDL more so in

Europe. Although some believe that AHDL is a language better suited to IP core develop-
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ment, the fact that AHDL is not an industry standard means that it does not have as large

an appeal. This has resulted in even Altera’s IP design group making their cores available

for us in VHDL and Verilog designs as well. Since their cores are provided as encrypted

netlists, the actual design language is unimportant, but when the MegaWizard asks the user

to choose a design language, a header file is generated for the core in that language. Other

third party IP vendors who do provide source code will often design in one language but

will willingly translate the code to the other language for the customer.

It seems that neither VHDL nor Verilog has become the commercial standard for core

design. Companies such as the VCX do not make any requirements as to which language

should be used by core designers who make cores available on their web page. They have

also failed to notice any particular pattern emerging as to core design being either mainly

in Verilog or VHDL. This is probably due to the fact that IP is a relatively new market.

To expand their market, the vendors may create a core in one language, offer it in both

languages, and then design it in the other language when required. Another possibility is

that the core is designed in one language, and immediately translated to the other upon

design completion. The usage of C++ as an HDL is relatively new and has not gained

acceptance as an industry standard design language. It is believed that there are currently

no commercially available C++ IP cores at this time. Should C++ gain a wider acceptance,

it is likely that IP vendors will also create cores for C++.

Still, it may be worthwhile to consider the development of a new HDL which would

be better suited to core design. This research has discovered that VHDL is not well suited

to core design in its present form. It does not support the removal of ports from a design

by defining a bus width of zero. It also does not provide the ability to calculate difficult

equations. This suggests that either VHDL should be updated with new constructs, as

Verilog is to create Verilog-2000 [53], or that another HDL should be created.

4.3.2 Architecture Independence

Numerous FPGA architectures are presently available. The compatibility of cores among

different device families is specified by the core provider. Often the only limiting factor for

backwards compatibility of a core on a device is the size. Therefore, if a core is usable on
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a FLEX device, it should be easily placed on an APEX device, which is also from Altera.

Although it should be possible to use the cores from these circuits on APEX devices, the

difficulty of achieving a functional place and route with version 2000.5 of the Quartus tools

made this difficult to verify.

The possibility of using Altera cores on Xilinx parts or Xilinx cores on Altera parts was

examined. This was determined to be impossible due to the format of the core provided to

the user. Altera’s cores are licensed so that they will only compile using software provided

by Altera and, therefore, cannot be used on Xilinx parts. Xilinx cores are supplied as

netlists that are structured for the Xilinx FPGA architecture. Since these are significantly

different, Xilinx cores are unusable on Altera parts.

Finally, some third party IP vendors such as Integrated Silicon Systems (ISS), sell IP

cores to both ASIC and FPGA designers. Since ISS supplies its cores in a firm format

as a targeted netlist, the cores are not directly transferrable between the two technologies.

A more interesting observation is that ISS cores are available for both Xilinx and Altera

FPGA designers. Although, their deliverable is a firm core, they have chosen to make their

IP available for multiple types of silicon technologies.

4.3.3 Security

IP vendors have the option of providing the source code or an encrypted netlist for a core.

Obviously, these two methods have different security issues. If a vendor provides the

source code to the user, the main security issue is to ensure that the core is only used by that

company under the specified terms of the agreement between both parties; misuse of the

core would likely lead to a lawsuit. Both parties must be trusted to respect the agreement

and, if there are questions of enforceability, then possible risks should evaluated.

If a vendor only provides an encrypted netlist of the core, the issue of maintaining core

security is also a factor. The encryption methodology should be robust enough to prevent

an individual from reconstructing the source code. Ideally, no one should be able to break

the encryption, but realistically, as long as the cost of breaking the encryption is greater

than that of redeveloping the actual core, the encryption is reasonably secure. Companies,

such as Altera, encrypt their source code and their users must then obtain a license to fully
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utilize the core.

From the users viewpoint, encryption of a core can make the design process very dif-

ficult. The first problem is that the encryption normally interferes with the usage of tools

from other vendors. By limiting the tools that can be used in the design process, the core

may prevent the complete verification of the design. Furthermore, the user is unable to edit

the code which means that there may be certain changes that would significantly improve

the overall design but they cannot be implemented. Finally, the inability to access the code

provides further frustration when the core is accompanied by poor documentation. Without

the source code and good documentation, the core is a black box with unknown behavior.

4.3.4 Legal Issues

It is important to realize that the concept of Intellectual Property as some form of reusable

hardware design is relatively unestablished in a legal sense. This often results in protracted

contractual negotiations as some of the laws are not intuitive. For instance, a vendor may

license a core such that the ownership of the intellectual property of the core remains with

the vendor (licensor). If a core were sold, instead of licensed, then it could not be subse-

quently licensed for use by any other company because it would belong to the company

who had purchased it. A licensing contractual arrangement leads to the situation where

any modifications to a core are the property of the licenser and not the designer.

