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Abstract

Historically designers created computing systems by combining Integrated Circuits

(ICs) on Printed Circuit Boards (PCBs), whereas now they are able to form complete

Systems-on-Chip (SoCs). For the purpose of this study, SoCs are defined as a collection

of functional units on one chip that interact to perform a desired operation. These modules

are typically of a coarse granularity to promote reuse of previously designed Intellectual

Property (IP). The decreasing size of process technologies enables designers to implement

increasingly complex SoCs using both Application Specific Integrated Circuits (ASICs)

and Field Programmable Gate Arrays (FPGAs). The impact of increasing design complex-

ity is increased design time and costs for electronics. Therefore, this research investigates

methods to facilitate the design of SoCs through both architecture and CAD tools.

This thesis has two main contributions. The first is an architectural framework for

SoCs, wherein they are modelled as Systems Integrating Modules with Predefined Physical

Links (SIMPPL). The strength of the model is the Computing Element (CE) abstraction

that separates the module’s datapath from system-level control and communications to

facilitate design reuse. Although SIMPPL can be used to build SoCs for ASICs or FPGAs,

using an FPGA provides designers with a reprogrammable implementation platform. Thus,

our second contribution is to develop a design infrastructure that leverages the advantages

of reconfigurability.
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Chapter 1

Introduction

Historically designers created computing systems by combining Integrated Circuits (ICs)

on Printed Circuit Boards (PCBs). However, due to the decreasing size of process tech-

nologies, designers have been able to implement these same systems as Systems-on-Chip

(SoCs) using Application Specific Integrated Circuits (ASICs) since the late 1990’s. The

term System-on-Chip (SoC) has been used with many different connotations in previous

work. For this study, we define an SoC as a collection of functional units on one chip that

interact to perform a desired operation. These modules are typically of a coarse granularity

so that previously designed Intellectual Property (IP) modules can be reused to try and re-

duce the design time of more complex systems. Examples of IP modules range from data

intensive processing cores, such as FIR filters and FFTs, to more control intensive cores,

such as memory controllers and processors.

1.1 Motivation

IP reuse is more challenging in hardware designs than reusing software functions in new

software applications. Software designers benefit from a fixed implementation platform

with a highly abstracted programming interface, enabling them to focus on adapting the

functionality to the new application. Unfortunately, to reuse hardware IP [1, 2], designers

need to consider changes to the module’s:

• functionality,

• physical interface, and

• communication protocols.

1
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Depending on the amount of time required to adapt IP to a new application, there may be

little benefit in reusing the IP to create new SoCs. However, if we create a framework for

describing SoCs to simplify the integration of IP modules, it would allow hardware design-

ers to focus on adapting IP functionality similar to software designers updating software

functions.

Another challenge for SoC designers is verifying design functionality and performance

in a timely fashion. Designers have traditionally relied on simulation and estimation to

evaluate their systems. Given the potential size and complexity of SoCs, simulation can

be a very time consuming process that takes orders of magnitude longer than on-chip ex-

ecution. However, if an SoC is implemented on an ASIC, it has a restrictive design envi-

ronment that is not easily altered post fabrication. Therefore, the importance of correctly

implementing a design on an ASIC the first time necessitates lengthy simulation times to

prevent a costly redesign.

Now that commercial Field Programmable Gate Arrays (FPGAs) are also large enough

to implement entire systems on one chip [3, 4], as opposed to just the glue logic, they

offer a unique opportunity for SoC designers. When using a reconfigurable implementa-

tion platform, there is no cost to reprogramming the hardware, therefore, we can develop

a new design infrastructure where system evaluation is performed on-chip. It would pro-

vide greater flexibility to the designer and allow a new approach to the design process.

For example, Hemmert et al. [5] introduced a debugger for hardware designs capable of

running on an FPGA for the benefit of accelerated speed of execution during the debug-

ging process. Recent work allows designers to incorporate a Statistics Module into a soft

processor to obtain a variety of run-time statistics that can be dynamically reconfigured [6].

Furthermore, designing for a reconfigurable implementation platform enables designers to

easily respecify the system’s architecture if the on-chip evaluation determines that the cur-

rent architecture fails to meet design specifications.

1.2 Objective

The objective of this research is twofold:

• To study how creating a framework for SoC architectures can facilitate both IP reuse

and system design.

• To develop a set of on-chip CAD tools that can exploit FPGAs to reduce time spent

evaluating the functionality and performance of SoCs.
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Defining a system framework requires that the system-level communication structure

used to integrate the IP modules be characterized. It also necessitates the specification of

the physical interface as well as the communication protocols for IP modules, to facilitate

their reuse in different applications. Finally, a formalized method for adapting how an IP

module is used by different systems without necessitating significant redesign is desired to

facilitate design reuse.

Having created a system framework, it is possible to develop on-chip CAD tools that

can be tailored to different SoC architectures. Given the unrestricted ability to reprogram an

FPGA, on-chip CAD tools can be used during the design process to evaluate functionality

and performance. By performing these operations on the runtime platform, designers can

reduce simulation time and overall design time.

1.3 Contributions

This thesis can be divided into two significant contributions:

• an architectural framework for SoCs, and

• a design infrastructure developed to leverage the advantages of reconfigurability and

a defined SoC model.

The proposed framework models SoCs as Systems Integrating Modules with Prede-

fined Physical Links (SIMPPL [7]) to expedite system integration. Within this framework,

IP modules are abstracted as Computing Elements (CEs) to reduce the complexities of

adapting IP to new applications. A lightweight controller has been created to provide a

fixed system-level interface for the IP module with standardized communication protocols.

It also executes a program that dictates how the IP is used in the system, thus localizing

the system-level control to simplify any necessary functional redesign of the IP for other

applications.

Designers implementing SoCs on FPGAs can leverage configurability by moving the

evaluation of the system on-chip. This can reduce system design time by decreasing the

amount of time spent simulating the system’s runtime behaviour, while still providing

accurate information. To this end, two on-chip profiling tools, SnoopP [8] and WOoD-

STOCK [7] have been designed. Furthermore, fixing the SoC architectural framework

allows us to create a system specification tool [7] that can facilitate the redesign of the

system-level architecture and an on-chip verification environment [9] for SoCs imple-

mented on FPGAs using the SIMPPL model.
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1.4 Thesis Organization

This thesis is divided into eight chapters. Chapter 2 summarizes the previous work done on

IP reuse and on-chip communication structures and presents the SIMPPL framework for

SoC design. Chapter 3 describes the Computing Element (CE) abstraction that is central

to this model. To demonstrate how the SIMPPL framework and CE abstraction can facil-

itate design, three applications are implemented as SoCs as described in Chapter 4. The

remainder of the thesis document discusses designing SoCs on FPGAs. Chapter 5 pro-

vides an overview of current research and describes the system-level design tools created

for generating and verifying SoCs within the SIMPPL framework on FPGAs. Along with

these tools, the design infrastructure for SoCs on FPGAs also includes two profiling tools

for evaluating system performance. The first is SnoopP, a Snooping Profiler for measuring

the performance of applications on processors at runtime, which is discussed in Chapter 6,

and WOoDSTOCK is the other. Chapter 7 describes how Watching Over Data STreaming

On Computing element linKs (WOoDSTOCK) can be used to detect processing load im-

balances in systems modelled using SIMPPL. Finally, the conclusions and potential future

work for this thesis are summarized in Chapter 8.



Chapter 2

Modelling SoCs: SIMPPL

This chapter begins by summarizing popular methods of simplifying IP reuse in Sec-

tion 2.1, followed by a discussion of some of the previous work investigating on-chip

interconnect structures in Section 2.2. It concludes with a presentation of the SIMPPL

system framework for SoC design in Section 2.3.

2.1 IP Reuse

Multiple books exist discussing the complexities involved in reusing legacy IP in new de-

signs [1, 2]. Although IP reuse can reduce design time, problems that arise when incor-

porating previously designed modules into new designs are of significant concern. This

has led to the development of well-defined IP design methodologies [10, 11] to ensure

reusability of cores with fixed interfaces and functionality. It does not, however, address

the common situation where a module has defined functionality but requires the ability to

interface with different communication structures.

The Spirit Consortium [12] has created two specifications for facilitating IP reuse. The

first is the IP meta-data description, which provides a generic method for describing IP

modules. The consortium has also created an IP tool integration API that allows designers

to integrate tools into an IP framework for SoC design.

The VSI Alliance has proposed the Open Core Protocol (OCP) [13] to enable the sep-

aration of external core communications from the IP core’s functionality, similar to the

SIMPPL model. Both communication models are illustrated in Figure 2.1. The SIMPPL

model targets the direct communication model using a defined, point-to-point interconnect

structure for all on-chip communications. In contrast, OCP is used to provide a well-

5
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Figure 2.1: Standardizing the IP interface using (a) SIMPPL for point-to-point communi-

cations and (b) OCP for different bus standards.

defined socket interface for IP that allows a designer to attach interface modules that act

as adaptors to different bus standards that include point-to-point interconnect structures as

shown in Figure 2.1(a). This allows a designer to easily connect a core to all bus types

supported by the standard.

More recently, an Interface Adaptor Logic (IAL) layer has been proposed [14] that

uses a socket interface for IP modules, similar to the OCP. However, unlike OCP, it is

specifically aimed at IP reuse in reconfigurable SoCs. FPGA companies also recognize

the importance of simplifying the inclusion of previously designed IP into newer system

designs. Xilinx provides its own bus-interface module for interconnecting IP with a defined

socket interface [15].

All the protocols presented in this section make it easier to port IP among different

bus standards. For example, the OCP and the IAL layer provide standardized adapters that

allow cores of fixed functionality to connect to a variety of bus standards. The SIMPPL

model, however, has a fixed interface, supporting only point-to-point connections with the

objective of allowing is to enable designers to treat IP modules as programmable coarse-

grained functional units. Designers can then reprogram the IP module’s usage in the system

to adapt to the requirements of new applications.

2.2 On-Chip Communication Structures

Many different on-chip interconnect strategies have been proposed for SoC design, in-

cluding hierarchical buses that use bridges to connect to each other [16, 17, 18], but the
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maximum bandwidth for each bus is limited by the number of modules connected to it.

The WISHBONE [19] SoC interconnect architecture provides multiple different intercon-

nect structures, allowing the designer to select the bus architecture for a particular system.

Since all the Wishbone interconnects are designed as single-level buses, the standard pro-

vides the user with a simpler design approach, unless components running at different clock

rates must share the same bus.

Berkeley’s SCORE [20] architecture divides system computations into fixed-size pages

and uses the data abstraction of streams to pass data between pages. Streams provide a

high-level description of point-to-point communication, comparable to the SIMPPL inter-

nal communication link, but without defining a physical connection. Adaptive System-on-

chip (aSOC) [21] uses a physical implementation of a point-to-point communication archi-

tecture for heterogeneous systems, where unlike the SIMPPL model, the communication

interface for each module is tailored in hardware to optimize the module’s performance.

Networks provide another form of scalable on-chip communication. Multiple Network-

on-Chip (NoC) topologies have been studied for ASIC designs [22, 23]. One popular NoC

topology is the mesh [24, 25], which has also been investigated on an FPGA platform [26].

The SIMPPL model, however, can be used to implement any fixed point-to-point network

topology, allowing the designer to choose the appropriate topology for each application.

2.3 SIMPPL Model

The proposed SIMPPL model represents SoCs as Systems Interfacing Modules with Pre-

defined Physical Links (SIMPPL) [7], implementing an SoC as a combination of different

Computing Elements (CEs) that are connected via communication links. Figure 2.2 illus-

trates a possible SoC architecture described using the SIMPPL model, where the solid lines

indicate internal links and the dotted lines indicate I/O communication links. I/O communi-

cation links may require different protocols to interface with off-chip hardware peripherals,

but the internal links are standardized physical links with defined communication protocols

to make the actual interconnection of CEs a trivial problem and to create a framework for

systems design. The current work using the SIMPPL model assumes that the internal links

are n-bit wide Asynchronous FIFOs with a user defined depth. Using asynchronous FIFOs

simplifies multi-clock domain systems, allowing designers to isolate different clock do-

mains in different CEs and buffer the data transfers between CEs. Point-to-point links not

only offer higher bandwidth than shared buses, but recent work has demonstrated that com-

mercial FPGA routing fabrics can implement network topologies where CEs have a high
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Figure 2.3: The system generator’s generic computing element.

degree of connectivity without performance degradation due to routing congestion [27].

Each CE has the generic structure shown in Figure 2.3, where each CE has N input links

and M output links. Internal links connect a CE to other CEs, where input links connect to

parent CEs and output links connect to child CEs. The information passed between CEs

is abstracted from the links themselves and instead, the data transfers are adapted to the

specific requirements of each CE. This format of communicating data between modules is

akin to software design, where the stack provides the physical interface between software

functions, similar to the proposed internal links. However, the information passed on the

stack, such as the number of parameters, is determined by the individual function calls. In

the SIMPPL model, the size and nature of the data in the packet communicated between
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the IP modules performs this task. Each module has internal protocols capable of properly

creating and interpreting the information in a packet.

A proposed model for the future of SoC design using many interacting heterogeneous

processors [28] can also have the same structure as a SIMPPL SoC, however the SIMPPL

model is more general, allowing CEs to depict either processors (software CEs) or dedi-

cated logic modules (hardware CEs). The SIMPPL model representation of SoCs is more

reminiscent of Kahn process networks [29], particularly Data process networks [30], in

that it is a collection of CEs interconnected via unidirectional links and well suited to data

intensive applications. However, unlike these models that assume the internal links have

unbounded capacity, the SIMPPL model uses real FIFOs that have limited capacity. Work

at Philips Research produced YAPI [31], an application model based on Kahn process net-

works that has been extended to support non-deterministic events and decouple the data

types used for communications and computation.

Although the SIMPPL model allows non-deterministic events, they are supported by

the CE abstraction. The abstraction allows inter-CE synchronization to be programmed

to meet the specific requirements of each application. The SIMPPL model only provides

a physical structure for the system and is oblivious to the meaning of the data flowing

between CEs, deferring the interpretation of the data to the CE abstraction discussed in the

following chapter.



Chapter 3

The Computing Element Abstraction

The Computing Element (CE) is an abstraction of software or hardware IP that facili-

tates design reuse by separating the datapath (computation), the inter-CE communication,

and the control. Researchers have demonstrated some of the advantages of isolating in-

dependent control units for a shared datapath to support sequential procedural units in

hardware [32]. This is similar to when a CE is implemented as software on a processor

(software CE), the software is designed with the communication protocols, the control se-

quence, and the computation as independent functions. Should a software CE need to be

reused and updated for a new application, the software changes should be localized to only

the control sequence functions.

Typically, complex control is easier to implement in software than in hardware. Fig-

ure 3.1 illustrates the desired functionality of a hardware CE. Using a microcontroller as the

CE communication interface isolates the Processing Element’s (PE’s) functionality from

the rest of the system. The PE now operates as a coarse grain functional unit that is only

accessible via the microcontroller. The PE’s local control is encapsulated in the CE’s local

program. Its instructions, along with data requests from adjoining CEs, are interpreted by

control
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Figure 3.1: The concept for the hardware CE.
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Figure 3.2: The hardware CE abstraction.

the microcontroller and executed by the PE.

However, general purpose microcontrollers are too big and too slow for the hardware-

to-hardware interactions of dedicated logic modules in hardware CEs. Ideally, a controller

customized to each CE’s datapath could be used as a generic system interface, optimized

for that specific CE’s datapath. To this end, we’ve created two versions of a fast, pro-

grammable, lightweight controller – an execution-only (execute) version and a run-time

debugging (debug) version – that are both adaptable to different types of computations

suitable to SoC designs on both ASICs and FPGAs.

Figure 3.2 illustrates how the control, communications and the datapath are decoupled

in hardware CEs. The Processing Element (PE) represents the datapath of the CE or the IP

module, where an IP module implements a functional block having data ports and control

and status signals. It performs a specific function, be it a computation or communica-

tion with an off-chip peripheral, and interacts with the rest of the system via the SIMPPL

controller, which interfaces with the internal communication links. The SIMPPL Control

Sequencer (SCS) module allows the designer to specify, or “program”, how the PE is used

in the SoC. It contains the sequence of instructions that are executed by the controller for a
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given application. The controller then manipulates the control bits of the PE based on the

current instruction being executed by the controller and the status bits provided by the PE.

Section 3.3.2 illustrates a programming example for the SCS.

The remainder of this chapter is divided into the following sections. Section 3.1 pro-

vides details on the underlying SIMPPL controller architecture and Section 3.2 outlines

the additional functionality and hardware of the “debug” version of the controllers. Fi-

nally, the SIMPPL Controller Sequencer’s interface and programming model are discussed

in Section 3.3.

3.1 SIMPPL Controller

The SIMPPL controller acts as the physical interface of the IP core to the rest of the system.

Its instruction set is designed to facilitate controlling the core’s operations and reprogram-

ming the core’s use for different applications. Details on the controller’s architecture and

the instructions it supports are given below.

3.1.1 Controller Architecture

Figure 3.3 illustrates the SIMPPL controller’s datapath architecture. The controller exe-

cutes instructions received via both the internal receive (Rx) link and the SCS. Instructions

from the Rx Link are sent by other CEs as a way to communicate control or status infor-

mation from one CE to another CE, whereas instructions from the SCS implement local

control. Instruction execution priority is determined by the value of the Cont Prog bit so

that designers can vary priority of program instructions depending on how a CE is used

in an application. If this status bit is high, then the “program” (SCS) instructions have

the highest priority, otherwise the Rx link instructions have the highest priority. Since the

user must be able to properly order the arrival of instructions to the controller from two

sources, allowing multiple instructions in the execution pipeline greatly complicates the

synchronization required to ensure that the correct execution order is achieved. Therefore,

the SIMPPL controller is designed as a single-issue architecture, where only one instruc-

tion is in flight at a time, to reduce design complexity and to simplify program writing for

the user. The SIMPPL controller also monitors the PE-specific status bits that are used to

generate status bits for the SCS, which are used to determine the control flow of a program

as discussed in Section 3.3.1.

The format of an output data packet sent via the internal transmit (Tx) link is dictated
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by the instruction currently being executed. The inputs multiplexed to the Tx link are the

Executing Instruction Register (EX IR), an immediate address that is required in some in-

structions, the address stored in the address register a0 and any data that the hardware IP

transmits. Data can only be received and transmitted via the internal links and cannot orig-

inate from the SCS. Furthermore, the controller can only send and receive discrete packets

of data, which may not be sufficient for certain types of PEs requiring continuous data

streaming. To solve this problem, the controller supports the use of optional asynchronous

FIFOs to buffer the data transmissions between the controller and the PE. The designer

can then clock the controller at a faster rate than the PE to guarantee that it accurately

receives/transmits at the necessary data rate.

3.1.2 Controller Instruction Set

Although the current SIMPPL controller uses a 33-bit wide FIFO, the data word is only

32-bits. The remaining bit is used to indicate whether the transmitted word is an instruction

or data. Figure 3.4 provides a description of the generic data packet structure transmitted

over an internal link. The instruction word is divided into the least significant byte, which

is designated for the opcode, and the upper 3 bytes, which represents the Number of Data

Words (NDW) sent or received in a data transmission instruction. The current instruction

set uses only the five Least Significant Bits (LSBs) of the opcode byte to represent the in-

struction. The remaining bits are reserved for future extensions of the controller instruction

set.

Designers can choose to reduce the resource usage of SoCs using the SIMPPL model

that do not require a 32-bit data word length or address space. If the width of the data word

transmitted/received by a CE is less than 32-bits and the maximum number of data words,

the NDW value, is less than 223, then the designer may choose to reduce the width of the

FIFOs used as internal Rx and Tx links for that CE. For example, if the width of the data

words being processed by a CE is 24-bits, the internal links can be 25-bits wide, where

24-bits are used for the data word and one bit is used as the control bit. The opcode of the

instruction word would still be the eight LSBs, however, there would only be two bytes

to represent the NDW value for the instruction, decreasing the packet size that could be

received or transmitted by the CE.