The license will often also limit the use of the core, and any derivation thereof, to a

specific purpose on specified silicon. Therefore, while the system design is the intellectual

property of the designer, the core and any modifications made to it are the intellectual

property of the core vendor. This problem did not exist when IP was implemented in the

form of chips because a chip is fixed and unchangeable. An individual could not change

the implementation, algorithm or the performance of the IP as it had been burned into

the silicon. Although soft cores offer the benefits of flexibility, they also present new

challenges in IP protection.
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4.3.5 Modular Core Design

When the convolutional encoder core was designed, the design was made as modular as

possible. By doing this, it was hoped that unused sections of code could be removed

so that unnecessary resources would not be wasted. This was accomplished by using IF

GENERATE statements so that this extra code could be added to the basic design when

necessary. Unfortunately, VHDL forces the addition of unnecessary code sometimes due

to its syntax. The language will not allow the removal of ports, which can be cumbersome

when a core is scalable as is the convolutional encoder core.

The other problem arises from inheritance and the passing of parameters from one level

of the design to another. It is not possible to assign a variable bus size at the upmost level

of the design. This obviously causes problems when the input or output bus of a core is

dependent on a size parameter. The user cannot simply enter values for the constants in the

entity declaration but must also change the values of the bus widths. While having the user

change the values of the data buses manually solves the problem at a basic level, it creates

another problem. The abstraction that the designer wishes to achieve by using cores is no

longer intact.

4.3.6 Core Amalgamation Effects

Often a large amount of glue code is required between cores even when they are from the

same vendor. This should not be necessary if the core designer plans well enough ahead.

Realistically, some of the cores in these designs do not fit together well – even though they

are often used together – so that they require numerous registers and buffers. Also, an ef-

ficient placement of core designs normally requires that the compiler intelligently remove

redundant code such as signals tied high or low permanently, registers permanently en-

abled, etc.. While the tools available today normally perform this function, most designers

would prefer that the removal of these devices occurred at a source level as opposed to

curing the optimization of the circuit so that there is no possibility of failure.
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4.3.7 Methods of Obtaining Cores

When cores are not parameterizable, as in the case of a PCI core, the simplest method for

a user would be the ability to go to an online library/catalogue and fill out a request for the

core. Upon doing so, the user could be emailed the core or allowed to proceed to a secure

part of the vendor’s network to download the core. There are very few concerns about

being able to obtain another version of a core in this case because there are no variables

which means there is only one core. The core is designed to operate as is and in no other

fashion.

In the case of parameterized cores, it is preferable that the request be for the use of a

core generator, such as a Finite Impulse Response (FIR) filter generator. The user wants to

be able to change the parameter settings without having to request yet another core. This

freedom enables the user to easily fine tune a core for the design in which it will be used.

It may also allow the user to learn the operation of the core on a scaled down version of the

final core, simplifying the learning process.

4.3.8 Tools for IP Cores

The tools that were available for testing these circuits using IP cores were insufficient. To

provide for thorough verification of a circuit’s functionality, it is crucial that input files can

be used to generate the input signals and output files can be used to store the results. As

previously mentioned, this was not possible for this system. The design of the core using

Aldec’s Active-HDL was successful and allowed the user to create a thorough testbench.

Unfortunately, when this core was incorporated into the rest of the design, it had to be

changed because MAX+plus II does not support constant declarations in the entity decla-

ration which is an essential component of user-designed IP cores. This means that they

cannot simply be instantiated and implemented in a system design.

Finally, Altera’s new Quartus software, version 2000.5, did not provide adequate sup-

port for their own cores included in a user’s design. As can be seen from this summary, the

tools available do not provide adequate support for the IP core design process. To protect

their IP, Altera has made it so that their IP can only be used with their tools. Since their
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design and synthesis tools are not the best ones available, being restricted to their usage

could affect the quality of the final design.

4.3.9 Information Abstraction

When a designer chooses to use a core, as opposed to personally creating the module,

the time-to-market should be shortened by the abstraction of the detail of that core. The

designer would prefer to treat the core as a block, considering only the inputs and outputs.

The following sections describe how the tools and documentation provided by the core

vendor help to abstract this information for the designer. If the tools, and more importantly

the documentation, are well specified, this greatly facilitates the job of the designer.

4.3.9.1 Core Generation Tools

The objective of using cores in SoC designs is to provide a level of information abstraction

so as to simplify the use of the core. By looking at different core generation tools, it was

seen that the Graphical User Interfaces (GUIs) available for Altera’s Reed Solomon Com-

piler and Deinterleaver provided a useful level of abstraction. GUIs were also available for

other cores such as FIFOs and register LPMs but these were not necessary as they did not

abstract very much information.

The Viterbi core had a higher level AHDL file into which the user entered the input

parameters. Although there is less abstraction to this design, a knowledge of AHDL was

not required to determine how to enter the new parameters. The major benefit of the GUIs

available, such as a MegaWizard, is that they abstract the language of the core itself so that

it may be generated in AHDL, VHDL, or Verilog. The wizard also “remembers” the state

and configuration of the core, simplifying the changing of a core in a design.

4.3.9.2 Documentation

The documentation provided by the core vendor for the designers should be similar to that

of a manual for an IC. It should give a succinct description of the core as a black box, de-

scribing all the externally-seen states of the core. It should also abstract the inner workings
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of the core so that unnecessary details remain hidden while it is easy to amalgamate the

core into a final design.

The documentation for the cores read for this thesis were poor in general. Overall, the

documentation did not enable a designer to understand how to use the core quickly. In

fact, it is estimated that the majority of design problems arose due to unclear, incorrect,

or absent documentation. The industry attitude toward documentation appears to be that it

is of secondary importance and that as long as the core is ready and technically correct, a

core release can occur.

Unfortunately, without clear and succinct documentation, the actual core may be well

implemented, but the designer is sorely tested to determine how to use it. This should be

considered as a serious complaint – using IP cores in SoC designs is only beneficial when

the time and cost incurred to use them is less than what is required to generate the core

design in-house. Poor documentation is not only detrimental to the designer but to the

vendor as well. If the designer is unable to resolve their questions from the documentation,

they will require customer support. The larger the amount of customer support required to

use a core, the less net profit will result from its sale. This thesis has illustrated that the

documentation for some cores is poor enough that there is questionable savings of time and

money.

4.4 Design Guidelines

Having completed the design process, a set of design guidelines were developed to reflect

the methodology used to design each circuit.

1) Determine what commercially available cores suit your design. There is almost cer-

tainly more than one core available for your application. Try to ensure that consideration

is given to IP cores from multiple vendors.

2) Check that any cores purchased will be usable with the tools in the design process.

If this is not the case, ensure that there are tools available on the market that will support

the core.
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3) If a specific core is available from more than one company, investigate the pros and

cons of using a core from that company. Things to look for:

• Meets the specifications for your design

• Good documentation

• Good technical support

• Good testbenches illustrating how the component functions. It should be noted that

the more complex the core’s behavior, the larger the number of testbenches that may

be necessary to thoroughly describe its behavior.

• Good interface structure

• Any other “bonus” deliverables supplied by the company, such as a higher level

model of the cores functionality.

If a core from this company has been used in a previous design, what was your experience?

If it was not good and this is the only company that sells this core, consider that it might

be more cost effective to have it designed in house. Remember, for cores that are not well

documented, it can take almost as long to determine a core’s functionality as it can to

design it. Also consider that if the circuit must run at extremely high speeds, cores may

not give you the performance you need, and must therefore, be thoroughly investigated.

4) Having chosen the cores to be used in your design, test them as separate entities so

that there is no “mysterious” behavior. The designer must fully comprehend the behavior

of the component for all valid inputs to use the core in a design.

5) Determine what glue logic is needed to connect the different modules in your system.

Consider the best way to interface the core such that the glue logic is minimized without

destroying the overall system throughput.



Chapter 5

Discussion of Results

The transmitter and receiver systems may be divided into three main components- the Reed

Solomon module, the Interleaver module, and the Convolutional module. Each component

was designed with adjustable parameters that were permuted in seven different ways. The

cores were combined in unique ways to create nine different implementations of the two

systems. There are three data symbol bus widths used in this study and each width has

three different core configurations. The bus widths were chosen to be four, six, and eight

bits. The results were studied to determine the effect of parameterization and core packing

on resource usage and the maximum clock rate of these two systems.

5.1 Core Circuit Configurations

Table 5.1 provides a description of the different Reed Solomon components used to create

the two systems. Although it was possible to vary the root spacing in the polynomial

generator and the first root of the polynomial generator, these values were left constant

at one and zero respectively. This is justified by the fact that these are suggested in the

documentation as possible values for these components. Also, these values were adjusted

for the rs 1 circuit and it was determined that changing the values had little to no effect on

the number of LCs used to implement the circuit.

Table 5.2 describes the different Interleaver/Deinterleaver components used in the re-

ceiver and transmitter systems. The symbol width is equal to the number of bits per symbol,

44
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Reed Solomon Bits per Symbols Check Symbols Field

Circuit Labels Symbol per Codeword per Codeword Polynomial

rs 1 4 5 4 19

rs 2 4 15 4 19

rs 3 6 15 4 67

rs 4 6 19 8 67

rs 5 6 52 8 67

rs 6 8 52 8 285

rs 7 8 204 16 285

Table 5.1: Description of Reed Solomon circuits.

as indicated in column two of both Table 5.1 and 5.2. For these circuits, the symbol width

the interleaver must be equal to that of the Reed Solomon component in each circuit. To

ensure that the design is robust against burst errors, multiple codewords are interleaved.

For smaller codewords, four codewords are interleaved whereas for larger codewords

only two codewords are interleaved. This was accomplished by always setting the number

of rows to four and setting the number of columns to the number of symbols per codeword,

N, for the first four circuits, and N/2 for the remaining three. The interleaver core also

requests that the user specify the number of symbols in a codeword, the symbol width, and

the estimated bit- error rate. These values are just used to provide estimates for the user as

to the effectiveness of the interleaving values chosen.