All SIMPPL controller instruction packets have three components: (1) the instruction

word; (2) the address or state word (optional); and (3) the data words (optional). The

instruction set is divided into two groups; instructions that perform a control operation, and
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those that transfer data. Instructions resulting in data transfers are further subdivided into

three different categories: (1) read requests, (2) receives, and (3) writes. A read request is

issued by the program of one CE and sent to another CE requesting that data be transmitted

back to the original CE. A receive instruction must then be generated as the first transmitted

word to accompany the data sent back to the initiating CE, since all transfers via internal

links start with an instruction. Finally, the program can also use a write instruction to

accompany data words transmitted to another CE.

Table 3.1 contains all the instructions currently supported by the SIMPPL controller

and Appendix A.1 lists the instructions and their corresponding opcodes. The objective is

to provide a minimal instruction set to reduce the size of the controller, while still providing

sufficient programmability such that the cores can be easily reconfigured for any potential

application. Although some instructions required to fully support the reconfigurability of
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Table 3.1: The current instruction set supported by the SIMPPL controller.

Instruction Type Rd Rx Wr Issue Exec. Addr Data

Req Instr Instr Field Field

Imm. Data Transfer X X X S/R S/R X

Imm. Data + Imm. Addr. X X X S/R S/R X X

Addr. Reg. Initialization X S S X

Addr. Reg. Arithmetic X S S

Imm. Data + Indir. Addr. X X X S S X X

Imm. Data + Autoinc. X X X S S X X

Bypass S/R S/R X

No-op S R

Reset S R

some types of hardware PEs may be missing, the instructions in Table 3.1 support the hard-

ware CEs that have been built to date. Furthermore, the controller supports the expansion

of the instruction set to meet future requirements.

The first column in Table 3.1 describes the operation being performed by the instruc-

tion. Columns 2 through 4 are used to indicate whether the different instruction types can

be used to request data (Rd Req), receive data (Rx), or write data (Wr). The next two

columns are used to denote whether each instruction may be issued from or executed from

the SCS (S) or internal Receive Communication Link (R). Finally, the last two columns are

used to denote whether the instruction requires an address field (Addr Field) or a data field

(Data Field) in the packet transmission.

The first instruction type described in Table 3.1 is the immediate data transfer instruc-

tion. It consists of one instruction word of the format shown in Figure 3.4, excluding the

address field, where the two LSBs of the opcode indicates whether the data transfer is a

read request, a write, or a receive. The immediate data plus immediate address instruction

is similar to the immediate data transfer instruction except that an address field is required

as part of the instruction packet.

Instructions that use the a0 register have a one or two-word format, but are not trans-

mitted as they only make sense in the context of the local controller. The initialization of

the local address register with an immediate value is a two word instruction, where the first

contains the opcode and the second is the new address. The address register arithmetic
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instructions are single word instructions used to add or subtract an offset to the current

local address register value. The value in the address register can provide the immediate

address for any data transfer instructions sent to other CEs, using indirect addressing with

an optional post-increment.

The remaining instructions provide control functionality for the controller. The bypass

instruction allows a packet of data received from one CE to bypass the current CE, such

that the bypass instruction header is removed and the enclosed instruction is forwarded

without execution. Figure 3.5 illustrates a data packet that is encompassed within four

bypass instructions. By prepending N bypass instructions to a data packet, the packet will

bypass N controllers before the N+1th controller processes the actual data packet. The

no-op instruction can be used in combination with SCS status bits to provide handshaking

controls between CEs. This will be further discussed in Section 3.3.1. Finally, the reset

instruction can be transmitted from the CE to reset the controller and PE of the receiving

CE.

Designers can reduce the size of the controller by tailoring the instruction set to the

PE. Although some CE’s may receive and transmit data, thus requiring the full instruction

set, others may only produce data or consume data. The Producer controller (Producer) is

designed for CE’s that only generate data. It does not support any instructions that may

read data from a CE. The Consumer controller (Consumer) is designed for CEs that receive

input data without generating output data. It does not support any instructions that try to
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write PE data to a Tx link.

3.2 Debug Controllers

Here we introduce a debug SIMPPL controller (debug controller), based on the execute

SIMPPL controller (execute controller) described in Section 3.1. This extension of the

original architecture allows designers to detect low-level programming and integration er-

rors for individual CEs.

3.2.1 Debug-Controller Architecture and Interface

Figure 3.6 shows the architecture of a debug controller, with the execute controller de-

scribed in Section 3.1 forming the central component. While the execute controller has

three states in the instruction execution state machine: fetch, decode, and execute, the de-
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bug controller has a fourth state – the stall state. An input signal (Status Check) has been

added to the debug controller to allow designers to request a status check of the CE while

the system is running. Additional output signals are used to indicate if a run-time error has

occurred in the CE(int error) and when the CE’s status information is ready to be accessed

(status ready). The controller enters the stall state if an error occurs during the execution of

an instruction or if a status check has been requested (status check). The stall state allows

the controller to upload all of the status information about the current executing instruction

to the debug status upload link before executing the next instruction.

Eleven status registers have been added to the debug controller architecture, as shown

in Figure 3.6, to store run-time status information about the CE. These include the CE’s ID

register, registers that store information about the instruction currently executing (Ex IR,

Imm Addr, A0 register, Data Cntr, Execution/Fetch Time Counter), the current state of the

CE (Error Type Register, Prog/PE Status, Controller Status), and the “next” instructions

available from the program and from the receive link (Rx IR and Prog IR). The status

registers are connected to form a large shift register to upload the values from the CE to the

debug status upload link. The debug controller requires twelve cycles, or one cycle plus the

number of status registers, in the stall state to upload all of the status information from the

CE to the link, assuming the upload link is not full. Otherwise, the controller will remain

in the stall state until all the status register values have been uploaded.

The debug status upload link is implemented as an additional Asynchronous FIFO link
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Table 3.2: The current error cases detectable using the debug controller.

Error Case Error Code Error Type

Instruction word not in Fetch Cycle 8000 0001 Programming

Data word in Fetch Cycle 4000 0001 Programming

Execution Time Overflow 2000 0001 Programming

Fetch Time Overflow 1000 0001 Programming

Writing to a Full Tx Link 0800 0001 Integration

Reading from an Empty Rx Link 0400 0001 Integration

Writing data to the PE when it is not ready 0200 0001 Integration

Writing an address to the PE when it is not ready 0100 0001 Integration

Reading data from the PE when it is not ready 0080 0001 Integration

Executing an invalid instruction 0040 0001 Programming

that is used to upload the debugging information to the debug interface shown in Figure 3.7.

The debug controller interface connects via a bus to an off-chip peripheral interface module

that allows users to read the available status information off-chip from the controllers. The

interface also contains a status register that indicates which CEs have status information

available and what, if any, CEs have encountered run-time errors. Alternatively, if a debug

controller is implemented in ASIC technology, the status information can be downloaded

off-chip by implementing the registers using scannable flipflops.

3.2.2 Debugger Options and Detectable Errors

The debug controller supports two different run-time operations: error detection and status

checks. When the Status check signal is set high for a clock cycle, it triggers the CE to

upload status information after the execution of the current instruction completes. This

allows the designer to check what instruction is being executed by a CE at random points

of operation of the application. The Status Check can also be tied high for the duration of

the profile period to obtain a continuously running profile of the CE, however, the CE will

stall if the upload link becomes full.

Column 1 of Table 3.2 lists the error cases that the debug controller is currently able

to detect, but the number of detectable error cases may be extended if a future need is

determined. The second column in the table indicates the error code that is uploaded from
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the debug controller when an error occurs. The final column indicates whether an error

case is the result of a programming error or a CE/system integration error.

3.3 SIMPPL Control Sequencer

The SIMPPL Control Sequencer provides the local program that specifies how the PE

is to be used by the system. For example, a CE that has an audio sampling PE can be

reprogrammed to generate packets of different formats depending on the requirements of

the application. In this section, we discuss the SCS’s architecture for both ASIC and FPGA

platforms and provide a programming example. We then conclude with a discussion of how

the CE abstraction allows a designer to dynamically generate program instructions, which

we refer to as dynamic programming.

3.3.1 SCS Interface

The operation of a SIMPPL controller is analogous to a generic processor, where the con-

troller’s instruction set is akin to assembly language. For a processor, programs consist

of a series of instructions used to perform the designed operations. Execution order is

dictated by the processor’s Program Counter (PC), which specifies the address of the next

instruction of the program to be fetched from memory. While a SIMPPL controller and

program perform the equivalent operations to a program running on a generic processor,

the controller uses a remote PC in the SCS to select the next instruction to be fetched.

Figure 3.8 illustrates the SCS structure and its interface with the SIMPPL controller

via six standardized signals. The 32-bit program word and the program control bit, which

indicates if the program word is an instruction or address, are only valid when the valid

instruction bit is high. The valid instruction signal is used by the SIMPPL controller

in combination with the program instruction read to fetch an instruction from the Store

Unit and update the PC. The continue program bit indicates whether the current program

instruction has higher priority than the instructions received on the CE Rx link. It can be

used in combination with PE-specific and controller status bits to help ensure the correct

execution order of instructions.

For example, if the SCS has a status bit that indicates when the controller is executing

an instruction from a Rx Link (exec rx instr), it can be used to stall the CE until it has

received a packet from an adjacent CE. To perform this handshaking, the SCS program

initially stalls the controller by setting the valid instruction bit low. When the controller
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receives an instruction on the Rx Link, it acts as a request signal and the exec rx instr will

go high. In response to this request, the SCS’s valid instruction signal then goes high along

with the continue program so that the next instruction executed by the controller is an SCS

instruction to acknowledge the received request.

Although a PC is traditionally implemented as a counter, the SCS’s remote PC can also

be constructed as a Finite State Machine (FSM). This allows branches to be executed im-

plicitly as transitions in the PC’s FSM depending on the control and status signal values.

The PC FSM is application-specific and uses the current PC and status bit values to gen-

erate the correct index to the store unit to select the correct instruction to be fetched and

sent to the controller. This reduces the size of both the SIMPPL controller and the program

located in the store unit by eliminating the need for branch instructions in the instruction

set. Furthermore, it reduces the performance overhead of using the SIMPPL controller as

an interface since it does not have to execute conditional or explicit branch instructions.

If an SoC is implemented on an FPGA, the designer can choose to implement the

program’s store unit in an on-chip memory. Yet many CEs only require small SCSs for

an application, thus the instructions can be stored as a separate FSM. When an SoC is

implemented as an ASIC, the designer could choose to design each SCS for its specific

application by instantiating a small memory for the Store Unit and then implementing
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write start addr to a0;
for (i=0; i< 1024; i++)
{

while (!valid_sensor_data);
write 8 data words starting at addr (a0);
a0 = a0 + 8;

}

Figure 3.9: Pseudocode for the sensor unit’s SCS program.

the PC as application-specific dedicated logic. However, one of the benefits of the CE

abstraction is that it decouples the control from the datapath to support programmability.

Hardwiring the PC means that the designer cannot alter the CE’s program post-fabrication.

To allow post-fabrication programmability, ASIC designers can implement a small memory

for the instruction words and a small region of programmable fabric that enables designers

to change the PC to support a variety of SCS programs for the CE. The following example

demonstrates how to write a program and use the SIMPPL controller interface.

3.3.2 Static Programming Example

Assume a hardware system that consists of two PEs: 1) a memory, and 2) a sensor unit

used to measure multiple environmental quantities at set time intervals. The total storage

requirements for each set of measurements is 32 bytes (eight data words) and the memory

is large enough to store 1024 samples. The user wants to store the first 1024 samples to

experimentally measure when the environmental system reaches steady state before decid-

ing how often to record samples and upload the results to a host PC. The sensor unit has

a status bit, valid sensor data, that indicates when a set of measurements is available for

reading. The sensor unit’s SIMPPL controller passes the status information to its SCS to

indicate that data is available for transmission to the memory unit. The pseudocode for the

sensor unit’s SCS program is given in Figure 3.9. At present, we do not have compiler sup-

port for the SIMPPL controller and all programs (SCSs) are hand generated. Figure 3.10

illustrates pseudo-HDL implementations of the sensor CE’s Program Counter FSM and

the valid instruction signal that dictate the program instruction and if it is available to be

fetched by the SIMPPL controller using the prog instr read signal.

The PC requires four states to implement the pseudocode in Figure 3.9 and the PC state

only changes after an instruction has been read or all 1024 samples have been written to

memory. The first two states, Write a0 state and Write address state, write the starting
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if (rst=1) {
PCstate <= Write a0 state;

else
PCstate <= nextPC;

}

//Next-state state machine for the PC:
case (PCstate) {

Write a0 state: //Instruction to initialize a0
if ((prog_instr_read) && (rst=0))

nextPC = Write address state;
else

nextPC = Write a0 state;
Write address state: //New address for a0

if (prog_instr_read)
nextPC = Write autoinc state;

else
nextPC = Write address state;

Write autoinc state: //Write data to (a0)+
if ((prog_instr_read) && (SampleCntr=1024))

nextPC = Done state;
else

nextPC = Write autoinc state;
Done state:

nextPC = Done state;
}

/*Used to indicate when the instruction is valid.
*Stalls the processor when there is no valid
*instruction. */

case (PCstate) {
Write a0 state:
valid_instruction = 1;

Write address state:
valid_instruction = 1;

Write autoinc state:
valid_instruction = valid_sensor_data;

Done state:
valid_instruction = 0;

}

Figure 3.10: Pseudo-HDL code to implement the state machine for the sensor unit’s pro-

gram counter and the valid instruction signal.
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Figure 3.11: A CE with multiple packets of data in flight.

address of the memory unit to the a0 register. The third state (Write autoinc state) writes

eight data words to the memory unit starting at address (a0) and then post-increments a0

by eight. While the valid instruction signal is high during the first two states to initial-

ize the address register, it is assigned the value of the valid sensor data status bit in the

Write autoinc state because the data write instruction should only occur when the sensor

has new data to transmit to the memory. A separate counter state machine(SampleCntr),

not shown in Figure 3.10, is used to count the number of times the sensor unit measure-

ments are sent to the memory unit. When the SampleCntr equals 1024, the program has

completed so the PC goes to the Done state, where no further instructions are executed,

and the valid instruction signal goes low permanently.

3.3.3 Dynamic Programming Architecture

For some applications, a designer may wish to have a CE support multiple processing oper-

ations that are data packet dependent. If the CE is pipelined with independent Producer and

Consumer controllers for the PE, then the Consumer may receive a variety of instruction

packets that should result in the Producer generating different instruction packets depend-

ing on the received data. The following example demonstrates how the Consumer and

Producer controllers can work together to correctly process the received instruction pack-

ets and generate the appropriate output instruction packets, even in the presence of bypass

instructions.

Figure 3.11 illustrates a CE that receives packets A through E in order, where packet

C is to bypass the PE entirely, and generates the appropriate program instructions for the
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Producer’s SCS. For the purpose of this example, the Consumer does not have an SCS and

the order of packets received by a CE must be maintained when they are transmitted to the

subsequent CE. Therefore, it is imperative that data packets A and B, which were inflight

when packet C arrived, are transmitted first. To enable this functionality, the instructions

from the Producer’s Rx Communication Link and those created in the Producer’s SCS

have variable processing priority determined by the value of the continue program status

bit. When the continue program status bit is set, the controller continues to fetch available

instructions from the SCS, even if there are data packets to be processed on the receive link.

Therefore, each Producer’s SCS uses a 35-bit wide FIFO to store the instruction word, the

control bit, the valid instruction bit and the continue program bit as well. The FIFO acts

as the Store Unit where the maximum depth is equal to the maximum number of data

packets that can be processed concurrently. The PE enqueues valid instructions into the

FIFO for every data packet in flight, setting the continue program bit for each instruction,

as indicated in Figure 3.11.

To ensure that bypassed packets are transmitted in the proper order, the PE must detect

if the Consumer receives a bypass instruction. In this situation, the PE will queue a null

instruction into the FIFO with the continue program and valid instruction bits set low, as

shown in Figure 3.11. To guarantee that instructions are enqueued in the Producer’s FIFO

in the correct order, the SCS state machine must push the correct instruction onto the FIFO

before the Consumer controller finishes reading the current data packet. The Producer

will then dequeue the instructions and transmit the data packets in order. When the “null”

instruction is detected with the continue program and valid instruction bits set low, the Rx

Communication Link will be given priority. The bypassed packet will then be retransmitted

by the Producer to the subsequent CE and the “null” instruction will be dequeued from the

FIFO.

Thus, for the example shown in Figure 3.11, the Producer will transmit packets A and

B from the PE. It will then detect a “null” instruction, with the continue program bit set

low, and process packet C from the bypass link, while simultaneously dequeuing the “null”

instruction. This will be followed by packets D and E being sent to the next CE.

3.4 Summary

The Computing Element abstraction simplifies the reuse of software and hardware IP by

isolating the functionality of the IP, i.e. the Processing Element (PE), from the system-

level communication and control. This is particularly important for hardware reuse, where
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redesign can be extremely costly. The SIMPPL Controller has been created to facilitate

the reuse of hardware PEs. It provides a fixed physical interface to the PE as well as a

fixed set of communication protocols for transmitting data among the CEs. Although the

controller’s underlying architecture is optimized to act as a PE’s system interface, it can

also be extended to provide runtime debugging capabilities for verification of the PE and

its integration with the controller. CE’s use a SIMPPL Control Sequencer (SCS) to store

the local program that dictates how the PE will be used for the given application. The SCS

allows both static and dynamic programming models to increase the flexibility of the CE

abstraction and facilitate the reuse of CEs over a variety of applications.



Chapter 4

Implementing SIMPPL SoCs

To investigate the usage of a programmable controller interface for IP modules, three SoCs

are created using the SIMPPL framework. All three of the SoCs are implemented on a

Xilinx Multimedia board. The board’s resources include a Virtex II 2000, five ZBT mem-

ory banks, a YCrCb video decoder that runs at 27MHz, and an RGB video DAC operating

at 25 MHz. Section 4.1 of this chapter describes the nature of the three applications and

the effects of using SIMPPL on system design time. Next, an overview of the CEs used

to implement each application is given in Section 4.2. The chapter then concludes with a

detailed examination of the effects of using the SIMPPL framework on a non-trivial SoC

design in Section 4.3.

4.1 SIMPPL SoC Applications

Figure 4.1 illustrates the system level connections for two video-based systems. The first

is a video streaming system, which does not include the Switch CE. Instead, it uses one

of the two memory banks to buffer the video feed from the video camera while the other

bank is displayed using the video DAC driving an SVGA monitor. The second system is a

video snapshot system, which includes the Switch CE and only allows the user to update

the SVGA display with a new image when the switch is toggled. The Vid In CE interfaces

with a video decoder to read in data in YCrCb format and then convert it to RGB format.

The Vid Out CE receives data in RGB format and transmits it to a video DAC used to drive

an SVGA monitor. These CEs, in combination with two external memory banks controlled

by the Mem CE, are used to implement a video streaming and a video snapshot application.

The video recorder and video display need to be synchronized because the system may

28
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Figure 4.1: The SIMPPL model for the video streaming and snapshot applications.

come out of reset when the video recorder is mid-frame. Although the video applications

require synchronization between the Vid In CE and Vid Out CE to properly display the

video camera images, they do not communicate directly. Since the user is able to write

individual programs to control the operation of the Vid In, Vid Out, and Mem CEs, there

are multiple ways to implement this system. The straightforward approach is to have the

Vid In and Vid Out CEs become active as soon as the system comes out of reset, and

have the Mem CE only execute the memory reads and writes requested via the internal

links from the Video CEs. However, this would not guarantee synchronization between the

video data being received and the video data written to the SVGA. Therefore, to achieve

synchronization between the two Video CEs, the Vid In CE starts running as soon as the

system comes out of reset and the Vid Out CE stalls, waiting for an indication that the

Vid In CE has started writing a new frame to the Mem CE.