The Convolutional Encoder/Viterbi Decoder components of the receiver and transmit-

ter systems are outlined in Table 5.3. The systems were designed such that the number of

coded bits ranged between two and four. The constraint length was set to be either five

or seven and the traceback depth was set to be five times the constraint length plus one.

The convolutional encoder core allowed the user to specify any value for the generating

polynomial in the header file. The custom-design required the user to edit the actual logic

equations used to generate the encoded outputs to change the generating polynomials. Ob-

viously, both methods effect the change, but the abstraction provided by the convolutional
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Interleaver/ Deinterleaver Bits per Number Number

Circuit Labels Symbol of Rows of Columns

int 1 4 4 5

int 2 4 4 15

int 3 6 4 15

int 4 6 4 19

int 5 6 4 26

int 6 8 4 26

int 7 8 4 51

Table 5.2: Description of interleaver and deinterleaver circuits.

encoder core is more user-friendly.

Viterbi decoder is designed with suggested values for the generating polynomials given

the number of coded bits, N, and the constraint length, L. The symbol width must be equal

to that of the interleaver. The Viterbi decoder also allows the user to select the number of

bits representing each encoded bit read off the channel. Since varying voltage levels are

used to represent the various bit levels, a finer resolution makes the channel more robust to

noise.

5.2 System Circuit Configurations

The previous tables have described the different components used to create the two sys-

tems. Table 5.4 provides a description of the basic system created by delineating which

components were used for each instantiation. These combinations were chosen to provide

insight as to the effect of changing the different parameters. Implementation 8c was cho-

sen to represent components that are typically in use today. The rs 7 and vit 7 modules

are commonly used in Digital Video Broadcasting (DVB). An explanation of the compiled

data results is found in the following sections.

The naming of the system followed a simple convention. If it is a transmitter, then the
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Convolutional Encoder/ Number Constraint Traceback Symbol

Viterbi Decoder of Coded Length Depth Width

Circuit Labels (Bits (N) ) (L)

vit 1 2 5 26 4

GA=19, GB=29

vit 2 2 7 36 4

GA=91, GB=121

vit 3 3 5 26 6

GA=21, GB=27, GC=31

vit 4 3 7 36 6

GA=91, GB=101, GC=126

vit 5 4 7 36 8

GA=93, GB=93,

GC=103, GD=115

vit 6 4 5 26 8

GA=21, GB=23,

GC=27, GD=31

vit 7 2 7 36 8

GA=91, GB=121

Table 5.3: Description of convolutional encoder and Viterbi decoder circuits.

first two letters of the circuit name are “tx”, otherwise the letters “rx” were used for the

receiver circuit. The digit in the name represents the width of the input data bus to the Reed

Solomon Encoder. Finally, the letters ‘a’, ‘b’, and ‘c’ were used to differentiate between

the three circuits implemented for that particular bus width.
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Transmitter/Receiver Reed Solomon Interleaver Convolutional

Circuit Labels Circuits Circuits Circuits

tx 4a, rx 4a rs 1 int 1 vit 1

tx 4b, rx 4b rs 2 int 2 vit 1

tx 4c, rx 4c rs 2 int 2 vit 2

tx 6a, rx 6a rs 3 int 3 vit 3

tx 6b, rx 6b rs 4 int 4 vit 4

tx 6c, rx 6c rs 5 int 5 vit 3

tx 8a, rx 8a rs 6 int 6 vit 5

tx 8b, rx 8b rs 7 int 7 vit 6

tx 8c, rx 8c rs 7 int 7 vit 7

Table 5.4: Description of transmitter and receiver circuits.

5.3 Parameterization Effects

Table 5.5 provides the results of the place and route of each of the Reed Solomon cir-

cuits described in Table 5.1. The encoder requires no memory bits for its implementation

whereas the decoder does. The number of bits required is dependent on the codeword

length and the number of bits per symbol. As can be seen from Table 5.1 by comparing

the parameters used for the core circuits to the number of LCs required to implement the

encoder circuit, the number of LCs is minimally affected by the number of data symbols in

the codeword. This is sensible as the encoder is letting the data symbols pass through the

encoder unchanged.

The number of LCs used to implement the encoder is affected, however by the number

of bits per symbol and the number of check symbols. This is also reasonable since the

encoder generates the check symbols by using from passing the data symbols through

the generating polynomial. The decoder’s usage of the chip’s logic resources depends

on the total codeword length and the number of bits per symbol. As the decoder must

correct errors in both the data and check symbols, independent of the symbol width, it is

therefore understandable that the entire codeword length affects the number of LCs used to
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implement the circuit.

Reed Solomon Decoder Encoder

Circuit Number of Number Number of Number

Name Memory Bits of LCs Memory Bits of LCs

rs 1 256 516 0 40

rs 2 384 533 0 45

rs 3 1152 710 0 77

rs 4 1536 1134 0 106

rs 5 2304 1164 0 106

rs 6 6144 1564 0 200

rs 7 12288 2932 0 292

Table 5.5: Memory and LC usage of Reed Solomon circuits.

Table 5.6 outlines the resource usage of the Interleaver circuits described in Table 5.2.

As can be seen from the results in Table 5.6, the deinterleaver and interleaver circuits

require the same number of LCs and memory bits. This is a reasonable result as the circuits

are almost identical. The only difference is the order in which the data is loaded and read

out of the memory. It is also interesting to note that these circuits require very little logic

resources but mostly memory resources. Since memory must be allocated in blocks, even if

only 1 memory bit is actually used from the block, the rest of the block becomes unusable.

This means that that the numbers provided in Table 5.6 represent the total number of bits

in the memory blocks used by the circuit as opposed to the actual number of bits used by

the circuit.

Table 5.7 provides the resource usage of the convolutional circuits. Neither the encoder

nor the Viterbi decoder require memory bits in their implementations. The encoder requires

minimal LCs as it is simply a selective exclusive-or operation, but the Viterbi decoder uses

a significant amount of logic to implement a trellis to provide error correction to the bit

stream. As the constraint length increases, the size of the trellis increases exponentially.

The Viterbi circuitry is independent of the symbol width but not of the number of coded
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Interleaver Deinterleaver Interleaver

Circuit Number of Number Number of Number

Name Memory Bits of LCs Memory Bits of LCs

int 1 256 39 256 39

int 2 512 38 512 38

int 3 768 42 768 42

int 4 1536 41 1536 41

int 5 1536 41 1536 41

int 6 2048 45 2048 45

int 7 4096 47 4096 47

Table 5.6: Memory and LC usage by interleaver and deinterleaver circuits.

bits, N. By comparing the number of LCs used by Viterbi decoders of the same constraint,

it can be seen that as N is increased by a bit, the decoder LC usage increases by 20 to 30

LCs. Obviously, this increase is negligible when compared to the effect of the constraint

of length on the number of LCs used.

Circuit vit 5 provides an interesting result as the number of LCs required to implement

the convolutional encoder core is less than the number used to create the custom-design cir-

cuit. All the rest of the convolutional encoder circuits require the same number of LCs to

place both circuits. This illustrates that using an IP core, as opposed to a custom-designed

circuit, does not necessarily mean that it will require more logic to implement the param-

eterization. The reason that there is a difference between the number of resources the two

convolutional encoder circuits use is likely due to the heuristic algorithm used to synthesize

the circuits. It should be noted that this was the only instance in which the core and the

custom-design provided different results for the number of LCs used in the design. Fur-

thermore, the custom-design only requires one more LC than the core which is a negligible

difference.
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Convolutional Convolutional Encoder Viterbi

Circuit Number of Number Number of Number

Name Memory Bits of LCs Memory Bits of LCs

vit 1 0 17 0 2248

vit 2 0 21 0 10991

vit 3 0 30 0 2270

vit 4 0 33 0 11012

vit 5 (1) 0 33 0 11039

vit 5 (2) 0 32 0 11039

vit 6 0 28 0 2299

vit 7 0 29 0 10991

Table 5.7: Memory and LC usage of convolutional encoder and Viterbi decoder circuits.

The convolutional circuits labeled with a (1) use a custom design for the convolutional

encoder circuit whereas the circuits labeled with a (2) use the convolutional encoder core

circuit.

5.4 Core Packing Effects

Table 5.8 provides the memory statistics for both the transmitter and receiver circuits. By

studying column four of the table, it can be seen that the transmitter is more efficient

in its memory usage than the receiver for systems with four and six-bit symbol widths.

However, the receiver circuits use less memory as glue logic than the transmitters when the

symbol width is eight bits. This appears to result from the fact that the memory usage in the

transmitter increases by a fraction due to the change of bit width, but the receiver’s memory

usage increases at by slightly greater than 100% when the bit width is increased.All of

the systems, except for two of the receivers, tx 8b and tx 8c, have used at least 70% of

the memory bits for implementing the IP cores which is within reasonable design limits.

Unfortunately, it appears that as the two circuits are scaled up in size, the transmitter circuit

requires a greater percentage of glue logic to interface its cores. This does not seem to hold

true for the receiver circuit, however, which remains relatively constant in the amount of
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memory required to interface the IP cores to each other as the receiver circuits get larger.

Circuit Memory Total Memory Percentage

Name Used by Cores Used by Circuit of Memory

Used by Cores

tx 4a 256 256 100

rx 4a 512 640 80

tx 4b 512 576 89

rx 4b 896 1216 74

tx 4c 512 576 89

rx 4c 896 1216 74

tx 6a 768 864 89

rx 6a 1920 2400 80

tx 6b 1536 1632 94

rx 6b 3072 3936 78

tx 6c 1536 1920 80

rx 6c 3840 4992 77

tx 8a 2048 2560 80

rx 8a 8192 9728 84

tx 8b 4096 6144 67

rx 8b 16384 20480 80

tx 8c 4096 6144 67

rx 8c 16384 20480 80

Table 5.8: Memory statistics for transmitter and receiver circuits.