Another significant design challenge for the video systems is the different operating

frequencies of the CEs. Fortunately, the CE abstraction and asynchronous FIFO commu-

nication links effectively isolate the different clock domains to simplify their integration

and synchronization. For instance, the Vid In and Input Switch CEs operate at 27 MHz,

however, the Mem CE operates at 54 MHz. Furthermore, the Vid Out CE uses an asyn-

chronous FIFO interface between its PE and controller so that the controller can run at 50
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Figure 4.2: The SIMPPL model for an MPEG-1 video decoder.

Table 4.1: Table of the System Integration times for SoCs.

SoC Design System Integration Time

Custom Streaming Video System 140 hours

SIMPPL Streaming Video System 4.5 hours

SIMPPL Snapshot Video System 1.5 hours

SIMPPL MPEG-1 Video Decoder System 18 hours

MHz to guarantee that valid data will be available for the PE, which runs at 25 MHz to

match the video DAC’s operating frequency.

Figure 4.2 illustrates the third system designed using the SIMPPL model. It is an

MPEG-1 video decoder that runs at 30 frames per second, generating 320 by 240 pixel

images on an SVGA monitor. The decoder was designed and implemented by four grad-

uate students as a course project [9]. The synchronization challenge for this system is to

maintain the order of packets processed in the system while ensuring that certain instruc-

tion packets are only processed by selected CEs. Recalling the discussion in Section 3.3.3

and the CE architecture in Figure 3.11, the bypass instruction allows such packets to by-

pass processing by a CE, but the continue program status bit can be used to ensure that the

bypassed packet maintains its position in the data stream.

4.1.1 SIMPPL SoC Implementation Statistics

Table 4.1 summarizes the time required to integrate the CEs and create the SCSs for the

systems shown in Figures 4.1 and 4.2. Before the SIMPPL model was defined, a novice
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designer created a custom version of the video streaming application. The student found

it difficult to create the proper system-level control due to the multiple clock domains and

synchronization requirements. After some redesign, the modules were reused and inte-

grated with SIMPPL controllers to create the Vid In, Vid Out, and Mem CEs (Figure 4.1),

which required approximately 40 hours. However, the integration of the CEs and the design

of their respective SCSs took only 4.5 hours for the SIMPPL Streaming Video SoC, which

is less than 3.5% of the time required to implement the system-level integration for the

custom design. The CE abstraction simplified the system-level integration by isolating the

different clock domains, which greatly reduced integration time. The SIMPPL Snapshot

Video system only required the addition of the Input Switch CE and minor adjustments to

the SCSs previously used in the streaming video system, reducing the system integration

time to 1.5 hours. Thus, not only does the SIMPPL framework reduce system integration

time, but it also facilitates the reuse of CEs for new applications.

Recalling that the SIMPPL MPEG-1 Video Decoder System was built by a four person

design team, it took 18 person-hours to properly connect all the CEs and to generate the

appropriate SCSs. Integrating all the MPEG-1 hardware PEs with Producer and Consumer

controllers required an additional 39 person-hours, or 2.4%, of the total system design time

of 1607 person-hours. For complex designs, system integration can be a significant portion

of the total design time, however, the SIMPPL framework limits the system integration

for the MPEG-1 Video Decoder to 1.1% of the total design time. Furthermore, the CE

abstraction hides the implementation details of the CE from the rest of the system so that

changes to the PE do not necessitate redesign at the system-level. For example, the Video

Stream Parser CE is currently implemented as a software CE on a MicroBlaze, due to

design time constraints. However, the fixed communication links allow it to be swapped

out in favour of a hardware CE implementation in the future without any changes to the

rest of the system.

4.2 CE Implementations

This section describes the implementation statistics for the controllers implemented on

FPGAs and ASICs, possible different CE architectures, and the different CEs that have

been created and tested to date on an FPGA for the SoCs described in Section 4.1.
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Table 4.2: SIMPPL Controller implementation statistics.

Controller Type FPGA ASIC platform– ASIC platform–

platform Area Speed

Area Max. Area Max. Area Max.

Freq. (103um2) Freq. (103 um2) Freq.

LUTs Flipflops (MHz) (MHz) (GHz)

Consumer Execute 277 117 287 5.25 183 12.16 1.59

Producer Execute 355 125 285 5.42 184 13.16 1.56

Full Execute 346 115 283 5.49 183 13.71 1.59

Consumer Debug 1002 477 180 19.17 165 29.62 1.24

Producer Debug 955 478 199 19.24 164 28.01 1.09

Full Debug 946 478 185 19.48 166 29.59 1.09

4.2.1 Controller Implementation Statistics

Table 4.2 summarizes the area and operating frequency measurements obtained for the

different types of SIMPPL controllers implemented on both FPGA and ASIC platforms.

The ASIC measurements are obtained using Synopsys synthesis tools for a 90 nm standard

cell process. The ASIC platform–Area values are minimized for area and the operating

frequency is left unconstrained, whereas the ASIC platform–Speed values minimize the

operating frequency and leave the area unconstrained. To obtain comparable operating

frequency measurements on an FPGA, the Virtex4 LX 40 -12 is used since it is the highest

speed grade device fabricated in a 90 nm technology available from Xilinx. The FPGA

measurements are generated using Xilinx’s Place and Route tool from the ISE tool suite

version 7.1.4.

Column 1 lists all of the different types of debug and execute SIMPPL controllers.

Although the regularity of the controller’s architecture can allow them to be autogenerated,

the Consumer and Producer controllers are currently hand tailored from the Full controller.

Columns 2 through 4 report the resource usage and maximum operating frequency for the

controllers on the FPGA platform. All of the execute controllers achieved at least a 280

MHz operating frequency, and the Producer controller requires the most logic resources:

355 LUTs and 125 flipflops. Although it may seen peculiar that the Producer would require

more resources than the Full controlle given its reduced instruction set, these controllers
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have been optimized for speed and not area. Therefore, the tools replicate logic to reduce

the delay along the critical path, while using additional resources.

The debug controllers have a reduced operating frequency of 180 to 199 MHz while

utilizing 945 to 1002 LUTs and 478 flipflops. The additional flipflops used in the debug

controllers are attributed mainly to the eleven 32-bit debug status registers used to upload

run-time information from the CE. The extra LUTs are required for implementing the mul-

tiplexing and shift logic for the status registers along with the error detection and uploading

functionality. However, when designing on an FPGA, designers may choose to instantiate

CEs with debug controllers to verify functionality on-chip and then use execute controllers

for the final implementation to free up resources or increase the operating frequency if

necessary.

The fifth and sixth columns in Table 4.2 report ASIC synthesis results for the controllers

when they are optimized for area. While these implementations of the controller occupy a

minimal area, the maximum operating frequency of 183 MHz is comparable to the worst

operating frequency on the FPGA of 180 MHz. However, the final column demonstrates

that the debug controllers can achieve a minimum operating frequency of 1 GHz when

optimized for speed. This requires an approximate increase in area of 50% from the debug

controllers optimized for area. The size increase for the execute controllers optimized for

speed is approximately 2.5 times that of the area of the execute controllers optimized for

area.

The results shown in Table 4.2 demonstrate that the critical path delay for the FPGA

implementations is approximately 5.5 times greater than the speed-optimized ASIC im-

plementations with the exception of the Consumer Debug controller that has an increased

delay of 6.9 times that of the speed optimized ASIC implementation. This concurs with

recent research that found the critical path delay on FPGA implementations to be three to

four times that on ASICs [33]. The operating frequency of the speed-optimized SIMPPL

controllers is likely fast enough for most applications, however, there is also the consider-

ation that the area overhead of using these controllers is not significant.

The MIPS core is on the order of 10mm2 in 90nm technology according to industry

sources. The maximum number of Consumer debug controllers, the largest of the SIMPPL

controllers, that can be packed into 10mm2 is 337. While most current SoC designs would

probably have significantly fewer CEs, the area of the controllers could be reduced and the

operating frequency increased if the designer used a fully custom version of the controller.

Previous work indicates that the maximum operating frequency should increase by a factor

of 6 to 8 times [34] that of the standard cell implementation and the full custom layout area
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Table 4.3: Execution overhead clock cycles for the Consumer, Producer, and Full SIMPPL

Controllers.
Measured Quantity Producer Consumer Full

Controller Controller Controller

Instr. Fetch Overhead 1 cycle 1 cycle 1 cycle

Instr. Decode Overhead 1 cycle 1 cycle 1 cycle

Instr. Execute Overhead 2 cycles 4 cycles 4 cycle

Total Overhead 4 cycle 6 cycles 6 cycles

could be reduced to 6.9% that of a standard cell version [35].

Table 4.3 summarizes the execution overhead for the different versions of the con-

trollers. One clock cycle is required to fetch the instruction from either the SCS or a

Rx Link and another clock cycle is required to decode the instruction. The Execution-

stage clock-cycle overhead is dependent on the current instruction being executed, thus

the maximum execution-stage clock-cycle overhead for each controller is dependent on

the instruction set supported by that controller. The Producer’s maximum overhead of two

clock-cycles occurs when a Write Immediate address plus Autoincrement instruction is is-

sued. Four clock-cycles is the maximum execution overhead incurred by both the Full and

Consumer Controllers when a Read Request plus Autoincrement instruction is issued.

The total instruction execution overhead of the SIMPPL controller ranges from a max-

imum of four clock cycles for the Producer Controller and six clock cycles for the Full

and Consumer Controllers. Additional clock cycles of overhead may be incurred depend-

ing on the nature of the PE, ranging from one clock-cycle of overhead for buffering data

transferred between the controller and the PE to multiple cycles for resource arbitration.

However, depending on the nature of the PE, status bits may be used to provide early warn-

ing of the availability or need for data, allowing the designer to hide some of the overhead

incurred by the controller during the PE processing to decrease the effective latency at-

tributed to passing data packets between CEs. For example, an early warning signal is used

by the Vid Out CE to request data to ensure it is available to write to the display. It masks

the total controller latency overhead of six cycles with no impact on the functionality or

performance of the PE.
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4.2.2 CE Architectures

To date, we have investigated three different hardware CE architectures. The first archi-

tecture, called the Basic architecture, is a direct implementation of the hardware CE ab-

straction shown in Figure 3.2. It is used for PEs that do not support the independent data

transfers and have only one Rx and one Tx link. Examples of CEs with the Basic architec-

ture are the Vid In, Vid Out, and Switch CEs. Figure 4.3 illustrates a second hardware CE

architecture, the Shared architecture, which is designed to support parallel access to shared

PE resources. For example, the shared architecture is useful for implementing a shared

memory CE with two memory banks. It uses two controllers and an arbiter to determine

which controller has access to which PE, in this case the Memory Bank Controllers.

The arbiter module interfaces with both SIMPPL controllers to service requests for

memory bank accesses and to acknowledge that control of a memory bank has been

granted. It generates the select signals used to multiplex the I/O signals from the two

SIMPPL controllers to each of the two memory bank controllers. The arbiter is designed
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as a separate module so that the user can adapt the arbiter to suit different applications.

Finally, Figure 4.4 shows a block diagram of the Pipelined architecture utilized for the

CEs in the MPEG-1 video decoder application. All of the PEs in an MPEG-1 application

are implemented in a pipelined format to allow multiple data packets to be processed con-

currently Therefore, each PE has independent input and output Consumer and Producer

SIMPPL controllers respectively, where each controller has its own SIMPPL Control Se-

quencer (SCS). Using independent controllers for receiving and transmitting data allows

the Consumer to receive a new data packet for processing while the Producer transmits a

packet to the adjacent CE.

4.2.3 CE Implementation Statistics

To investigate the CE architectures we described in the previous section and to demonstrate

the benefits of the SIMPPL model, we implemented the three different SoCs described in

Section 4.1 on an FPGA using the nine hardware CEs described in Table 4.4. All the results

reported in the table were obtained using version 7.1.4 of the Xilinx ISE tools.1 The first

1The LUTs and Flipflops resource usage of the Mem CE were reported using version 6.2.2 of the ISE

tools as a bug in the current version of the tools causes an error during synthesis.
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Table 4.4: Implemented CEs.

CE Name Architecture Controllers PE Resources

Type LUTs Flipflops

Input Switch CE Basic Producer 0 0

Vid In CE Basic Producer 128 211

Vid Out CE Basic Consumer 96 52

Mem CE Shared Full 187 148

Full

VLD/RLD CE Pipelined Consumer 606 699

Producer

IQ CE Pipelined Consumer 429 201

Producer

IDCT CE Pipelined Consumer 1091 1217

Producer

MMR CE Pipelined Consumer 141 152

Producer

MC/PR CE Basic Consumer 1705 742

column provides the names of the CEs that have been designed. Column 2 describes which

of the three architectures described in the previous section has been used to implement the

CE. The third column lists which controller type(s) are used in the CE and the final two

columns give the number of LUTs and Flipflops used to implement the PEs.

The Input Switch CE has no PE resources because the logic value on the switch is

provided directly to the SCS as a status bit. However, the Vid In and Vid Out PEs read

and write data to off-chip peripherals. The Vid In PE also performs a 4-stage pipelined

conversion of the YCrCb input to RGB format that makes it larger than the Vid Out PE.

The Mem PE comprises the two Memory Bank Controllers and the arbiter.

The remaining hardware CEs are: a Variable Length Decoder/Run-Level Decoder

(VLD/RLD CE), an Inverse Quantizer (IQ CE), an Inverse Discrete Cosine Transform

(IDCT CE), a Missing Macroblock Replacer (MMR CE), and a Motion Control/Picture

Reconstruction (MC/PR CE). These hardware CEs are used to implement an MPEG-1

video decoder. The range in PE resource usage is due to the varied complexity of the PEs
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Table 4.5: Table of the resource usage of the individual modules and total system.

Module Name Number of Number of Number of Consumer Producer % Overhead

LUTs Flipflops PE BRAMs/ (LUTs/ (LUTs/ (LUTs/

(PE/SCS) (PE/SCS) Multipliers Flipflops) Flipflops) Flipflops)

VLD/RLD CE 606/92 699/98 9/0 119/70 217/42 71/30

IQ CE 429/86 201/13 2/2 126/70 302/106 120/94

IDCT CE 1091/67 1217/24 3/16 126/70 302/106 45/16

MMR CE 141/47 152/32 0/0 115/69 217/42 269/94

MC/PR CE 1705/0 742/0 2/5 115/69 0/0 7/9

Total System 7248/292 4118/167 16/23 601/348 1038/296 27/20

being implemented in the decoder.

4.3 Detailed Analysis of an SoC Implementation

This section provides the implementation statistics for the resource usage and the design

time of the MPEG-1 video decoder running at 30 frames per second to generate 320 by

200 pixel images on a monitor using the Xilinx Multimedia Board’s Virtex 2V2000. A

four-person design team, initially unfamiliar with the model, implemented the MPEG-1

video decoder as shown in Figure 4.2 using SIMPPL to provide an independent evaluation

of the proposed SIMPPL framework [9]. The design team partitioned the video decoder

into PEs before selecting this system-level architecture. While the PE partitions are not

made to ensure reusability, they are still readily adaptable to CEs. All the video decoder

CEs are implemented in hardware except for the Parser. Due to design time limits, the team

used software running on a processor, a software CE, to read the MPEG encoded data from

external memory to generate the data-packets for the VLD/RLD CE.

4.3.1 Resource Usage

Table 4.5 summarizes the resource usage for the hardware CEs in the MPEG-1 video de-

coder system. The first column gives the name of the hardware CE for which the resource

usage measurements will be reported in the remaining columns. This excludes the Parser
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CE as it is a software CE implemented on a MicroBlaze and the focus here is on the over-

head for hardware PEs. Columns 2 and 3 report the number of LUTs and flipflops used

respectively by the PE and SCS. The Virtex 2V2000 provides 56 dedicated Block RAMs

(BRAMs) and 56 hard multipliers as extra design resources, along with the homogeneous

array of LUTs and flipflops in their Combinational Logic Blocks (CLBs). Column 4 re-

ports the number of BRAMs and multipliers used in the PEs as none are required for the

SCSs. Since neither the Producer controller nor the Consumer controller use BRAMs or

multipliers, the total logic resource usage for the controllers is reported in terms of LUTs

and flipflops in Columns 5 and 6 respectively. Finally, Column 7 reports the percentage of

extra LUTs and flipflops required in addition to the PE to create each CE. This is calculated

by totaling the number of the LUTs/flipflops used by the two controllers and the SCS and

then dividing it by the LUTs/flipflops used by the PEs.

The Consumer and Producer controllers have relatively consistent resource usage

among the CEs as they all support the same instruction sets. The IQ and IDCT CE have

slightly larger controllers because they execute bypass instructions, and therefore have to

support variable instruction priority. SCS resource usage for all five CEs is minimal, the

maximum being 92 LUTs and 98 flipflops by the VLD/RLD CE’s SCS. This is due to

the fact that its Producer has to generate both packets for the adjacent IQ CE and bypass

packets. The great variance in the CE sizes arises from the different PEs they include, how

complex they are algorithmically and how much of their design can be moved into BRAMs

and Multipliers.

The MMR PE is the smallest because it is a patch to fix an error. Ideally, its function-

ality should have been encompassed in the MC/PR CE, but a redesign of the PE required

more testing and risked more errors than adding a separate module to implement the extra

functionality. Although the percentage overhead of adapting the MMR PE into a CE was

269% in terms of LUTs and 94% in terms of flipflops, the percentage overhead of the LUTs

for the MMR CE is greater than 100% because the PE uses less LUTs than the combination

of the producer and consumer controllers, however, it minimized the design time required

to fix the error as discussed in Section 4.3.2.

Row 7 summarizes the complete hardware MPEG-1 video decoder system resource us-

age in terms of LUTs, flipflops, BRAMs and multipliers. Columns 2 and 3 of Row 7 report

the total number of LUTs and flipflops in the complete hardware system, which comprises

the resources required for the FIFOs used as Communication Links between CEs, the sys-

tem reset manager, and the CEs themselves, and the totals for the SCSs. The fifth and sixth

columns in the final row report the total overhead of the Consumer and Producer controllers
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Table 4.6: Table of the CE design and integration times required for the system given in

person-hours.

Measured Design Time VLD/RLD IQ IDCT MMR MC/PR Percentage of

CE CE CE CE CE Total Time

PE design and initial debugging 480 80 96 19 700 85.6%

PE-Consumer Integration 3.5 4 1 0.25 15 1.5%

PE-Producer Integration 10 4 1 0.25 0 0.9%

Producer’s SCS Design 1.5 3 1 0.5 0 0.4%

CE Testing 2 5 3 0.5 5 1.0%

Second Phase PE Verification 9 8 16 1.5 125 9.9%

Total System Integration Design Time 12

Total System Design Time 1607

used in the system and the final column is the percent overheard of converting all the PEs

to CEs with respect to the total system resource usage. Based on this calculation, the total

system overhead of the SIMPPL model for the MPEG-1 design is 27% of the LUTs and

20% of the flipflops used by the system. However, these numbers do not reflect the neces-

sity of system integration and control logic if the SIMPPL framework is not used. Thus,

even if the SIMPPL model with its increased flexibility and simplified integration is not

employed, a portion of this extra logic is still required to implement dedicated protocols

for passing data correctly between the different PEs shown in the original MPEG-1 block

diagram in Figure 4.2. A reasonable first order approximation of the necessary dedicated

system control logic is the sum of all the SCSs used in the system as they implement the

PE control state machines. Therefore, an approximation of the overhead of the SIMPPL

framework is calculated as the resources used by all the controllers divided by the total sys-

tem resources. The approximated actual overhead of the SIMPPL framework is reduced to

23% of the LUTs and 16% of the flipflops in this MPEG-1 system.

4.3.2 Design Time Statistics

Table 4.6 provides a synopsis of the design times required for the different phases of the

MPEG-1 video decoder system’s hardware design in terms of hours. The first column
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reports the portion of the design time being measured and Columns 2 through 6 list the

different hardware CEs for which these numbers are reported. Column 7 reports the per-

centage of the total design time that the sum of the hardware CE design times attributes to

each phase of the design.

PE design and initial debugging are reported in the second row. This is the design time

required to create the initial PE design, debug it in simulation and, where possible, perform

some initial on-chip debugging. These values vary greatly depending on the complexity of

the PE and how much independent algorithmic development was required. As previously

mentioned, the MMR PE is relatively simple and both the IQ PE and IDCT PE are well-

defined with readily available example implementations. Both the VLD/RLD PE and the

MC/PR PE required a significant portion of time to develop and debug their algorithms.

Before trying to convert their PEs into CEs, the design team members each required

about ten hours to learn about the details of the SIMPPL model. This includes understand-

ing the operation of the Consumer and Producer controllers and how the SCS directs the

local operations of the PE. These hours are not included in Table 4.6 as they are a one-

time, non-recurring cost for using the SIMPPL framework as opposed to being specifically

attributable to the MPEG-1 video decoder design. The PE-Consumer and PE-Producer

integration times measure the time required to adapt the PE interface to the controller’s

requirements. This was most costly in the cases of the MC/PR PE-Consumer integration

and the VLD/RLD PE-Producer integration, which required that their PE interfaces be

adapted to the controller requirements. The Producer’s SCS design time was dependent on

the complexity of the dynamic program that could be run by the Producer. Once both the

Consumer and Producer had been integrated along with SCS, CE testing was performed to

verify that packets were being properly received and retransmitted by the CE.

At this point, the design team was able to perform a second phase of PE verification

using the on-chip testbed to thoroughly test the operation of their CE. Once the CEs had

been verified, the correct system-level connections and constraint specification files were

generated in 12 hours. This is less than 1% of the reported total design time, 1607 hours.

1376 hours, or 85.6%, of the time was required for the PE design and initial debugging

phase and another 9.9% for the on-chip phase of PE verification. This means that only

4.5% of the time was actually used to generate the CEs from their PEs and then integrate

them into the system. For complex designs, system integration can traditionally account for

as much as 30% of design time [36], more than six times the system integration time for the

MPEG-1 video decoder using the SIMPPL model. This allowed the designers to focus the

majority of their efforts on creating properly functioning PEs, as opposed to system-level
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control and communication protocols.

An interesting point of comparison is to look at the design times required for trans-

forming the IQ PE into the IQ CE versus the IDCT PE into the IDCT CE. Both CEs were

created by the same individual, where the IQ CE was developed first. As can be seen from

Columns 3 and 4 in Rows 3 through 6 of Table 4.6, adapting the IQ PE into a CE required

significantly longer than for the IDCT CE. This was due to the designer’s learning curve for

understanding the SIMPPL CE model. Once the IQ CE was completed, the designer was

sufficiently comfortable with the model to successfully implement a comparable interface

in six hours as opposed to the 16 hours initially required.

Similarly, by the time the need for the MMR CE was determined, the design team

had almost completed the system. The large resource usage overhead of using SIMPPL

controllers to adapt the MMR PE into a CE required only 1.5 hours and the increase to the

system integration time was nominal due to the designer’s familiarity with the model. If

an application-specific system model had been used for the video decoder, the time to fix

the MC/PR module and reintegrate it into the system would have been significant and the

entire verification phase would have to have been repeated. Instead, the complete design

of the MMR CE, from the initial PE design to the final on-chip verification required only

22 hours.

4.4 Summary

Three different SoCs have been implemented using the SIMPPL framework: a streaming

video system, a snapshot video system, and an MPEG-1 video decoder. A detailed dis-

cussion of the design time required to implement and integrate the hardware CEs for the

MPEG-1 video decoder illustrated that the designers spent most of the their time creating

and verifying the PE’s fuctionality (85.6%). In contrast, the SIMPPL framework allowed

the designers to perform the system integration in 12 person-hours, less than 1% of the

total system design time of 1607 person-hours.

The CE abstraction also allows designers to select an architecture for each CE that

enables designers to capitalize on the functionality of their respective PEs. The SIMPPL

Controller’s architecture and instruction set can be tailored to the functionality of the PE.

The performance, area and latency characteristics of these different variations of the con-

troller for both FPGA and ASIC platforms are described to indicate the overhead of using

the controller as a PE’s system-interface.



Chapter 5

Designing SoCs on FPGAs

Although SIMPPL SoCs may be designed for ASICs or FPGAs, all of these designs have

been implemented on FPGAs to exploit the shorter design cycle of a pre-fabricated plat-

form. This is not the only advantage of using FPGAs in SoC design. They also enable

designers to use on-chip design tools for profiling performance and verifying functionality,

instead of simulation and estimation, since the design platform is reprogrammable.

This chapter opens with a summary of previous work and available design tools for

SoCs on FPGAs in Section 5.1. Section 5.2 begins with a discussion of how profiling and

simulation can be used to assess system performance and functionality. This is followed by

a presentation of the proposed design methodology, highlighting the CAD tools created for

SoCs on FPGAs. Finally, Section 5.3 outlines the experimental platform for all of the tools

and systems created during this research. It concludes with a detailed description of two

components of the FPGA design environment for the SIMPPL framework – specifically,

the System Generator and the on-chip testbed. The remaining on-chip profiling tools,

SnoopP and WOoDSTOCK, are discussed in Chapters 6 and 7, respectively.

5.1 Current Status of SoC Design for FPGAs

This section presents the current status of research being done using FPGAs to design SoCs

and the design tools that are commercially available from FPGA vendors.

43
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5.1.1 Systems Research using FPGAs

Initially researchers used FPGAs to implement purely dedicated blocks of hardware. How-

ever, in recent years the sizes of FPGAs have been large enough to include processors. Thus

researchers have implemented Multi-Processor SoCs [37, 38, 39] and embedded comput-

ing systems [40] on FPGAs. Embedded computing systems are stand-alone computing

systems that typically comprise one or more processors plus dedicated logic modules to

meet design specifications, such as cost, area, and performance. There has been consid-

erable research to investigate the numerous issues that arise from designing a system’s

hardware and software concurrently, called Hardware/Software Codesign.

A basic Hardware/Software Codesign flow starts with a description of the application

that is partitioned into hardware and software components. The processes running on each

component are scheduled to provide the necessary communication between modules. The

behaviour of the two environments and their interface can be approximated using cosimu-

lation techniques. If this model of the system does not meet the necessary specifications,

the designer may need to return to the first phase of the process and re-partition the design.

However, if the design constraints appear to be met, the design can be cosynthesized to the

target platform and then coverified to ensure the required functionality. Hardware/software

codesign research aspires to address the challenges resulting from each of these complex

problems.

Most of the previous work on hardware/software codesign using FPGAs, however, uses

the FPGAs to speed up the portions of an application that fail to meet the required specifica-

tions. Specifically, FPGAs have been used as part of the implementation platform whereas

we are proposing that they can also be used during the system design process. Previous

systems have used one or more FPGAs that are configured once per application [41], or

dynamically reconfigured on Dynamically Programmable Gate Arrays (DPGAs) at run-

time [42], to implement different functions. These systems benefit from the lower redesign

costs of reconfigurable technology, but they do not utilize the technology to obtain feed-

back as to the actual system performance during the design process.

The recent advent of soft processor cores for FPGAs adds greater flexibility to SoC de-

signs. Soft processors are provided as synthesizable HDL with no fixed on-chip placement,

which enables designers to customize the processor core as an application-specific embed-

ded processor. Hebert et al. [43] use soft-cores to simplify the creation of application-

tailored processors by reducing the design time and removing the need for processor spe-

cific emulators. In this case, the designers use reconfigurable technology for prototyping.

Some of the more recent hardware/software codesign research uses reconfigurable proces-
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sors as the platform for implementation [44, 45]. These architectures combine a Reconfig-

urable Functional Unit (RFU) with the microprocessor, but do not use the reconfigurability

to provide runtime performance information to benefit the partitioning process. Although

the precise details of how applications are profiled for all of these projects are not provided,

they simulate system performance to obtain this data. Preliminary work on a simulator of a

reconfigurable architecture that does use runtime profiling information to guide partition-

ing was presented at DAC 2003 [46]. Based on the profiling data it dynamically remaps

one of a restricted category of inner loops to a reconfigurable fabric using on-chip place

and route tools.

Tools developed for embedded systems with reconfigurable hardware include a parti-

tioner by Rakhmatov et al. [47] for dynamically reconfigurable systems that minimizes

the energy-delay cost due to computation and configuration. Noguera and Badia [48]

also present a dynamic scheduling methodology for runtime reconfigurable architectures in

hardware/software codesign. To obtain a schedule that minimizes runtime reconfiguration

overhead, the scheduler relies on a partitioner to create a good mapping of the algorithm

to hardware and software. The partitioner’s choices are based on delay and area estimates

and data from software profiling tools.

5.1.2 Commercial System Design Tools for FPGAs

Xilinx and Altera both support the design of systems combining a processor with dedicated

hardware. Altera provides designers with the System On a Programmable Chip (SOPC)

Builder [49], which hooks into the Quartus II tools [50]. The user specifies a complete

system from IP and user designed components and then the SOPC Builder generates the

system.

Having created a design, the user can both debug and simulate its performance. Mod-

elSim [51] can simulate a Nios system design, including the peripherals. This is done by

simulating the entire system, including the processor, at the RTL or gate-level. While it

provides cycle-accurate information, it is extremely slow making the simulation of larger

applications prohibitive. To facilitate on-board debugging of the software, Altera provides

multiple options. A simple monitor program called GERMS allows basic debugging opera-

tions, and for more complex options, there is GNU’s gdb, but it can only run on a processor

instantiated on an FPGA. Finally, Altera has partnered with First Silicon Solutions [52] to

provide a core that connects to the Nios processor and acts as a system analyzer.

Xilinx provides users with a similar tool set, the Embedded Development Kit
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(EDK) [53]. It is available as a separate environment for designing embedded systems

on FPGAs. Similar to the Altera SOPC Builder, it generates the necessary hardware and

software interfaces to facilitate the design of an embedded system. As with Nios, the com-

plete design, including the processor, can be simulated at the HDL/gate level to obtain a

complete simulation.

To simplify the debugging of designs run on a MicroBlaze processor, Xilinx provides

an Instruction Set Simulator (ISS) that may be run in a cycle-accurate mode on a host com-

puter. Currently, this cycle-accurate simulator supports a limited selection of peripherals,

but allows for faster simulation of the processor than is possible with gate level simulation.

The users can also insert a Xilinx command stub (xmdstub) into their design, which

attaches a monitor program to the design so that the user is able to debug the executable on

the board. They access their executable via the XMD command window or the gdb inter-

face on the host. As the XMD window is a TCL shell, users can add their own commands

to interface with a design implemented on an FPGA. Finally, Xilinx supports an IP core,

the Microprocessor Debug Module (MDM) that enables the user to perform JTAG-based

debugging on a configurable number of MicroBlaze processors.

Both companies provide numerous tools for debugging application software as well as

some profiling tools, such as gprof, that are able to run locally on their soft processor. How-

ever, neither supplies tools capable of providing cycle-accurate performance information

for an application running in real time on a soft processor core instantiated on an FPGA

without requiring instrumentation of the source code. The importance of obtaining precise

performance measurements for quality design implementation on FPGAs necessitates the

usage of runtime monitoring tools for designs too large for proper simulation. All of the

existing commercial FPGA tools of which the authors are aware are intrusive, which is

a factor in system design. Section 5.2.1.1 describes gprof’s functionality, explaining the

source of inaccuracies in its profiling results.

5.2 Moving from Off-Chip Estimation to On-Chip Evalu-

ation

A common problem in system design is that the quality of the implementation is dependent

on the designer’s decisions as to whether functionality is provided through software or

hardware. However, these choices are often based on estimates or models. Since dividing

the design into hardware and software modules, or partitioning, often occurs at the very
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beginning of the design process, there is no precise feedback available to the designer. The

next section contains a brief discussion of some profiling and codesign simulation tools

and how they help select partitions for a design.

5.2.1 Simulating versus Profiling Hardware/Software Codesigns

Conventional cosimulation environments emulate systems that combine a microcontroller

with dedicated hardware to implement an embedded system [54, 55]. However, their simu-

lation techniques result in only an approximation of the actual system performance. Mentor

Graphics offers Seamless [56], a hardware/software co-verification simulation tool that en-

ables a designer to interface an ISS with memory and dedicated logic to detect scheduling

problems. However, the cost of simulating both hardware and software causes simulations

to run at 1000 to 5000 instructions/second.

Simulation and profiling are integral methods for acquiring performance information

about an application, varying in both speed and accuracy. The most accurate and detailed

information is obtained by simulating a system’s performance on a cycle-accurate simu-

lator. However, this accuracy incurs significant overhead, and consequently, may be too

slow for large systems. Instruction-level simulators provide a coarser level of granularity

of simulation, sacrificing accuracy for faster execution.

Most modern microprocessor’s include a limited number of hardware performance

counters that can be used to profile the runtime execution to count “Events” that mea-

sure different aspects of performance. A Performance Application Programming Inter-

face (PAPI) [57] provides users with a high-level interface for the usage of these counters.

By annotating the application with calls to PAPI functions, the user can count numerous

different kinds of Events [58]. The accuracy of PAPI’s results is dependent on a large

enough code space such that the overhead of the PAPI sampling code does not dominate

the counter values [59]. Intel provides a commercial performance analyzer, similar to PAPI,

called VTune. It provides a graphical interface that allows users to instrument their soft-

ware post-compilation to utilize the hardware counters on their processors to profile per-

formance [60]. Another popular profiling tool for measuring performance from GNU [61]

is described in detail in Section 5.2.1.1. Unlike PAPI, it is a statistical profiler that does not

use the hardware counters. However, similar to PAPI, the results are of limited precision.
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5.2.1.1 GNU’s gprof

When creating an SoC, one approach is to begin by implementing the entire design in

software and then profiling it. Using this information, a designer moves components to

hardware to meet the necessary performance constraints. Tools such as gprof can measure

the performance of a software implementation as well as determine the characteristics of an

application’s execution [62] to help guide a designer’s partitioning choices. This profiling

may be done on a different system from the actual target system, which leads to inaccu-

racies in the results. Changing the platform affects the Instruction Set Architecture (ISA),

the microarchitecture, the compiler and potential optimizations, resulting in variances in

the executable that is profiled.

To use gprof, the designer must compile and link the application with the profiling op-

tions enabled. Unlike PAPI, where the user manually inserts the profiling routines into the

application, the compiler automatically generates the extra code necessary for generating

the profile information used by gprof. It inserts this code into the application to count the

function calls and to generate an interrupt that samples the PC. While this method allows a

precise tabulation of the number of times each function is called, the timing information it

obtains from the execution is not as accurate.

At specific intervals, normally every 10ms (100Hz), gprof samples the PC [62]. De-

pending on the value of the PC, it increments the execution time of the appropriate function

by the sample time. This means that unless the total runtime of the application is signifi-

cantly larger than the sampling period, the measured execution time for each function may

not reflect the actual execution time. Therefore, for smaller executables, applications are

run numerous times so that the profiling information accumulates for a substantial runtime.

Obviously, there is a trade off between using a statistical runtime profiler and simulation

to profile software execution on a processor. Statistical profilers obtain values that are

imprecise and there is overhead to running the profiling software. However, the runtime

profiling overhead is negligible compared with the time required to provide cycle accurate

information by simulation. In other words, while gprof may add additional seconds or

minutes to a software application’s execution, cycle-accurate simulation requires seconds

to minutes to simulate each cycle of a hardware system, depending on its complexity.

5.2.2 Proposed Design Methodology

Figure 5.3 illustrates the proposed SoC design methodology using the SIMPPL SoC frame-

work for FPGAs. The portions of the design process for which design infrastructure has
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Figure 5.1: An SoC Design Methodology for Reconfigurable Platforms.

been developed are highlighted and the names of the corresponding tools given. The

process begins by having designers specify the requirements for the system and then creat-

ing a high-level implementation of the system that can be used to verify the final version.

Next, the system is partitioned into modules that are realized as independent CEs in hard-

ware or software. The system-level interconnections between CEs, along with templates

for both hardware and software CEs, are generated using the System Generator as described

in Section 5.3.2. This allows designers to focus on the implementation of the individual

CEs, especially their PEs.

Having created the system, designers can perform preliminary functional testing in

simulation. However, on-chip testing can be used to provide more thorough testing of the

SoC. The debug controllers, previously mentioned in Section 3.2.1, allow for fine-grained

testing of the integration of the PE, controller, and SCS. An on-chip testbed, discussed

in Section 5.3.3, has also been created that enables designers to use a larger number of



50

test vectors to verify PE functionality than is practical in simulation. After verifying func-

tionality, designers may need to profile the system to ensure that it meets the original

performance specifications. Chapter 6 presents SnoopP, an on-chip software profiler, and

Chapter 7 describes WOoDSTOCK, an on-chip profiler for monitoring system communi-

cation to determine load balancing.

Using the profiling information obtained on-chip, designers can assess if the SoC de-

sign meets the original specifications. If not, they can choose to repartition the system into

different CEs or implement some of the software CEs as hardware CEs to improve per-

formance. Then a new system architecture can be generated using the System Generator

if necessary, while the designers update the necessary CEs. The designer iterates between

evaluating functionality and performance and redesigning the SoC until the implementation

meets system requirements, signifying the completion of the process. The benefits of using

the SIMPPL framework and on-chip design tools as proposed in this design methodology

are summarized in the following section.

5.2.2.1 Benefits of Designing SIMPPL SoCs using FPGAs

The premise of using on-chip design tools is that simulating the cycle-accurate perfor-

mance of a reconfigurable circuit is extremely computationally intensive and should only

be used to determine preliminary functionality and not performance. Since an FPGA de-

sign platform is reconfigurable, it is possible to include on-chip profiling and verification

tools during the design process that allow designers to obtain accurate information quickly.

Furthermore, the SIMPPL system framework facilitates the creation of generic tools that

can be tailored to system-specific requirements. For example, the CE abstraction facilitates

verification of the PE’s functionality. A CE can be instantiated on an FPGA platform and

test vectors supplied over the internal Rx Link. This method can be used to quickly inte-

grate the CE with a testbed that generates numerous test vectors because the Rx and Tx

Links and communication protocols are fixed. Designers can then obtain direct feedback

on the system’s actual behaviour by using the reconfigurable environment to evaluate the

system orders of magnitude faster than simulation, which can reduce overall design time.

However, profiling on-chip means that results are not only obtained quickly, but design-

ers can also profile their system using runtime data to detect data-dependent behaviour. The

accuracy of the profiler is determined by the operating frequency of the profiler relative to

that of the rest of the system. If the operating frequency is the same as that of the system,

the profiler will provide clock-cycle accurate results. The designer can also run the profiler

at a slower operating frequency and obtain a statistical profile, similar to gprof, if that is
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sufficient for the application.

All of the on-chip tools are independent hardware modules that are scalable and adapt-

able to the system-specific architectures of different applications. Both of the profiling

tools use snooping to detect the events they are measuring. They monitor signals inherent

to the system so that the system’s operation is unaffected by the profiling. Neither SnoopP

nor WOoDSTOCK, discussed in the following chapters, insert extra software code into the

application, which ensures that software performance is unchanged by the addition of a

profiler. Furthermore, the profiling tools do not add extra hardware circuitry into the appli-

cation’s processing path, ensuring that the functional operation of the system is not altered

by the profiler. While the profiling tools are non-intrusive to the system’s processing, the

additional circuitry may have side effects on the system’s performance by reducing the

maximum clock frequency of the design depending on the percentage of the chip resources

required to implement the system. In situations where the application uses the majority

of the chip resources, a larger chip from the same family can be used during the design

process to reduce the effects of the on-chip design tools on the maximum clock frequency.