Table 5.9 gives the LC statistics for both the transmitter and receiver circuits. Column

four of the table illustrates that the receiver circuits achieve very efficient core packing and

need minimal extra LCs for glue logic. Unfortunately, the core packing for the transmitter

cores is not nearly as good. This is a problem partially due to the actual transmitter system

design. There is overhead logic required to ensure that the system interfaces properly with
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the outside world.

For instance, the Reed Solomon Encoder is not equipped with signals to indicate when

new data words should be supplied to the encoder. This means that a counter has to be

used to keep track of the number of data symbols read in by the Encoder so that data

symbols will not overwrite the check signals generated by the core. If the core had an

output signal indicating when the data symbols had been read in, then there would be a

method of indicating when the transmitter needed to encode a new data symbol.

5.5 Timing Results

Table 5.10 provides the results for the receiver circuits, including the maximum clock fre-

quency and the device automatically chosen for the fitting of the circuit. As can be seen

from column five of the table, circuits rx 6b, rx 8a, and rx 8c cannot be implemented on

any of the Flex parts as they require too many LCs. This is due to the size of the Viterbi

decoder in these circuits which has a constraint length of seven and monopolizes most of

the logic resources on a device, even on the largest of parts.

It appears that the place and route tool obtains a timing analysis for circuits that do

not even fit on a device. This is probably done by assuming that there is an FPGA with a

FLEX 10KA architecture but is infinite in size. Obviously, this timing information is only

an estimate and cannot be assumed as the maximum clock frequency if the circuit is placed

on an APEX device which has a slightly different architecture. The timing data also indi-

cates that as the circuit becomes larger and more complex, the maximum clock frequency

decreases. Although circuit rx 6c appears to be an exception to this rule, the maximum

clock frequencies are so close that the decrease in frequency is relatively negligible.

Since the placement and routing of the circuit is performed using a heuristic algorithm,

this inconsistency in the maximum clock rate for the rx 6c circuit is reasonable. The algo-

rithm basically searches a solution space for a minimum which represents the best possible

fit for the circuit. In doing so the the search may obtain a local minimum and fail to find

the actual minimum on the search space. This could result in the algorithm obtaining a

relatively poor fit for the circuit, as opposed to the best fit which explains why the clock
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Circuit LCs Total LCs Percentage

Name Used by Cores Used by Circuit of LCs

Used by Cores

tx 4a 96 145 66

rx 4a 2803 3027 93

tx 4b 100 272 37

rx 4b 2819 3179 89

tx 4c 104 276 38

rx 4c 11562 12052 96

tx 6a 149 349 43

rx 6a 3022 3437 88

tx 6b 180 391 46

rx 6b 12187 12748 96

tx 6c 177 406 44

rx 6c 3475 3916 89

tx 8a (1) 278 528 53

tx 8a (2) 277 527 53

rx 8a 12648 13283 95

tx 8b 367 645 57

rx 8b 5278 5796 91

tx 8c 368 642 58

rx 8c 13970 14622 96

Table 5.9: LC statistics for the transmitter and receiver circuits.

frequency for the rx 6c circuit is better than expected.

Although a placement could be found on a Flex part for circuits rx 4a, rx 6b, rx 8a,

and rx 8c, the timing analysis failed due to a problem with version 5 of Quartus support-

ing cores. The MAX+plus II software, however, was able to provide estimates for the

maximum clock frequency for rx 6b, rx 8a, and rx 8c even though they did not fit on a
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FLEX part. What is even more interesting is that the maximum clock frequencies for these

three circuits were greater than that for the rx 4c circuit although the tools estimated the

maximum clock frequency for these circuits even though they did not fit on the Flex parts.

This was accomplished by assuming the basic Flex architecture, given there were sufficient

logic resources to place the circuit. As can be seen from the table, the maximum clock fre-

quency for the rx 4c circuit is significantly slower than for the other large circuits. In all

probability this occurred because the circuit fit on the EPF10k250 part but used 99 percent

of the logic resources, hence the faster routing resources were already used.

The desire was to place and route this circuit, as well as the other three circuits which

did not fit on the FLEX parts, on APEX devices using Quartus software and to obtain a

timing analysis. Presently only version 5 is available for use in this research which seems

able to fit the circuits successfully on a part but unable to perform a timing analysis due

to the cores. It is, however, still interesting to note that the Quartus synthesizer chose to

implement the receiver circuits in a significantly different fashion than the MAX+plus II

software. Much of the circuit has been implemented in the ESB bits as opposed to in the

LCs. It would be interesting to know what kind of effect this has on the overall circuit

timing.

Table 5.11 describes the results for the transmitter circuits using both the custom-

designed convolutional encoder and the convolutional encoder core. The maximum clock

frequency given in column four is for the serial clock because it determines the overall op-

erating speed of the circuit. The timing results for these circuits are relatively consistent for

circuits of a given bit size. Neither the core nor the custom-designed version consistently

achieve a better maximum clock frequency. The six-bit systems run at speeds comparable

to that of the eight-bit systems.