The most important benefits to designing SoCs on an FPGA are that there is no need

to finalize the partitioning of the design at the beginning of the design process or to cre-

ate a complex cosimulation environment to model communication between hardware and

software. The system can be run on the reconfigurable fabric where the precise interaction

between hardware and software can be tested. It is also easy to iterate between partitioning

and profiling the design and the accuracy of on-chip profiling information provides better

feedback for the partitioning process.

5.3 Designing SIMPPL SoCs on FPGAs

This section describes the experimental platform used to create and test all of the sys-

tem design tools for FPGAs described during the remainder of this thesis. The first tool

described herein is the System Generator, which allows designers to create all the system-

level files for a SIMPPL SoC implemented as any combination of software and hardware

CEs. Finally, the on-chip testbed created for verifying CEs using the defined structure of

the SIMPPL network is discussed.
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5.3.1 Experimental Platform

The benefits described above are applicable to designing on both Altera and Xilinx FPGAs

with either NIOS or MicroBlaze soft processors. To test these tools and demonstrate how

they could be used as part of an on-chip design methodology, a Xilinx Multimedia Board

with a Virtex II 2000 is used. All the systems and on-chip software are synthesized and

compiled with Xilinx’s EDK tools. Xilinx’s MicroBlaze soft processor can be configured

for application-specific requirements to improve the performance of the system. However,

since the objective of this work is to study the tools for a methodology, the default parame-

ters for the MicroBlaze core are adequate. These include a software implementation of the

multiply/divide instructions and no data or instruction caches.

The MicroBlaze also includes eight master and eight slave ports for asynchronous FI-

FOs. Xilinx has included read and write access instructions to these ports, which they

call Fast Simplex Links (FSLs) [63], so that data transfers can be implemented directly

in software. To access FIFO ports directly from a NIOS processor, designers can create

application-specific instructions that will also allow them to access the FIFOs from soft-

ware. All of the on-chip tools currently use the MDM to upload information from the chip

to the host computer, where the xmd monitor program provides the user interface. To run

these tools on Altera chips requires the present I/O interface to be adapted to Avalon bus

protocols.

5.3.2 System Generator

The System Generator builds the top-level connectivity for all the components to create

a user-specified application-specific architecture. It also generates template CEs for both

the hardware and software CEs to act as place holders for the actual CEs used in the final

design. To exercise all the communication links connected to each CE, the template CEs:

detect available data on input links; read in data from input links; detect if output links

are full; and write output data to output links. This functionality is implemented using

C-source code for software CEs and HDL source code for hardware CEs. It can be used

to model the sequential consumption and generation of data by all the system CEs, which

can be used by designers to verify the system-level connectivity. The template source code

files for both hardware and software CEs are easily replaced with the application-specific

CE designs. The template CEs also facilitate generating example systems for testing these

tools; although these CE templates may not exactly model a particular internal functional-

ity, the system-level communication provides suitable benchmarks for WOoDSTOCK.
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Figure 5.2: (a) A CE connected to an off-chip input peripheral. (b) A CE connected to an

off-chip output peripheral.

A limitation of the System Generator is that the I/O communication links cannot be

automatically generated as part of the system infrastructure. This is because the physical

interface and logic communication protocols for I/O communication links are dependent on

the nature of the interface for each off-chip device. Thus, for the purpose of the hardware

and software CE templates, off-chip peripherals that produce/consume system data are

modelled as part of the CE to which they are connected. If there are no internal input

links to a CE, as shown in Figure 5.2(a), then it generates internally the output data packets

to be sent to its children CEs. These packets model input data received from an off-chip

hardware peripheral and processed to generate the CE’s output data packets. Similarly, if

a CE has no output links, as seen in Figure 5.2(b), all data packets are consumed to model

output data generated for an off-chip hardware peripheral.

The System Generator currently creates all the necessary source files to describe a

unique project for the Xilinx Platform Studio (XPS) software, however, it could easily be

adapted to generate the appropriate system files for Altera’s SOPC Builder. These files

are generated based on an input description file of the system provided by the user to

the System Generator, as shown in Figure 5.3. The format of the input file is shown in

Appendix B. It describes the number of CEs, internal links, clock domains, and external

memory banks in the system. For each CE, the user details its clock domain and how it

generates outputs as a function of its inputs. For software CEs, there is a final option of
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Figure 5.3: System Generator Design Flow.

selecting if an external memory is included.

Based on this information, the System Generator creates the necessary files to describe

and build the bitstream for an SoC using XPS. The Xilinx Microprocessor Project (XMP)

file contains the project settings used by XPS to build the system. The hardware system

is described in the Microprocessor Hardware Specification (MHS) file in terms of the IP

cores, such as MicroBlazes and FSLs, that comprise the system. The corresponding soft-

ware drivers for these cores are given in the Microprocessor Software Specification (MSS)

file.

The software CE template consists of a soft processor with its own local instruction

and data memory (recall Figure 2.3) and the C source code file that includes read and write

functions for the input and output links and a sample main program. The main reason for

using local memory is that sharing memory creates possible data hazards. Even if two

processors share a block of memory but have two distinct address spaces, there will be

bus contentions causing interference in the execution results. Here, it is assumed that each

of these modules should have the same performance independent of the number of other

CEs in the system and that there is no need to share data between two CEs unless it is

sent via a link. Each CE’s template source program file is stored on its local memory and
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Figure 5.4: The on-chip testbed for debugging CEs.

provides functions for receiving and transmitting over the links and constants representing

the processing time required to generate output data for the CE. The project file is designed

to include all of the executable source files for software CEs in the bitstream so that all the

processors begin running their program immediately after download to the FPGA.

The hardware CE template consists of files used to describe IP cores to XPS. A Hard-

ware Description Language (HDL) file is generated containing the state machines for ac-

cessing the input and output links as well as a demonstration of how output generation can

be synchronized to the availability of inputs. XPS requires that a Microprocessor Periph-

eral Definition (MPD) file be included with the core to define the ports and parameters of

the interface to the rest of the system. Finally, a Peripheral Analyze Order (PAO) file is

also necessary to indicate the hierarchy of HDL files to the synthesis tools.

5.3.3 On-Chip Testbed

One contribution to the on-chip design infrastructure is an on-chip testbed for systems de-

signed using the SIMPPL model. The standardized physical interface and communication

protocols of a CE allow the designer to use a flexible testbed architecture as shown in

Figure 5.4. CEs can be verified individually, as independent processing stages, or in com-

bination with adjacent CEs. Furthermore, since the design is implemented on an FPGA,

it is possible to run the testbed on-chip to verify the behaviour of CEs with a large num-

ber of data packets to obtain quick and accurate results. Previous work demonstrated that

debugging [64, 5] and profiling [7] designs using on-chip resources results in a significant

reduction of the time required to obtain information for the designer. Since design verifi-

cation commonly requires greater than 50% of the overall design time, sometimes as much

as 70% [36], it may be possible to reduce the percentage of time spent verifying the design,

and thus reduce the overall design time.

The testbed comprises the processors and the software required to generate (Source)

and interpret (Sink) data packet streams for the CEs. The MPEG-1 video decoder described

in Section 4.1 is designed for a Xilinx Virtex2V2000, so the MicroBlaze soft processor is
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used in this testbed. High-level functions are built to generate each data packet from the in-

struction and data pointer specified by the user. The user can then quickly alter the number

and types of data packets sent by the Source to the System Under Test (SUT) by chang-

ing the instructions in the source code and then compiling and downloading the processor

executable to the Source Processor. Creating the data stream using software allows a sig-

nificantly quicker turnaround time for testing the SUT with different data packet streams

than is possible with the source data stream coded as a separate hardware module. The

Sink Processor runs a program that detects and interprets packets received from the SUT

and then allows the user to log them. The Sink processor program can also be combined

with the Source processor program to allow designers to log the intermediate state of the

design as shown in Figure 5.4.

The on-chip testbed facilitated the detection of a significant PE error that required the

redesign of the MPEG-1 video decoder pipeline. Using the MPEG-1 pipeline from the

VLD/RLD CE to the MC/PR CE as the SUT, the design team found that a portion of

the design specification for the MC/PR PE had not been implemented. The team created

the new CE called the Missing Macroblock Replacer (MMR) CE and inserted it into the

decoder pipeline just before the MC/PR CE to correct the error as shown in Figure 4.2. The

modularity and structure of SIMPPL made this change to the pipeline very easy.

Although the on-chip testbed runs orders of magnitude faster than in simulation, it does

not likely exhibit the exact runtime behaviour of the final system. A runtime data stream

could be irregular with data words sometimes arriving every clock cycle and sometimes

delayed for numerous clock cycles, thus the Source and Sink may process data slower or

faster than the system at runtime. However, the Consumer and Producer controllers, which

interface the CE with its preceding and subsequent CEs, are able to abstract runtime data

behaviour from the PE as they separate the communication protocols from the actual data

processing. Both are able to properly stall the PE if there are no source data packets in

the Rx Communication Link or no space in the Tx Communication Link so that the PE

exhibits correct runtime behaviour independent of the data rate.

5.4 Summary

This chapter introduces the second main contribution of the thesis – work to develop a

design methodology and infrastructure tailored to designing SoCs on an FPGA platform

using the SIMPPL framework. A review of the current research and the available design

tools for SoCS implemented on FPGAs is provided. On overview of our proposed new
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design methodology, highlighting the use of on-chip design tools that can provide accurate

information in less time than simulation, is given. This includes two of the tools created

for this infrastructure, the System Generator and an On-chip Testbed.



Chapter 6

SnoopP

This chapter describes the architecture (Section 6.1) and experimental evaluation (Sec-

tion 6.2) of our on-chip software profiler called SnoopP. To demonstrate the accuracy of

profiling an application with SnoopP, the results are compared with those obtained using

gprof.

Concurrent work has also been done at the University of Ljubljana to develop a profiler

for soft processors that is similar to SnoopP, called COMET [65]. COMET is demon-

strated using the NIOS processor and the main goal is to use COMET as part of a hard-

ware/software design flow to help estimate performance and guide hardware/software par-

titioning.

6.1 General Architecture

SnoopP is designed as an independent hardware module that the user includes in their

system design. The internal structure, shown in Figure 6.1, subdivides into two components

– the clock-cycle counters and the system bus interface. The former profiles the system

with the user-specified number of counters while the latter provides off-chip access to

their values. To profile source code execution, SnoopP connects to a bus that displays the

executing Program Counter (PC EX) and a valid instr signal that is high when the value

on the PC EX bus is valid. Each code segment counter increments every time the value of

the PC EX bus is both valid and in range.

When designers clock SnoopP using the system-level clock, as shown in Figure 6.1, this

results in an accurate clock-cycle count of the time spent in a code segment. To obtain a

cycle-accurate profile of data region accesses, instead of source code execution, SnoopP’s

58
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Figure 6.1: The Generic SnoopP Architecture.

counter address bus needs to be connected to the system address bus and a “valid data

address” signal. It should also be noted that SnoopP can be used to obtain a statistical

profile of data accesses or program execution, similar to gprof. Using an independent

clock to drive the module, instead of the system-level clock, allows the user to choose

an appropriate clock frequency that provides them with an adequate granularity for their

profiling data.

Counter N-1 is magnified to illustrate the internal workings of a clock-cycle counter.

To determine if the address, for example the PC EX, is in range, comparators check to see

if the present PC EX value is between the specified low and high addresses. If the PC is

valid and is presently accessing an address within these bounds, then the counter value is

incremented. The counters are memory mapped to the system-level bus, which enables a

user to read and reset the counters from a host computer via the off-chip interface module

connected to the system-level bus. Thus, SnoopP allows the designer to measure the exact
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number of clock cycles the program spends executing specified code segments or accessing

data memory at runtime.

When SnoopP is used on a Xilinx FPGA, it interfaces with the On-chip Peripheral Bus

(OPB) standard to communicate information off-chip via the MDM described previously.

Xilinx’s xmd terminal runs on the host computer, providing a user interface to the on-chip

system. It supports TCL scripts that can be used to read and reset the counters in SnoopP

as well as to analyze the measured results.

6.1.1 Design Decisions

The objective is to make the SnoopP circuit as small and as fast as possible so that it does

not impact the system design process. However, to be a useful software profiler, it must

allow the user flexibility in specifying address ranges and the number of counters for the

system. The decisions outlined below are an attempt to balance these issues. SnoopP

allows the user to choose up to a maximum of 16 profiling counters to limit the circuit size.

Each counter requires two comparators to determine if the 32-bit address is in a valid range.

The user can obtain the addresses for the upper and lower bound parameters of the address

ranges by assembling the code or reading the symbol table. To provide complete flexibility

in specifying the address ranges, SnoopP allows designers to select address ranges as small

as a specific address to an entire 32-bit address space. This means that when SnoopP

profiles source code, a code segment could be anywhere from a single instruction to an

entire program.

However, this flexibility has potential performance costs as the comparators must be

large enough to differentiate between individual addresses. Furthermore, the user needs

to be able to memory map SnoopP to any address space that is available in their design.

Currently, designers must select the number of counters, their individual address ranges,

and their location in the memory map pre-synthesis to limit the effects of parameterization

on SnoopP’s critical path delay. Since it is desirable to be able to reload the address bound-

aries between application runs, the designer can easily change SnoopP to support runtime

programmable address ranges if clock speed is not a concern. However, a better option

would be to enable the designer to update the bitstream to change the hardwired address

ranges without re-synthesizing the design. Currently, there are some tools that could be

used by designers to do this, but there is no clear, user-friendly tool flow that provides easy

access for making these changes. However, such a tool is feasible to implement for future

work.
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When using SnoopP, it is important to remember that only address accesses in contigu-

ous regions of memory are counted. For example, to accurately profile how long a function

A with subfunction calls X, Y, and Z takes to execute, the user must assign a counter to the

function as well as to each of the subfunctions called during its execution (i.e. A, X, Y, and

Z). Furthermore, if another function B calls any of these subfunctions, for instance Y, it

may not be possible to distinguish which portion of the subfunction Y’s execution time is

due to function A versus function B.

Since most software programs require many cycles for completion, 46-bit counters are

used to store the clock cycle counts, which is equivalent to letting the profiler run at 100

MHz for eight days. When profiling source code, the decision to count clock cycles, as

opposed to the number of executed instructions, is based on the desire to be precise as

to the actual time spent executing each code segment. Given that most code segments

will include a branch and/or a memory fetch, there will likely be pipeline stalls that could

significantly increase the time spent executing a segment. This stall time is not accounted

for if only the number of executed instructions are counted.

While this architecture provides the user with significant flexibility for profiling soft-

ware, the hardware required to implement SnoopP with the maximum 16 counters trans-

lates into a maximum circuit size that utilizes 849 flipflops and 1349 LUTs for logic. The

16 46-bit counters require 736 flipflops, accounting for 87% of the flipflops utilized by

SnoopP. Alternatively, SnoopP’s counters could also be implemented using an on-chip

BRAM, however, this would reduce the flexibility of the code segment definitions. The

user would have to constrain their definition such that no more than two code segments

overlap for a given address. This limitation arises because the BRAMs allow up to two

concurrent memory accesses. The remaining 13% of the flipflops in SnoopP latch internal

control signals to prevent the system’s critical path from being in SnoopP when the system

is synthesized.

For simple soft processor systems, SnoopP does not limit the maximum clock speed

and, ideally, the profiling circuit will never be on the system’s critical path as its maximum

operating frequency is 127MHz. However, if the design is approaching the capacity of

the FPGA, it may be unavoidable. If necessary, SnoopP can be pipelined to reduce the

delay path in faster systems. This includes latching the current address and system ABus

buses and the valid addr and system ABus select signals. These additions have not been

incorporated into the present version of SnoopP as they are unnecessary and increase the

size of the circuit.

To implement the 32 32-bit comparators used to determine if an address is within each
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counter’s address range requires 1024 LUTs. This encompasses 76% of the LUTs em-

ployed in the SnoopP, and does not include the logic required to interface SnoopP to the

OPB. The OPB interface must use two comparators to resolve that the user has accessed

the SnoopP memory space. More logic is required to select the counter operation and to

implement a 16-to-1 multiplexer that drives the appropriate value onto the OPB. Thus, the

resources necessary to implement SnoopP using 16 counters is actually larger than what

is required to implement a MicroBlaze processor, and an area for future study is possible

methods of minimizing the size of SnoopP, such as reducing the resolution of the compara-

tors for the address ranges.

6.2 Experimental Evaluation

This section illustrates how SnoopP is used to profile the source code of two different

benchmarks. It details the methodology used and the issues encountered when profiling

each application.

6.2.1 Methodology

The first benchmark, Dhrystone [66], is a relatively small application whereas the second,

a cipher block chaining implementation of the Rijndael algorithm (AES) [67], is signifi-

cantly larger. There are two possible methods of using SnoopP to profile software perfor-

mance. The first is to use gprof to obtain an initial profile of executable performance. This

information can be used to try and assign the counters to what gprof determines are the

important regions of the executable.

The other method is to perform all the profiling using SnoopP. To do this, the user di-

vides the software executable into groups of functions forming continuous address blocks

and obtains an initial profile. The regions that require the largest percentage of execu-

tion time can be subdivided further to determine which specific functions take the most

execution time. Depending on the size of these regions, the number of functions and the

division of execution time, the user may have to iterate through this process until a suitable

performance profile has been obtained.

For the purpose of this study, gprof is used to provide a baseline comparison of the

varied accuracy between statistical and clock cycle accurate profilers. The application is

initially profiled with gprof on a Sun Ultra 80 Model 4450 running version 5.8 of the So-

laris OS. The design is then run on a MicroBlaze processor instantiated on the FPGA and
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Table 6.1: gprof Statistics on Functions comprising the Dhrystone Benchmark after One

Hundred and One Million Passes.

Function 100 Passes One Million Passes

Name Total Total Percent

Calls Calls Time

internal mcount — — 31.5

main 1 1 11.2

Proc 8 100 1000000 10.4

Func 1 300 3000000 9.6

Proc 7 300 3000000 6.1

Func 2 100 1000000 6.1

Proc 1 100 1000000 5.9

Proc 6 100 1000000 4.5

Proc 2 100 1000000 3.7

Func 3 100 1000000 3.5

mcount — — 3.2

Proc 3 100 1000000 1.9

Proc 4 100 1000000 1.6

Proc 5 100 1000000 0.8

profiled with SnoopP, for more precise performance information, and Xilinx’s version of

gprof tailored to run on the MicroBlaze, mb-gprof. These results are compared to deter-

mine if using mb-gprof on the MicroBlaze obtains profiling data that correlates better to

the SnoopP profile than using gprof on the Sun station. Both the Dhrystone and AES ap-

plications are compiled using gcc -O2 for both the Sun and MicroBlaze platforms, which

optimizes the application’s source code without inlining functions. As the authors are un-

familiar with the executional behaviour of both benchmarks, the gprof profiling results are

used to guide the assignment of counters to different code segments. It prevents the inten-

tional assignment of the counters to known problem areas and ensures that the method is

totally dependent on profiling information.



64

6.2.2 Dhrystone

Dhrystone is a synthetic benchmark for testing a system’s integer performance that Xil-

inx uses to measure MicroBlaze processor performance. Table 6.1 summarizes the results

obtained using gprof on the Sun workstation. Column 1 contains the function names for

which gprof returns results. Columns 2 and 3 list the number of times each function is

called when Dhrystone makes one hundred passes and one million passes through the

main loop respectively. Finally, Column 4 reports the percentage of execution time that

gprof attributes to each function when the main loop makes a million passes. gprof is un-

able to obtain the same type of statistical timing information when Dhrystone makes only

one hundred passes of the main loop as it completes execution in less than 10ms on the

workstation.

As can be seen from Columns 2 and 3, Func 1 and Proc 7 are called three times more

than the other procedures in the benchmark. However, this does not provide any indica-

tion as to which functions are most costly to implement in software. The functions inter-

nal mcount and mcount are part of the profiler and count the number of times a function is

called during execution. While gprof does not report the number of times these functions

are called, their combined overhead accounts for 34.7% of the execution time calculated

by gprof. Although this data dominates the results, the increased execution time provides a

clearer picture of where most of the execution time is probably spent. It is also interesting

to note that while Func 1 and Proc 7 have three times the number of function calls, the

executable appears to spend most of its execution time in main and Proc 8.

Since this application only has a few functions, it is possible to assign the counters in

SnoopP to almost every function, profiling 91.5% of the static code size. Table 6.2 out-

lines how the application is partitioned into profiling segments. It includes the number of

instructions per code segment and the percentage of the static code size utilized by each

function to give better context to the profiling results. The table illustrates that main ac-

counts for 43.5% of the static code size whereas Proc 8 is only 6.9%. When selecting

which regions should be profiled, all the initialization and clean up portions of the exe-

cutable were ignored as they add little overhead and cannot be moved to hardware.

SnoopP profiled the Dhrystone application for both 100 and one million passes on a Mi-

croBlaze processor that initially implemented integer multiplies and divides using software

functions. This application was also profiled using mb-gprof on the same FPGA using the

same configuration of the MicroBlaze. We set the configuration parameters for mb-gprof

to mimic those used in gprof on the Sun station. However, the clock frequency of the Sun

station’s processor is 450MHz, whereas, the MicroBlaze processor is running at 27 MHz.
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Table 6.2: Dhrystone SnoopP Counter Assignments.

Counter Function Number of Percentage of

Number Name Instructions Static Code Size

0 main 376 43.5%

1 Proc 1 70 8.1%

2 Proc 2 16 1.9%

3 Proc 3 18 2.1%

4 Proc 4 24 2.8%

5 Proc 5 7 0.8%

6 Proc 6 42 4.9%

7 Proc 7 5 0.6%

8 Proc 8 60 6.9%

9 Func 1 11 1.3%

A Func 2 49 5.7%

B Func 3 9 1.0%

C divsi3 38 4.4%

D malloc 11 1.3%

E mulsi3 22 2.5%

F strcmp 32 3.7%

Therefore, to sample the PC after the same number of clock cycles on both platforms, the

PC on the MicroBlaze should be sampled at 6Hz since the Sun station processor is sampled

at 100Hz. To determine if varying the sampling rate of mb-gprof significantly affected the

results, we profiled these systems using both 6Hz and 100Hz sampling frequencies.

Figure 6.2 graphs the profiling results for the Dhrystone application executing 100 and

one million passes using all three profilers – gprof, mb-gprof, and SnoopP. The x-axis

lists the functions that have been profiled and the y-axis describes the percentage of the

application’s overall execution time attributed to each function. The absence of a data point

for any of the six profiles plotted here indicates that the profiler did not return any profiling

data for the specific function. For example, the mcount and internal mcount functions are

part of gprof and mb-gprof, not Dhrystone. Thus, SnoopP obtains no profiling data for

these functions.



66

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

__
m

uls
i3

__
div

si3
m

ain

str
cm

p

Pro
c_

1

Pro
c_

8

Fun
c_

2

Pro
c_

6

Pro
c_

3

Fun
c_

1

Pro
c_

4

Pro
c_

7

Pro
c_

2

Fun
c_

3

Pro
c_

5

m
all

oc

_m
co

un
t

int
er

na
l_m

co
un

t

_s
ta

rt1

Names of Profiled Functions

P
er

ce
n

ta
g

e 
o

f 
E

xe
cu

ti
o

n
 T

im
e

gprof Profile (A Million passes; 100Hz) mb-gprof Profile (100 Passes; 100Hz)

mb-gprof Profile (A Million Passes; 6Hz) mb-gprof Profile (Million Passes; 100Hz)

SnoopP Profile (100 Passes) SnoopP Profile (Million Passes)

Figure 6.2: Profiling Results for Dhrystone using gprof on a Sun station and mb-gprof

and SnoopP on a MicroBlaze using software implementations of the multiply and divide

functions.

Figure 6.2 also does not contain a profile reporting the percentage of execution time

when Dhrystone ran for 100 passes and was sampled at 6Hz using gprof. This is because,

similar to when Dhrystone was profiled on the Sun station, the execution time of the ap-

plication is less than the sampling frequency. Therefore, the figure only plots the mb-gprof

profiling results when sampling at 100Hz for Dhrystone running 100 passes and at both

6Hz and 100Hz when Dhrystone executes one million passes.

Comparing the plots of the SnoopP profiles for 100 passes and one million passes

illustrates the consistency of profiling information obtained using SnoopP. While gprof is

only able to obtain a timing profile by executing the Dhrystone main loop a million times

versus one hundred times, SnoopP obtained results that vary by no more than 0.24% for
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both cases (please see Appendix D for the detailed results). The resulting variance is easily

explained by the diminishing significance of initialization code within main with respect to

the longer execution time of the main processing loop. Therefore, SnoopP is able to obtain

more accurate and consistent results than gprof in only 0.01% of the execution time.

By comparing the plots of the profiles obtained by SnoopP versus gprof, we see that

there is a significant difference between results. Not only are the execution time percent-

ages different, but gprof ranks Proc 8, Func 1, and Proc 7 as the top three of the applica-

tion’s functions consuming processing time. In contrast, SnoopP shows that the application

functions Proc 1, Proc 8, and Func 2 actually consume the most processing time on a Mi-

croBlaze. Furthermore, the software implementations of the integer multiply and integer

divide functions along with main require just over 53% of the processing time. There-

fore, if the partitioning choices are based on the profiling results obtained from gprof, the

designer would not select the appropriate functions to implement in hardware.

Similar to gprof, the plots of the profiles obtained using mb-gprof are also quite erratic

relative to the highly consistent SnoopP profiles. In all three cases, the software multiply

function mulsi3 is reported as one of the top two functions consuming the most processing

time. This coincides with the data reported using SnoopP, however, the data reported for

the remaining functions in the mb-gprof profiles do not demonstrate any strong correlation.

Based on both SnoopP profiles, the two functions requiring the largest percentage of

the execution time are mulsi3 and divsi3. These implement software versions of the

integer multiply and divide functions respectively. The divide function is only called once

per loop in main whereas the multiply function is called multiple times per loop in both

main and Proc 8. Figure 6.3 illustrates how the inclusion of the hardware multiplier while

still implementing the divide function in software can affect the performance profile. The

Dhrystone application is reprofiled on this new MicroBlaze platform, using the same con-

figurations of SnoopP and mb-gprof. Since SnoopP’s profile is so consistent, only the data

for Dhrystone executing 100 passes is included here.

As shown in Figure 6.3, the gprof and mb-gprof profiles are still highly erratic, and not

particularly consistent with each other or with the similar profiles obtained on the previous

platform using the software multiply function. For example, Proc 7 shows the strongest

correlation for the three different mb-gprof profiles as it is listed as one of the top three

consumers of execution time in each case. However, the results obtained from SnoopP

demonstrate that Proc 7 actually requires less than 3% of the overall execution time, as

shown in Table D.2, and would thus be a bad choice for implementation as a hardware

function. The mb-gprof profiling results also suggest that the divsi3 function is a costly
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Figure 6.3: Profiling Results for Dhrystone using gprof on a Sun station and mb-gprof and

SnoopP on a MicroBlaze that includes a hardware multiplier and a software implementa-

tion of the divide function.

software function as it is listed as one of the top four consumers of processing time in all

three columns, whereas the remaining functions demonstrate no consistent correlation in

profiled execution time.

The removal of the software multiply instruction reduces the overall instruction count

by 7%, which generally increases the percentage execution time of all of the functions

except for Proc 8. Since Proc 8 calls mulsi3, these results are not intuitive. However,

the reason for the decrease in execution time is mainly due to the fact that the number of

instructions in the function dropped from 60 to 33 due to optimizations that were possible

with the removal of the software multiply. With respect to the tradeoff between perfor-

mance improvement versus extra resources, using a hardware multiplier reduced the exe-
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Figure 6.4: Profiling Results for Dhrystone using gprof on a Sun station and mb-gprof and

SnoopP on a MicroBlaze that includes a hardware multiplier and a hardware divider.

cution time of the application from 1.33 million clock cycles to 960 thousand clock cycles,

by approximately 28%. The extra resources required to implement the multiplier were 39

LUTs, 50 FlipFlops, and three 18x18 dedicated multipliers.

Given the significant improvement in performance obtained using minimal hardware

resources to implement the hardware multiplier, we decided to investigate the benefits of

including the hardware divider in combination with the multiplier. Figure 6.4 contains all

the plots for the profiles of Dhrystone on this new MicroBlaze configuration. As before,

the gprof and mb-grof plots all appear erratic with respect to the SnoopP profile. Only two

functions demonstrate any correlation in terms of consistently consuming significant per-

centages of execution time, Proc 7 and Func 1. However, as previously mentioned, Proc 7

actually requires very little processing time. Similarly, SnoopP illustrates that Func 1 ac-
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tually uses less than 4% of the overall execution time as shown in Table D.2.

Including a hardware divider further reduced the code size of the application by another

4.5%, which increased the percentage of execution time of all the applications functions.

The additional resources required to implement the hardware divider are 117 LUTs and

109 FlipFlops, but it further reduces the execution time by another 15%. Depending on the

requirements of the application, the designer may feel that this is an acceptable tradeoff.

In summary, the results obtained on the FPGA with SnoopP vary from those obtained

using gprof on the Sun station because: 1) the Sun’s processor has a distinctive instruction

set architecture from the MicroBlaze, and 2) statistically sampling the program to deter-

mine which functions require the longest execution time introduces inaccuracies in the

gprof results. Consequently, SnoopP only required one hundred passes of the main loop in

Dhrystone whereas a million passes were needed to obtain statistically meaningful timing

information using gprof.

mb-gprof may be able to provide slightly better profiling data than running gprof on the

Sun station, but this is only because it is able to profile software versions of the multiply and

divide functions that are implemented in hardware on the Sun’s processor. However, the

overall accuracy of the profiles obtained using mb-gprof are still sufficiently inaccurate that

using SnoopP to profile the system would provide better data to guide the designer’s choice

as to which functions should be implemented in hardware. Furthermore, since the time

required to profile an application using SnoopP is the same as the time required to profile

the application using mb-gprof, there is greater value in using SnoopP to obtain clock-cycle

accurate results than the statistical results acquired using mb-gprof. Although the results

from gprof are also statistical, the Sun station runs more than 16 times faster than the

MicroBlaze. Thus, the time required to obtain these initial results to guide the assignment

of the SnoopP counters is reduced to hours instead of days, which allows designers to

reduce the time spent profiling the application.

6.2.3 AES

AES is a more realistic benchmark for SnoopP to profile [67]. Like Dhrystone, it also uses

only integer mathematical operations. However, it is a popular design for hardware, which

can greatly increase the throughput rate of the encryption.

Originally, gprof profiled the application with two different keys encrypting ten thou-

sand blocks each. However, since the internal mcount function tied for third in terms of

processing time, the number of keys used to encrypt the ten thousand blocks was increased
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Table 6.3: gprof Statistics on Functions Comprising the AES Benchmark for 2 and 400

Different Keys with 10 Thousand Blocks Each.

Function 2 Keys 400 Keys

Name Total Percent Total Percent

Calls Time Calls Time

MixColumns 180000 50.6 36000000 49.5

rijndaelEncrypt 20000 36.4 4000000 38.0

cipherInit 20000 5.2 4000000 2.2

internal mcount — 5.2 — 3.5

rijndaelCBC MCT 1 1.3 1 1.8

mcount — 1.3 — 0.2

blockEncrypt 20000 0.0 4000000 4.8

HexToBin 3 0.0 — —

makeKey 2 0.0 400 0.0

rijndaelKeySched 2 0.0 400 0.0

main 1 0.0 1 0.0

makeMCTs 1 0.0 — —

to four hundred. The results from these different runs are found in Table 6.3. As can be

seen from the table, the percentage of execution time for each function changes as the ex-

ecution time is increased. Furthermore, the longer run of the executable also altered the

ranking of functions incurring the longest execution time, where blockEncrypt now accrues

a measurable percentage of the execution time while cipherInit’s relative execution time

has decreased.

The AES executable is significantly larger than that of Dhrystone, hence it is impossible

to assign individual counters to each of the functions. Instead, one counter is assigned to

count all the clock cycles used in the executable and the rest are assigned to functions

deemed important by the profiling results from gprof. Remembering that the counters will

only increment when the program is inside their respective code segments, counters are

also assigned to the functions called by these main functions. Table 6.4 summarizes what

functions are chosen for profiling and the number of static instructions comprising each.

Figure 6.5 plots the profiles obtained using gprof, mb-gprof, and SnoopP using both two
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Table 6.4: AES SnoopP Counter Assignments.

Counter Function Number of Percentage of

Number Name Instructions Static Code Size

0 Entire Program 14948 100.0%

1 MixColumns 124 0.8%

2 rijndaelEncrypt 103 0.7%

3 blockEncrypt 342 2.3%

4 cipherInit 81 0.5%

5 AddRoundKey 25 0.2%

6 Substitution 23 0.2%

7 ShiftRows 73 4.9%

8 main 144 1.0%

9 modsi3 38 0.3%

A mulsi3 22 0.1%

B divsi3 38 0.3%

C mul 44 0.3%

D memcpy 11 0.1%

E sprintf 26 0.2%

F vfprintf r 2082 13.9%

and four hundred keys. There is only one plot for the SnoopP profile using both two and

four hundred keys as there is no change in any of the values when the number of keys is in-

creased (please see Appendix D for details). This reinforces the fact that the on-chip profil-

ing with SnoopP provides valuable information with significantly less loop iterations. The

majority of the execution time is spent in modsi3. This function is called in ShiftRows,

rijndaelKeySched, vfprintf r, and mul, which explains its dominance. modsi3 is an in-

ternal function used to implement a software version of the modulus function, similar to

mulsi3, and divsi3.

The percentage of the total execution time measured by the SnoopP counters equalled

95.41%. Since one counter is used to measure the application’s total execution time and

the remaining fifteen are assigned to look at specific functions, this is reasonably good

coverage. It translates into monitoring only 3176 instructions, which is 21% of the total
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Figure 6.5: Profiling Results for AES using gprof on a Sun station and mb-gprof and

SnoopP on a MicroBlaze using software implementations of the multiply and divide func-

tions.

application to achieve over 95% of the executional time coverage.

MixColumns and rijndaelEncrypt, ranked first and second by gprof in terms of sampled

execution time, are expected to require significant execution time. Although their execution

does not obviously dominate the results obtained using SnoopP, the reason is that the time

spent in function calls is not counted in these percentages. For example, MixColumns calls

mulsi3 seven times and mul twice, which calls modsi3 once. Similarly, rijndaelEncrypt

calls AddRoundKey thrice, Substitution twice, ShiftRows twice, MixColumns once, and

mulsi3 once.

In this case, profiling AES demonstrates that the initial gprof profile can provide valu-

able information on potential performance hot spots at a coarse granularity, but that it may



74

not precisely indicate the low-level cause of the increased execution time. The on-chip pro-

filing results suggest that the first function to implement as hardware would be the modulus

function. It has the largest execution time and is called from multiple functions. The other

most obvious function to implement in hardware is mul, which requires 75% more exe-

cution time than the next most time consuming function, mulsi3, the software multiply

function. SnoopP’s results also indicated that there will likely be little benefit to imple-

menting the MixColumns or rijndael Encrypt functions in hardware, contrary to the profile

given by gprof.

The correlation between the profiling data for AES with two keys obtained using mb-

gprof sampling at 6Hz and 100Hz is extremely high. Furthermore, the correlation of these

results with the data obtained by SnoopP is also very high, particularly for the top five

consumers of processing time. The results from profiling AES with 400 keys using mb-

gprof, for both sampling frequencies of 6Hz and 100Hz, are also shown in Figure 6.5 These

results required a little over seven days to obtain and are thus not particularly practical

measurements for a system design process. However, it is rather suprising to note from

the plots that these results correlate quite poorly with both the SnoopP results and each

other. This suggests that while the profiling results for two keys are highly accurate, it is

an unpredictable event arising from chance and circumstance.

6.3 Summary
Using SnoopP to profile a system produces consistent, fast, clock cycle accurate profiles

of execution performance as demonstrated by the results of profiling Dhrystone and AES.

While, gprof is able to obtain a basic overview of software performance, it needs nu-

merous more loops of the main algorithm to obtain its percentage of execution time per

function. Moreover, the profile is statistical and does not match the exact results measured

by SnoopP. However, the initial profile from gprof is very useful in determining which

code segments likely require the most execution time. It greatly facilitates the assignment

of the SnoopP counters to the appropriate code segments.

Using mb-gprof on a MicroBlaze provides significantly more variable results than us-

ing gprof. Sometimes it is able to obtain highly accurate profiling information for an appli-

cation, as shown with AES having two keys, however, sometimes this data is unreliable, as

illustrated with Dhrystone. Therefore, using SnoopP instead of mb-gprof to obtain runtime

profiling data on-chip allows users to: 1) reduce profiling time as the profiling functions

added to application for mb-gprof increase execution time, and 2) obtain more reliable

results than using mb-gprof as the accuracy of the profile is unpredictable.



Chapter 7

WOoDSTOCK

When creating systems, designers need not only consider the independent performance of

each module in the design, but they must also ensure that there is load balancing among

the CEs. If not, system stalls may be the reason a design fails to meet performance require-

ments. This chapter describes how Watching Over Data STreaming On Computing ele-

ment linKs (WOoDSTOCK) can be used to monitor system behaviour, where Section 7.1

describes the architecture and Section 7.2 provides two case studies demonstrating how

WOoDSTOCK detects potential bottlenecks.

7.1 Multi-CE Profiling Architecture

The SIMPPL model described in Section 2.3 resembles a multiprocessor system, where

software designers are able to obtain some run-time statistics about an application’s be-

haviour on their system. Of particular interest is the ability to determine the stall time of

individual processors in the system. Typically, a scheduler monitors when a processor is

waiting for another processing task, but as the scheduler is unaware of the nature of the

actual tasks, it only provides system-level information.

WOoDSTOCK is able to provide analogous information to designers due to the stan-

dardized interface used in the SIMPPL model. WOoDSTOCK highlights problems aris-

ing from inter-CE communication and indicates to the user when a particular CE creates

a system bottleneck. Like the scheduler, WOoDSTOCK is similarly unaware of the ac-

tual computation performed on a CE. Therefore, the precise cause of a system bottleneck

is determined using a combination of the system performance results along with user’s

knowledge of the design and independent CE profiling. In the case where a software CE is

75
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causing the bottleneck, SnoopP may be used to detect the source of the bottleneck.

Figure 7.1 illustrates the connections between WOoDSTOCK and a multi-CE system.

Each diamond represents a monitor that is associated with a specific CE. A monitor is a

piece of hardware that records the behaviour of the traffic on all the internal input and

output links connected to its CE through internal counters. These counters are used to

measure the total possible stalling/starving time for a CE during the profiling period, which

is set based on the program execution of a specially selected base processor, labeled as

CE0 in Figure 7.1, or an independent execution time counter. If the user sets the active

monitoring period of the system based on the region of a base processor’s source code,

the addresses of the instructions bounding the code region are provided to WOoDSTOCK

as start and stop points. If an independent execution time counter is used to select the

monitoring period, then the minimum and maximum counter values act as the start and

stop points. The running signal, shown in Figure 7.1, is enabled and disabled when the

start and stop values, respectively, are seen as valid values on the counter bus. This signal

is used to enable or disable the system’s monitors. Each of the CEs and their monitors in

Figure 7.1 are labelled for the purpose of differentiating the base processor (CE0) from the

remaining CEs (1,2,3).