Obviously, FLEX FPGAs are designed to better support systems that operate on data

that has widths of powers of two since there are eight LEs in each LAB. This is because

thee six-bit systems are slowed by the problem of bit boundaries not always falling within a

Logic Array Block (LAB) which has a fast routing architecture connecting it. If the six-bit

systems were fit on to the architecture such that only part of the symbol were in a LAB

and the rest were in another LAB, the signals would have to travel along the slower routing
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tracks, thus increasing the path between registered data.

Circuit Number of Number Max Clock Device

Name Memory Bits of LCs Frequency

(MHz)

rx 4a 640 3027 41 EPF10K100ARC240-1

rx 4b 1216 3179 37 EPF10K100ARC240-1

rx 4c 1216 12052 28 EPF10K250AGC599-1

15488 1284 Uncalculated EP20K100TC144-1

rx 6a 2400 3437 36 EPF10K100ARC240-1

rx 6b 3936 12748 37 EPF10K- no fit

18688 1925 Uncalculated EP20K100TC144-1

rx 6c 4992 3916 39 EPF10K100ARC240-1

rx 8a 9728 13283 32 EPF10K- no fit

24064 2397 Uncalculated EP20K100TC144-1

rx 8b 20480 5916 23 EPF10K130VGC599-2

20480 5796 29 EPF10K250AGC599-1

rx 8c 20480 14622 22 EPF10K- no fit

32256 3679 Uncalculated EP20K100TC144-1

Table 5.10: Overview of place and route results for the receiver circuits.

5.6 Area Usage Results

Table 5.12 provides a summary of placing the same circuit, tx 8a, on different size

FLEX10KA devices. As can be seen from the maximum serial clock frequency results,

the frequency decreases as the parts increase in size. The reason for this can be seen from

the floor plans in Figures 5.1, 5.2, and 5.3. As the devices get larger, instead of making

a circuit placement that keeps the circuit logic relatively close, MAX+plus II spreads the

logic all over chip. By increasing the length of the critical path in these larger devices, the
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Figure 5.1: Layout of the tx 8a circuit on an F10K10 device.
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Figure 5.2: Layout of the tx 8a circuit on an F10K30 device.

maximum clock frequency decreases. This illustrates the need for good floorplanning tools

to improve the overall circuit performance.
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Figure 5.3: Layout of the tx 8a circuit on an F10K100 device.
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Circuit Number of Number of Max Serial Clock Device

Name Memory Bits LCs Frequency (MHz)

tx 4a (1) 256 145 154 EPF10K10ATC100-1

tx 4a (2) 256 145 149 EPF10K10ATC100-1

tx 4b (1) 576 272 156 EPF10K10ATC100-1

tx 4b (2) 576 272 147 EPF10K10ATC100-1

tx 4c (1) 576 276 164 EPF10K10ATC100-1

tx 4c (2) 576 276 147 EPF10K10ATC100-1

tx 6a (1) 864 349 91 EPF10K10ATC100-1

tx 6a (2) 864 349 89 EPF10K10ATC100-1

tx 6b (1) 1632 391 92 EPF10K10ATC100-1

tx 6b (2) 1632 391 101 EPF10K10ATC100-1

tx 6c (1) 1920 406 88 EPF10K10ATC100-1

tx 6c (2) 1920 406 93 EPF10K10ATC100-1

tx 8a (1) 2560 528 119 EPF10K10ATC100-1

2560 528 99 EPF10K30ATC144-1

tx 8a (2) 2560 527 116 EPF10K10ATC100-1

2560 527 111 EPF10K30ATC144-1

tx 8b (1) 6144 645 94 EPF10K30ATC144-1

tx 8b (2) 6144 645 87 EPF10K30ATC144-1

tx 8c (1) 6144 642 84 EPF10K30ATC144-1

tx 8c (2) 6144 642 88 EPF10K30ATC144-1

Table 5.11: Overview of place and route results for the transmitter circuits. The transmit-

ter circuits labeled (1) use a custom design of the convolutional encoder and the circuits

labeled (2) use the convolutional encoder core designed for this study.
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Circuit Percent of Percent of Max Serial Clock Device

Name Memory Bits LCs Frequency

Used Used (MHz)

tx 8a (1) 41 91 119 EPF10K10ATC100-1

tx 8a (2) 41 91 116 EPF10K10ATC100-1

tx 8a (1) 20 30 99 EPF10K30ATC144-1

tx 8a (2) 20 30 111 EPF10K30ATC144-1

tx 8a (1) 10 10 97 EPF10K100ARC240-1

tx 8a (2) 10 10 98 EPF10K100ARC240-1

tx 8a (1) 6 4 70 EPF10K250AGC599-1

tx 8a (2) 6 4 74 EPF10K250AGC599-1

Table 5.12: Overview of place and route results for the tx 8a circuit. The transmitter cir-

cuits labeled (1) use a custom design of the convolutional encoder and the circuits labeled

(2) use the convolutional encoder core designed for this study.