7.1.1 Bottleneck Detection

WOoDSTOCK assumes that the only signals a monitor can connect to are the full and

empty status signals of the asynchronous FIFOs implementing the internal input and output

links of its respective CE. These signals are used to generate enable signals for the counters

used to profile the system. The counters are used to measure the number of clock cycles

where a CE is potentially starving or stalling the system. A more naive approach would

be to assign individual counters to the full and empty signals of each link in the system.

However, this provides less useful information to the designer as the relationship between

these status signals is required to determine if a CE is a system bottleneck as shown in the

following paragraph.

Figure 7.2 illustrates examples of the three types of system bottlenecks that WOoD-

STOCK can be used to detect. Figure 7.2(a) shows an interior bottleneck, where CE 1 has

both internal input and output links and is stalling the system. To understand how WOoD-

STOCK determines there is a bottleneck, consider when FIFO 1 becomes full. CE 1 may

not be consuming the data produced by CE 2 fast enough. However, CE 1 may also be

stalled because it cannot write to FIFO 0 if it too is full, in which case a child CE is the
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Figure 7.1: The WOoDSTOCK architecture.
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Figure 7.2: Examples of the different types of bottlenecks detectable by WOoDSTOCK:

(a) interior bottleneck, (b) input bottleneck, and (c) output bottleneck.
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Table 7.1: Example output equations for the systems in Figure 7.2.

Bottleneck Example Output Equation

Interior Bottleneck FIFO 1 full and (not FIFO 0 full)

Input Bottleneck FIFO 0 empty

Output Bottleneck FIFO 0 full

bottleneck and not CE 1. To differentiate between these situations, a CE is defined to be an

interior bottleneck when all the input links that provide data to generate a specific output

are full and the link at the output is not full as depicted in Figure 7.2(a). The specifica-

tion of the output link as “not full”, as opposed to empty, delineates an important aspect

of the system monitoring tool. WOoDSTOCK is unaware of the nature of the data being

transferred between CEs, so if CE 1 produces a data packet that CE 0 requires in its en-

tirety to continue processing, then the link should normally be empty when the system is

balanced. However, if CE 1 produces a data packet that is consumed as multiple individual

data packets by CE 0, then there will normally be data in this FIFO even when the system is

balanced. Therefore, the output link must be only “not full” instead of “empty” to produce

a bottleneck.

A CE that has internal output links and no internal input links may cause an input

bottleneck. This occurs when either the off-chip hardware peripheral supplying input to

the CE is too slow or the processing time of the CE is too slow. In either case, the system is

starved for data. To detect this situation, WOoDSTOCK monitors the empty status signal

of the output link. Figure 7.2(b) shows CE 1 as the potential cause of an input bottleneck.

The status of the I/O communication link is unknown and FIFO 0 is empty. However, CE

1 may not be a bottleneck if CE 0 consumes data at the same rate as CE 1 produces it. This

situation would also cause FIFO 0 to be empty for the majority of the system’s run-time.

Since the results from these measurements are not conclusive on their own, the designer

needs to see how this information fits in with the results obtained from monitoring the rest

of the system.

Output bottlenecks arise in CEs that have internal input links and no internal output

links. They occur due to the slow processing rate of either the CE or an off-chip peripheral.

Both cases result in the input links to the CE becoming full as illustrated in Figure 7.2(c).

While the state of the I/O communication links is unknown, FIFO 0 becomes full stalling

the system. In situations where a CE stalls or starves because of an off-chip peripheral’s

slow data rate, this is still measured as being caused by the CE implementation. Therefore,



79

the user must be sufficiently familiar with the CE’s processing to determine the precise

cause of the bottleneck.

To generate a system-specific monitoring system, the user writes a description of the

system that states the required combination of data on internal input links used to produce

an output for a given output link. WOoDSTOCK uses this information to create an out-

put equation for each CE output described in terms of link empty and full status signals.

Table 7.1 shows the appropriate output equations for CE 1 in each of the systems in Fig-

ure 7.2. These equations generate counter specific enable signals that are combined with

the running signal to enable all the appropriate counters during each sampling clock cycle.

The frequency of WOoDSTOCK’s sampling clock can be set to any rate, depending on

the desired profiling accuracy. If sampling is done using the fastest system clock, then the

measured results are precise. However, a slower clock may be used to do the sampling and

obtain a statistical measurement of system performance. This information can still help

detect system bottlenecks, but the system may need to be profiled for longer run-times to

observe the problem.

7.1.2 Implementation and Design Decisions

WOoDSTOCK generates the necessary system dependent VHDL files to implement the

monitoring system, along with the files required by XPS to interface WOoDSTOCK into

a MicroBlaze system as shown in Figure 7.3. The internal structure of WOoDSTOCK is

subdivided into two components — the system monitors and the OPB interface. The for-

mer profiles the system links based on the user-provided system profile (recall Figure 7.1)

while the latter provides off-chip access to their counter values. Similar to SnoopP, WOoD-

STOCK is memory mapped to the OPB as a slave device. It uses the MDM module as an

off-chip interface to the xmd control window running on a host computer allowing users to

remotely read and reset the counters.

While WOoDSTOCK does not differentiate between monitoring hardware and soft-

ware CEs, the MDM module requires that there be at least one MicroBlaze processor in

the system. However, systems are often comprised of a combination of hardware and soft-

ware, which means there should be at least one processor in the system to fulfill the MDM’s

requirements. WOoDSTOCK also connects to the FIFO status signals that indicate when

the FSL is empty and when the FSL is full. These signals will be referred to as fsl empty

and fsl full respectively. By monitoring their runtime values, WOoDSTOCK enables the

appropriate counters based on the user-defined output equations.
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Figure 7.3: The interface of WOoDSTOCK with the Fast Simplex Link (FSL) network of

a multi-CE system and a host PC via the Microprocessor Debug Module.

The objective is to make the WOoDSTOCK circuit as small and as fast as possible

so that it does not impact the embedded system design. However, to be a useful system

profiler, it must allow the user flexibility to assign the appropriate number of counters for

the system. The decisions outlined below are an attempt to balance these considerations.

The size of the overall circuit depends mostly on the number of counters required to

store the system profiling data. The counter size is again set to 46-bits, however, the maxi-

mum clock speed for the monitoring system is dependent on the complexity of the system

being monitored. Additional logic resources are used to generate the running signal for

the counters from two 32-bit comparators for the start and stop counter values, which are

hardwired for the system to reduce the required logic.

Similarly, the OPB interface needs two comparators to determine if the user has ac-

cessed WOoDSTOCK’s address space plus logic to multiplex the selected counter onto the

OPB. Finally, the logic required to generate the counter specific enable signals depends on
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Figure 7.4: Two application architectures described with the SIMPPL model: (a) a

pipelined system (b) a system with branching.

the complexity of each output equation. However, the logic resources used are negligible

relative to the size of a counter.

7.2 Case Studies

This section uses WOoDSTOCK in two different case studies to show that the measure-

ment approach works and to demonstrate how the information it provides can help to refine

a design. It details the issues encountered while profiling each system and concludes with

a discussion of the advantages of on-chip system profiling.

7.2.1 Methodology

The two benchmarks illustrated in Figure 7.4 are the case studies used to demonstrate the

functionality of WOoDSTOCK. We use the System Generator described in Section 5.3.2

to generate benchmarks. The CEs in these benchmarks are implemented using the default

version of the MicroBlaze soft processor. Each MicroBlaze has eight built-in FSL (FIFO)



82

Table 7.2: Table for pipelined system counter results describing the counter enables, what

the counters represent, and reporting the measured results as percentages of the total mon-

itor run time given in Counter 4 to the nearest million clock cycles.

Cntr Enable Possible 20 Data Packets 100 Data Packets 200 Data Packets

Condition Meaning Con A Con B Con C Con A Con B Con C Con A Con B Con C

0 fsl 0 full CE 0 slow 0 0 0 0 0 0 0 0 0

1 fsl 1 full and CE 1 slow 0 0 0 0 0 0 0 0 0

(not fsl 0 full)

2 fsl 2 full and CE 2 slow 0 0 0 0 0 0 0 0 30.8

(not fsl 1 full)

3 fsl 2 empty CE 3 slow? 100.0 100.0 23.6 100.0 100.0 5.2 100.0 100.0 2.7

4 running monitors on 688 368 366 3248 1648 1646 6448 3248 3246

receive and transmit ports and the send and receive functions are generated based on macros

provided by Xilinx to read and write from these ports. The time required for a CE to process

input data to produce output data is modelled using the delay parameter in the main loop of

the generated source code template. The source code for each MicroBlaze is then compiled

and stored in its local on-chip memories and accessed via Local Memory Buses. Each

system configuration is profiled for varying lengths of time to determine the initial effects

of system start up on the results. The main processing loop of the base processor uses a for

loop to set the number of data packets it consumes. Therefore, we can vary the profiling

period is by changing the upperbound of the for loop.

The first benchmark is a simple pipelined design that is quite common to hardware

design. The second is an imaginary system used to highlight the increasing difficulties of

analyzing a design that is less intuitive. For both benchmarks, WOoDSTOCK uses the

global system clock as its sampling clock. Different configurations of each system are

created by varying the delays used to model CE processing times. These processing delays

are used to create system imbalances that WOoDSTOCK should report as well as balanced

systems to determine how this affects the results obtained by WOoDSTOCK.
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7.2.2 Pipelined System Example

The pipelined system in Figure 7.4(a) requires 5 counters to monitor the system. The first

three columns of Table 7.2 list the counters, the output equations used to generate their re-

spective enables, and the possible meaning of these conditions. A question mark in Column

3 indicates that this CE may actually not be the source of any system performance prob-

lems as it only represents a possible input bottleneck. Counters 0, 1, and 2 monitor FSL

full signals to determine if CEs 0, 1 , or 2, respectively, are stalling the system. Counter 3

counts the number of clock cycles for which fsl 2 is empty and Counter 4 stores the total

run-time of the monitoring system. Configuration A has equal processing delays for all the

CEs except for CE 3. Its delay is twice as long as the rest to model a situation where CE

3 requires twice the processing time of the rest of the CEs so CE2 should be starved for

data. The for loop of CE 0, the base processor, is then set to consume 20, 100, and 200

data packets, respectively to create profiles of varying length. While WOoDSTOCK is able

to obtain more accurate information about system performance as the profiling time is in-

creased, the consumption of 200 data packets is sufficient to demonstrate WOoDSTOCK’s

functionality for the different configurations of the pipelined and branching systems.

The results for Configuration A are found in Table 7.2 in the subcolumns labelled Con

A. All values in the configuration columns are reported as the percentage of the monitor

run-time, which is given to the nearest million clock cycles in the final row of the table

(Counter 4). Anytime a counter’s value was actually zero, the percentage is reported as

0, whereas if the value is simply negligible relative to the profiling period, the percentage

is reported as 0.0. This same method is applied to counters that run for almost the entire

profiling period, 100.0 versus 100. As illustrated by the table, the only counter to be

incremented monitors when there is no data in fsl 2. Without any knowledge of individual

CE behaviour, it is impossible to determine if the system is balanced or if CE 3 is too slow

and starving the system. In either case, the processing time of CE 3 needs to be reduced if

the designer wishes to try and improve system performance.

The second system configuration reduces CE 3’s processing delay by 50% so that all

the CEs have equal delays for processing time. This should balance the pipelined system,

yet, the results in Table 7.2, in the subcolumns labelled Con B, show that the third counter is

still enabled for almost 100% of the monitor run-time even though the system should now

be balanced. This is because CE 2 consumes data at the same rate as CE 3 produces, thus

fsl 2 remains empty most of the time. Instead, the decreased total run-time for the system

in Configuration B proves that CE 3 is an input bottleneck in Configuration A. The overall

run-time is reduced by approximately 50%, mirroring the decrease in CE 3’s processing
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Table 7.3: Table for branching system counter results describing the counter enables, what

the counters represent, and reporting the measured results as percentages of the total mon-

itor run time given in Counter 7 to the nearest million clock cycles.

Cntr Enable Possible 20 Data Packets 100 Data Packets 200 Data Packets

Condition Meaning Con A Con B Con C Con A Con B Con C Con A Con B Con C

0 fsl 1 full CE 0 slow 21.4 10.1 0 83.7 82.2 0 91.8 91.1 0

1 fsl 2 full CE 0 slow 0 0 0 0 0 0 0 0 0

2 fsl 0 full and CE 1 slow 0 0 0 0.0 0.0 0 0.0 0.0 0

(not fsl 1 full)

3 fsl 2 empty CE 2 slow? 2.4 94.9 2.3 0.50 99.0 0.5 0.2 100.0 0.2

4 fsl 3 empty CE 2 slow? 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

5 fsl 0 empty CE 3 slow? 83.3 94.9 100.0 17.3 18.8 100.0 8.7 9.4 100.0

6 fsl 3 full CE 4 slow 0 0 0 0 0 0 0 0 0

7 running monitors on 672 632 352 3232 3192 1632 6432 6392 3232

delay. Since no other bottlenecks have appeared in the system, the designer may not realize

that the system’s performance has been maximized if they are insufficiently aware of the

individual processing requirements of each CE.

If the user assumes that CE 3 is still an input bottleneck to the system, they may choose

to further reduce its processing delay. Configuration C allows CE 3 to run faster by decreas-

ing the processing delay to 90% of the processing delay used by the rest of the system. As

can be seen from the data in the subcolumns labelled Con C, for smaller run-times, no

bottlenecks are introduced into system communications. In fact, the percentage of time for

which there is no data in fsl 2 decreases to 23.6% when the base processor consumes only

20 data packets, compared to the other two configurations where there is no data in fsl 2

for almost 100% of the run-time. However, as the system continues to run, fsl 2 becomes

full as CE 2 acts as an interior bottleneck because it cannot consume data as quickly as CE

3 produces it. This is reflected in the value of Counter 2 when the base processor consumes

200 data packets and highlights the importance of running systems for long periods of time

to achieve a more steady-state view of the system. Furthermore, if CE 3 had still been an

input bottleneck to the system, the decrease in the processing delay of CE 3 should have
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been mirrored in the total run-time of the system, which remained almost unchanged from

Configuration B to Configuration C.

7.2.3 Branching System Example

Figure 7.4(b)’s branching system requires eight counters that are enabled based on the

functions described in Column 2 of Table 7.3 when the monitors are running. The results

in the table are presented following the same format as Table 7.2. Counters 0 and 1 monitor

fsl 1 and fsl 2 to determine if CE 0 is stalling the system. Similarly, counters 2 and 6

measure when CE 1 and CE 4, respectively, stall the system. Counters 3 and 4 count the

number of clock cycles for which fsl 2 and fsl 3 are empty as does counter 5 for fsl 0.

This information can help to determine if either CE 2 or CE 3 are producing output data

too slowly, and thus starving their respective children CEs. The possible interpretations for

the counter values are summarized in Column 3.

In this system, each data packet to and from each link is processed independently. For

example, in CE 2 an output is generated for fsl 2 after a processing delay and an output is

generated for fsl 3 after a separate processing delay. Therefore, for CE 2, the time between

generating outputs for fsl 2 is the sum of these two delays. Similarly, in CE 0, data words

are read from fsl 1 followed by a processing delay before data words are read from fsl 2

followed by an independent processing delay. In this case, for CE 0, the time between

reading inputs from fsl 1 is the sum of these two delays. The first configuration of this

system has all of the processing delays for each link set to the same value. This creates

an imbalanced system as CE 0 and CE 2 have an effective per link processing delay that

is twice that of the other CEs. Again, the base processor’s for loop is set to consume 20,

100, and 200 data packets, which is sufficient to demonstrate the system imbalances for the

following configurations.

Table 7.3 summarizes the results for Configuration A in the subcolumns labelled Con

A where all values are in terms of the percentage of the monitor’s run-time for which the

counter was enabled. The total profiling period is reported to the nearest million clock

cycles in Counter 7’s row. The importance of running the system for a significant period

of time is highlighted by the results for counter 0, which vary from 21.4% to 91.8%. The

larger value from the long run-time clearly indicates that CE 0 is stalling the system by not

consuming data quickly enough.

To try and remove this bottleneck, CE 0’s processing delays for input data read from

fsl 1 and fsl 2 are reduced to 50% of the delays for the rest of the system. This means
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that the combined effective per link processing delays for fsl 1 and fsl 2 are now the same

as the rest of the system, with the exception of CE 2’s processing delays, which are left

unchanged. The results for this configuration are found in Table 7.3 in the subcolumns

labelled Con B. From these results, it appears that CE 0 is still stalling the system, however

closer inspection disproves this theory. While fsl 1 is still becoming blocked as the run-

time increases, the period for which fsl 2 is empty has increased dramatically (see Counter

3). This may indicate that CE 2 cannot keep up with its child nodes. If this is the case,

CE 0 is now starved for data on fsl 2 and still not able to keep up with its parent node CE

1. This also is reflected in the overall run-time that remains basically unchanged between

Configuration A and Configuration B as the profiling period increases. If CE 0 were the

only bottleneck in the system, the system’s performance should have increased noticeably.

Therefore, CE 2 must also be a system bottleneck, failing to provide data at the necessary

production rate.

By reducing CE 2’s processing delay for generating outputs for fsl 2 and fsl 3 to 50%

of the original processing delay, the system should be balanced. This is designated as

Configuration C and the results are found in the subcolumns labelled Con C in Table 7.3.

In this case, none of the links become full so the system never stalls. This produces the

expected increase in the overall system performance by decreasing the overall run-time by

approximately 50% from the Configuration A.

7.3 Summary

WOoDSTOCK is able to detect bottlenecks in system performance and the removal of

these bottlenecks dramatically improves the overall performance as demonstrated in the

above examples. WOoDSTOCK required 579 LUTs and 331 flipflops to monitor the

pipelined example and 928 LUTs and 478 flipflops to monitor the branching example.

If these results are normalized in terms of the number of counters in each system, the

pipelined example uses 115.8 LUTs and 66.2 flipflops per counter and the branching exam-

ple uses 116 LUTs and 59.8 flipflops per counter. These results highlight that the increased

size of WOoDSTOCK is mainly due to the extra counters and that overhead logic needed

to provide a user interface can be considered minimal.

The system must be run for a significant period of time to obtain accurate results us-

ing WOoDSTOCK. This may be on the order of minutes to hours depending on system

complexity, and is necessary to account for the initial effects of starting up the system. If

these results are to be found via simulation, the required time could be excessive. Although
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WOoDSTOCK obtains only a macroscopic view of system performance, combined with an

understanding of the individual CEs, it provides greater insight into system behaviour that

can guide the redesign of a system. Finally, while a designer should be sure that there are

no CEs stalling the system, interpreting the meaning of the measured results for more com-

plex systems requires that the Counter values not be viewed in isolation as demonstrated

in the branching example.



Chapter 8

Conclusions and Future Work

Technological advancements enable designers to create increasingly complex SoCs on

ASICs, increasing both the design time and cost for developing electronics. IP reuse is

considered a possible solution for reducing both design time and complexity, but the lack

of a universally accepted standard limits the possible benefits. Thus, different groups are

attempting to develop a standard, however, there are many barriers to creating a unifying

solution. Now that FPGAs are also large enough to implement these complex SoC designs,

FPGA companies are providing both IP and system design tools to try and facilitate the de-

sign process. However, SoC design design methodologies do not exploit the benefits of a

reconfigurable implementation platform.

8.1 Conclusions

The contributions of this thesis are divided into two areas. The first is an architectural

framework to facilitate design reuse and system integration for SoCs implemented on

ASICs or FPGAs. The second is the development of a set of design tools for a design

infrastructure to leverage the benefits of designing a reconfigurable platform.