Chapter 6

Conclusions and Future Work

Although the desire to use IP cores for designs has been expressed for many years, it is

only over the past couple of years that any inroads have been made to make this dream a

reality. Presently, companies are trying to develop an infrastructure that will allow them

to efficiently reuse designs that they have created as well as evaluate the quality of third

party IP. The ideal future would be a market where IP cores could be regarded as the “soft”

equivalent to the ICs commonly purchased from multiple vendors and used today in printed

circuit board designs.

6.1 Conclusions

The issues involved with using cores in system designs have been presented throughout

this thesis in two categories. The conclusions obtained through the design experience are

also presented in this fashion. Overall, this research has proved that the actual IP cores

available are well designed and do not seriously degrade a systems performance. However,

the success of this technology in industry is dependent on the development of a good in-

frastructure to address the more qualitative issues involved in a system design using cores.

6.1.1 Measured Performance

The cores are well designed from a technical standpoint. They scale in size, relative to

an increase in functionality, at an acceptable rate. In fact, there may be no extra cost for
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designing a module of functionality as a core as illustrated by the convolutional encoder.

The amount of glue logic required to interface cores in these systems was low relative

to the total amount of resources used by the circuits. It is not clear, however, that the

Reed Solomon and interleaver cores could not have been better designed to allow a direct

interface. The need to add buffering between the two seems unjustified as they are often

used in combination.

The timing results achieved by these circuits were fairly predictable. They illustrate that

using IP cores in these designs has not significantly altered the overall timing performance

of the circuit. The convolutional encoder core actually provided better speed performance

than the custom-designed circuits in many instances. The area usage of the circuits by the

tools was rather disappointing, however. The core is obviously not viewed as a cohesive

module that should be placed in a defined area. Instead, it is viewed the same as the rest of

the circuit logic and is spread all over the chip which may be detrimental to the maximum

speed at which the circuit can be clocked.

6.1.2 Experiential Concerns

From a qualitative standpoint, the problems with achieving the simple integration of IP

cores into an SoC design are unfortunately numerous. For instance, vendors must worry

about the security of their IP, while designers must worry about the time expended resolv-

ing legal issues, which significantly increase the time required to obtain a core. Fortunately,

as the industry becomes more established these issues are being addressed.

The development of standards for IP core design and reuse is a serious concern. Many

companies have already been developing standard requirements for the IP cores they design

and use, but they are only in-house standards, so that industry-wide standards do not exist.

The Virtual Socket Interface Alliance (VSIA) is attempting to specify interface standards

to be adopted by industry to simplify the mixing of different components from different

vendors by facilitating communication between the parts. It is unlikely that companies

who have invested capital into developing their own in-house standards will drop them in

favor of the VSIA standards, due to monetary loss. A compromise is being reached as

these companies are adapting their requirements to at least include some of the standards
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of the VSIA.

The worst problem with using IP cores in a design, especially third party cores, is

documentation. The majority of cores available do not include sufficient documentation

to make the core easy to use by another designer. The core is supposed to act as a black

box that hides unnecessary detail from the user. Unfortunately, the documentation is often

insufficient to provide the user with an adequate description of the core requiring that the

user experiment with the core’s operation, which can often be very time consuming.

There are also problems with the available HDLs, which were not designed to support

the parameter flexibility required for core design, and the design tools. The tools available

may not allow a user to easily use an in-house core in a system design. More importantly,

however, are the difficulties with verifying systems with cores if the source code is not

provided. It is very challenging to verify Altera’s encrypted cores because they do not

have the tools available for in-depth testing. Furthermore, their cores cannot be verified

functionally using any other industry simulator due to the core license. It should also be

noted that by designing a core with increased flexibility so that it becomes usable in more

designs, it also can become more difficult to verify. The designer will have to trust that the

core has been fairly extensively verified by the vendor.

While it may not be possible to completely resolve all these issues, there are some

definite improvements that may be implemented to facilitate the use of cores by designers.

The first suggestion is that while an industry wide standard may not be achievable, in-house

standards are mandatory. Furthermore, when a core is being designed, thought should be

given as to the kind of designs in which it will be used. Could it be combined with other

cores? What kind of interface would result in the smallest amount of glue logic?

The most important improvements must be made in the documentation. The documen-

tation should not only include a listing of all the input and output signals but also a detailed

description of the modes of operation. This description should include detailed timing dia-

grams, state machines and any other means that might clarify how the core functions. What

must be essentially realized is that since cores have an added depth of flexibility, their doc-

umentation must provide a better description of the core and the interfacing requirements

than if it were an IC.
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6.2 Future Work

The challenges encountered in trying to design systems that used IP cores were numerous,

largely due to the deficiencies in the available tools. Work is needed to develop design

and verification tools that enable the user to maintain the desired level of abstraction of the

functionality of the cores. It is also important that some method of standardizing cores be

developed so that encrypted cores can be used in other vendor’s tools.

There is also a need to improve the HDLs available by adding new constructs to support

the desired abilities to parameterize cores. Another possibility worth investigating is the

development of a new HDL which focuses on supporting modular design reuse.
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