8.1.1 SoC Architecture

This thesis introduced the SIMPPL model for SoC designs implemented on both ASIC and

FPGA platforms. Systems are modelled as a network of Computing Element(s) connected

via asynchronous FIFOs. The CE abstraction decouples the system-level control from the

Processing Element and provides a fixed communication interface and protocols to the
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rest of the system. The SIMPPL controller acts as the system interface and processes

the instructions that allow the designer to program the use of a PE within the system.

The current instruction set is limited to minimize the size of the controller by supporting

instructions that are required to transfer data between CEs, however, it is extensible to

support the needs of future applications. The execute controllers run at approximately 280

MHz on an FPGA and 1.56 GHz on an ASIC in 90 nm technology, whereas the debug

controllers run at 160 MHz and 1.09 GHz, respectively. The standard cell implementation

for the controllers ranges from 5 251 um2 to 29 615 um2 depending on which type and

version of the controller is used and whether it is optimized for speed or area. The sizes of

the controllers can be further reduced if they are implemented as custom cells.

The usage of SIMPPL controllers as the physical and communication protocol interface

between CEs incurred latency and area overhead for the designs. However, they greatly

facilitated system-level design by reducing complexity and simplifying the reprogramming

of CEs for different applications. For example, the system integration time for each of the

SIMPPL modelled systems was less than 20 hours compared to the 140 hours required for

the custom designed video streaming system.

Besides reducing system integration time, the SIMPPL model facilitates debugging at

both coarse and fine-grain levels. The fixed internal communication links simplify the

design of on-chip testbeds that allow CEs to be tested with a large number of vectors in

real time to verify the PE’s functionality. To detect low-level programming errors, we have

created a debug version of each of the three types of controllers that provides access to the

run-time status of the controller when an error occurs.

8.1.2 SoC Design Tools

This research also resulted in the development of an SoC design methodology tailored to

FPGAs. Since the FPGA fabric is easily reprogrammed, it allows a design methodology

that incorporates on-chip design tools. The benefits accrued from such an approach are

similar to those experienced by software designers who typically design on a processor-

based platform as opposed to a processor simulator. Designers can obtain accurate results

quickly using tools that are tailored to their specific design. Moreover, running a design on

an FPGA is orders of magnitude faster than simulating it, allowing a larger number of test

vectors to be used to verify functionality.

Assuming designers create their SoC architecture using the SIMPPL framework, it is

possible to develop an on-chip design infrastructure to support this design methodology.
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To date, the tools created to leverage the architectural format and the FPGA’s reprogram-

mable fabric include an on-chip testbed, two on-chip profiling tools, and a system-level

specification tool to facilitate system-level integration.

8.2 Future Work

Currently, the SCSs are handwritten for each application. The three types of debug and ex-

ecute controllers have also been custom designed. Future work will investigate the devel-

opment of a controller specification platform and a high-level programming environment.

The on-chip testbed currently uses soft processors to provide the test vectors and store

the resulting outputs. While this allows designers to update the testbed without resyn-

thesizing the design, soft processors include functionality unnecessary for the testbed that

require extra resources. Therefore, a possible improvement for the on-chip testbed is to de-

velop a debugging module having a source and sink unit that requires less logic resources

than a MicroBlaze. It should also be modular and scalable to system-level requirements

and still allow users to download different test vectors without necessitating resynthesis of

the bitstream. Another possible extension for the testbed work is to develop a post-silicon

debug infrastructure for SIMPPL SoCs implemented as ASICs

Finally, this research also demonstrated that on-chip profiling tools quickly obtain ac-

curate results that can be used by the designer to make better design decisions to reduce

design time. Future work should investigate possible design implementation improvements

for these tools, such as pipelining SnoopP to increase the operating frequency. New on-

chip tools that monitor other runtime characteristics, such as power consumption, should

also be investigated. Another possibility is to consider the incorporation of the current SoC

design tools into an embedded SoCs design methodology. It should be possible to automate

more of the process by creating new tools that utilize the on-chip profiling results to gen-

erate a new partitioning, mapping, and scheduling for an application on a newly generated

system architecture.
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Appendix A

SIMPPL Controllers HDL Source Code

A.1 Full Instruction Set
//************************************************************************
// File: instr_defines.v
// Used by: All SIMPPL Controller modules and their Control Sequencers
// Description: Defines the SIMPPL Controller Opcodes.
// Uses the SIMPPL Communication Protocol
//
// LLS April 2005
//************************************************************************

//Create constants for all the instruction opcode:
‘define reset 8’h00
‘define noop 8’h04

‘define readA_Imm 8’h01
‘define readR_Imm 8’h02
‘define write_Imm 8’h03

‘define readA_Abs_addr 8’h05
‘define readR_Abs_addr 8’h06 // These first 8 instructions will be
‘define write_Abs_addr 8’h07 // read and transmitted.

‘define read_Areg 8’h0A //NOT IMPLEMENTED YET!!!
‘define write_Areg 8’h0B

‘define add_imm_Areg 8’h18
‘define sub_imm_Areg 8’h08
‘define bypass 8’h0C
//‘define wait_rx 8’h0C //deprecated and removed

‘define readA_Areg_indirect 8’h0D
‘define readR_Areg_indirect 8’h0E
‘define write_Areg_indirect 8’h0F

‘define readA_Areg_autoinc 8’h1D
‘define readR_Areg_autoinc 8’h1E
‘define write_Areg_autoinc 8’h1F
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A.2 Consumer Execute Controller

//************************************************************************
// File: fsl_ce_for_fifo_plus.v
// Uses: fifo_plus.v and a SIMPPL Control Sequencer
// Descriptions: Provides a SIMPPL interface to a 16 deep 32-bit word
// synchronous FIFO (SRL)
// Uses the SIMPPL Communication Protocol
//
// LLS April 2005
//************************************************************************

‘include "instr_defines.v"

module consumer_controller (
// inputs
clk,
rst, // rst should be driven by FSL_Rst

// Master FSL Signals
FSL_M_Clk,
FSL_M_Write,
FSL_M_Data,
FSL_M_Control,
FSL_M_Full,

// Slave FSL Signals
FSL_S_Clk,
FSL_S_Read,
FSL_S_Data,
FSL_S_Control,
FSL_S_Exists,

//PE Interface
pe_rst,
pe_data_in,
pe_write_data,
pe_write_addr,
pe_done_packet,
pe_can_write_data,
pe_can_write_addr,

//Program Interface
prog_instr,
program_cbit,
prog_instr_read,
valid_instr,
cont_prog,
exec_bypass_instr,
exec_rx_instr,

// outputs
led0, // for debug
led1 // for debug

);

input clk;
input rst;

output led0, led1;

// Slave FSL Signals
output FSL_S_Clk;
output FSL_S_Read;
input [0:31] FSL_S_Data;
input FSL_S_Control;
input FSL_S_Exists;
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// Master FSL Signals
output FSL_M_Clk;
output FSL_M_Write;
output [0:31] FSL_M_Data;
output FSL_M_Control;
input FSL_M_Full;

//PE Interface
output pe_rst;
output [31:0] pe_data_in;
output pe_write_data;
output pe_write_addr;
output pe_done_packet;
input pe_can_write_data;
input pe_can_write_addr;

//Program Interface
input [0:31] prog_instr;
input program_cbit, valid_instr;
output prog_instr_read;
input cont_prog;
output exec_rx_instr, exec_bypass_instr;

//Connections for inputs and outputs:
wire clk;
wire rst;

wire FSL_S_Clk;
wire FSL_S_Read;
wire [0:31] FSL_S_Data;
wire FSL_S_Control;
wire FSL_S_Exists;

wire FSL_M_Clk;
wire FSL_M_Write;
wire [0:31] FSL_M_Data;
wire FSL_M_Control;
wire FSL_M_Full;

//PE Interface
wire pe_rst;
wire [31:0] pe_data_in;
wire pe_write_data;
wire pe_write_addr;
wire pe_done_packet;
wire pe_can_write_data;
wire pe_can_write_addr;

//Program interface and Instruction Register Read signals:
wire [0:31] prog_instr; //connects to the program instrucion input port
wire program_cbit; //connects to the program’s control bit
wire cont_prog; //Used to override the receives higher priority
wire prog_instr_read; //reading from the port into the program IR

//Status bits:
wire exec_bypass_instr; //Status bit allowing writes to the fifo
wire exec_rx_instr; //NEW TO REPLACE WAIT RECEIVE INSTRUCTION

wire led0, led1; //for debug

//IR signals:
wire rx_IR_full;
wire [0:31] rx_IR;
wire rx_cbit; //receive control bit
wire prog_IR_full;
wire [0:31] prog_IR;
wire prog_cbit; //program control bit
reg exec_prog; //am I executing the program or an rx_IR**only valid when



99

//ex_IR_full is high
//Address registers:
reg [0:31] a0_reg; //Address register 0
reg [0:23] a0_operand; //latches the data portion of the instruction
reg write_a0;

//Mux control signals:
wire [0:31] a0_mux_output; //multiplexer output to the a0 reg
reg [0:31] fifo_mux_out; //output from multiplexer into buffering fifo

//Used to generate Computing element resets:
wire control_reset; //combines system reset and instruction reset
reg instr_reset; //generated via the reset instruction- clock period long

//Used to interface the ex_IR, A0 and data with the fifo:
reg [1:0] mux_select_fifo_in; //used to select
wire [0:7] ex_IR_fifo_in;
reg [7:0] opcode; //Used to store the opcode for 2-part instructions

//Control registers:
reg change_a0; //Flag to indicate when instruction will alter the value of a0
reg IR_req_W0; // Indicates when the instruction writes to the fifo
reg IR_req_W1; // Indicates when the instruction writes an immed to the fifo
reg Addr_req_W; // Indicates when the address register needs to be written to
//the fifo

reg tx_bypass; // Used to alter the control bit transferred as part of a
// bypass instruction (from program or rx link).

reg rx_data_req; // Used to indicate when data should be read in as part of
// the received instruction.

reg rx_addr_req; // Used to indicate when an address is read in as part of
// the received instruction.

reg [0:31] new_a0_total; //Output from Accumulator;
reg [23:0] data_cntr; // Used to store the number of data words left to write

wire [0:31] ex_IR; //wire used as mux output from prog and rx IRs
wire ex_cbit_input; //wire used as mux output from prog and rx cbits
wire ex_instr_read; //reads an instruction into the ex_IR
wire reading_prog_IR; //reading the prog_IR clears it
wire reading_rx_IR; //reading the rx_IR clears it
wire sel_ex_IR_input; // selects the input to the ex_IR

//state and delay signals:
reg [1:0] pres_state;
reg [1:0] next_state;

wire fifo_full;
reg fifo_write; //Used to write fifo to the FSL Master side

wire write_data_to_pe; //Used to read data from the FSL Slave side to the PE

//States for overall execution path state machine:
‘define get_next_instr 0
‘define decode_instr 1
‘define execute_instr 2

//for debug
assign led0 = pe_done_packet ? 1’b0 : 1’b1;
assign led1 = pe_can_write_data ? 1’b0 : 1’b1;

//Slave signals
assign FSL_S_Clk = clk;
assign FSL_S_Read = ((reading_rx_IR == 1’b1) || (write_data_to_pe == 1’b1));
assign rx_IR = FSL_S_Data;
assign rx_cbit = FSL_S_Control;
assign rx_IR_full = FSL_S_Exists;

assign FSL_M_Clk = clk;
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assign FSL_M_Data = fifo_mux_out;
assign FSL_M_Control = (tx_bypass == 1’b1) ? ˜ex_cbit_input : ex_cbit_input;
assign FSL_M_Write = fifo_write;
assign fifo_full = FSL_M_Full;

assign ex_IR_fifo_in[0:3] = 4’b0000;
assign ex_IR_fifo_in[4] = (opcode == ‘bypass) ? opcode[3] : 1’b0;
assign ex_IR_fifo_in[5] = opcode[2];
assign ex_IR_fifo_in[6:7] = (exec_prog == 1’b1) ? opcode[1:0] : ˜opcode[1:0];

//External PE interface
assign pe_rst = control_reset;
assign pe_data_in = FSL_S_Data;
assign pe_write_data = write_data_to_pe;
assign pe_write_addr = ((reading_rx_IR == 1’b1) && (rx_addr_req == 1’b1));

//Status bits passed to the program from the PE via the controller
assign pe_done_packet = (pres_state == ‘get_next_instr);
assign exec_bypass_instr = tx_bypass;

//New status bit that can be used to determine if the program should
//get out of a "Wait Receive" stall state
//Status bit 2:
assign exec_rx_instr = ((pres_state != ‘get_next_instr) && (exec_prog == 1’b0));

assign ex_instr_read = ((pres_state == ‘get_next_instr)
&& (control_reset == 1’b0)
&& (((rx_IR_full && ˜cont_prog) || prog_IR_full)));

//Used to mux the outputs from the two different IRs:
assign sel_ex_IR_input = (pres_state == ‘get_next_instr) ?
((rx_IR_full==1’b1) && (cont_prog==1’b0)) : ˜exec_prog;
assign ex_IR = sel_ex_IR_input ? rx_IR : prog_IR ;
assign ex_cbit_input = (mux_select_fifo_in == 2’b00) ? IR_req_W0 : 1’b0;

assign prog_IR = prog_instr;
assign prog_cbit = program_cbit;
assign prog_IR_full = valid_instr;

// Reads the prog_IR into the ex_IR depending on the mux select:
assign reading_prog_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b0) && (prog_IR_full == 1’b1));

////Used to Read the Program Instructions:
assign prog_instr_read = reading_prog_IR;

// Reads the rx_IR into the ex_IR depending on the mux select:
assign reading_rx_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)) ||
((rx_addr_req == 1’b1) && (pe_can_write_addr == 1’b1)))
&& (sel_ex_IR_input == 1’b1) && (rx_IR_full == 1’b1));

assign a0_mux_output = ((opcode[0] == 1’b1) && (opcode[2] == 1’b0)) ?
ex_IR : new_a0_total;

//Generates the overall controller reset signal and the video reset signal:
assign control_reset = rst || instr_reset;

always @ (posedge clk) begin
if (rst == 1’b1)

instr_reset <= 1’b0;
else if ((pres_state == ‘execute_instr) && (opcode == 8’h00) &&
(exec_prog == 1’b0))
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instr_reset <= 1’b1;
else

instr_reset <= 1’b0;
end

always @ (opcode or a0_reg or a0_operand) begin
if (opcode[4] == 1’b1)
new_a0_total = a0_reg + a0_operand;

else
new_a0_total = a0_reg - a0_operand;

end
//The Address register
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_reg <= 32’h00000000;

else if (write_a0 == 1’b1)
a0_reg <= a0_mux_output;

else
a0_reg <= a0_reg;

end

//Used to store the initial Num Data Words (NDW) value
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_operand <= 32’h00000000;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
a0_operand <= ex_IR[0:23];

else
a0_operand <= a0_operand;

end

//Used to write the new value to the address register
always @ (control_reset or change_a0 or Addr_req_W) begin

if (control_reset == 1’b1)
write_a0 = 1’b0;

else if ( (change_a0 == 1’b1) &&
(Addr_req_W == 1’b0) )

write_a0 = 1’b1;
else

write_a0 = 1’b0;
end

always @ (posedge clk) begin
if (control_reset == 1’b1)

change_a0 <= 1’b0;
else if (write_a0 == 1’b1)

change_a0 <= 1’b0;
else if ((pres_state == ‘decode_instr) && ((opcode[3:0] == 4’b1000) ||
//autoincrement instructions
((opcode[4:2] == 3’b111) && ((opcode[1]==1’b1) || (opcode[0]==1’b1)))
//write to the Adress register
|| (opcode[4:0] == 5’b01011)))

change_a0 <= 1’b1;
else

change_a0 <= change_a0;
end

//Used to indicate when to negate the control bit when executing a
//bypass instruction
always @ (posedge clk) begin

if (control_reset == 1’b1)
tx_bypass <= 1’b0;

else if((((exec_prog == 1’b0) && (pres_state == ‘decode_instr)) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b0) &&
(pres_state == ‘execute_instr))) && (opcode == ‘bypass))
tx_bypass <= 1’b1;

else if (((exec_prog == 1’b0) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b1)
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&& (pres_state == ‘execute_instr) && (opcode != ‘bypass)))
&& (fifo_write == 1’b1))
tx_bypass <= 1’b0;

else
tx_bypass <= tx_bypass;

end

//CHANGE FOR BYPASS
//Used to indicate when to write an instruction from the receive link
//or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W0 <= 1’b0;

//Set IR_req_W0 when you are in the decode stage and the instruction should
//be sent (examples of NOT sent instructions include: write_a0,
//add_a0, sub_a0

else if ((pres_state == ‘decode_instr) && (((exec_prog == 1’b1) &&
(opcode[3:0] != 4’b1000) && (opcode[3:0] != 4’b1011)) ||
(opcode[1:0] == 2’b10)))
IR_req_W0 <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b00))
IR_req_W0 <= 1’b0;

else
IR_req_W0 <= IR_req_W0;

end

//CHANGE FOR BYPASS
//Used to indicate when to write immediate values from the receive
//link or the program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W1 <= 1’b0;

else if ((pres_state == ‘decode_instr) &&
//program sending a read request plus abs address
(((exec_prog == 1’b1) && (opcode[3:0] == 4’h6))
//controller received a bypass instruction
|| ((exec_prog == 1’b0) && (opcode == ‘bypass))))
IR_req_W1 <= 1’b1;

else if (((opcode[3:0] == 4’h6) ||
((opcode == ‘bypass) && (data_cntr == 24’h000001))) &&
(fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
IR_req_W1 <= 1’b0;

else
IR_req_W1 <= IR_req_W1;

end

//The received instruction includes an address
always @ (posedge clk) begin

if (control_reset == 1’b1)
rx_addr_req <= 1’b0;

else if ((pres_state == ‘decode_instr) && (opcode[2] == 2’b1) &&
((opcode[1] == 1’b1) || (opcode[0] == 1’b1)) &&
(exec_prog == 1’b0))
rx_addr_req <= 1’b1;

else if ((rx_addr_req == 1’b1) && (reading_rx_IR == 1’b1))
rx_addr_req <= 1’b0;

else
rx_addr_req <= rx_addr_req;

end

//Controls the request to write an address register to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
Addr_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) && (opcode[3:2] == 2’b11) &&
(opcode[1:0] != 2’b00))
Addr_req_W <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b10))
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Addr_req_W <= 1’b0;
else
Addr_req_W <= Addr_req_W;

end

//Should ensure that data is properly read from the fsl to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
rx_data_req <= 1’b0;

else if ((pres_state == ‘decode_instr) &&
((exec_prog == 1’b0) && (opcode[0] == 1’b1)))

rx_data_req <= 1’b1;
else if ((data_cntr == 24’h000001) && (write_data_to_pe == 1’b1))

rx_data_req <= 1’b0;
else

rx_data_req <= rx_data_req;
end

//Loads the number of data values into the counter
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_cntr <= 24’h000000;

else if ((pres_state == ‘decode_instr) &&
((exec_prog == 1’b0) && ((opcode[0] == 1’b1) ||

(opcode == ‘bypass))))
data_cntr <= a0_operand;

else if (((mux_select_fifo_in == 2’b11) && (write_data_to_pe == 1’b1)) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)
&& (fifo_write == 1’b1)))
data_cntr <= data_cntr - 1;

else
data_cntr <= data_cntr;

end

// Generate the select signal to the mux feeding the internal buffer:
always @ (pres_state or IR_req_W0 or IR_req_W1 or Addr_req_W ) begin
if ((pres_state == ‘execute_instr) && (IR_req_W0 == 1’b1))

mux_select_fifo_in = 2’b00;
else if ((pres_state == ‘execute_instr) && (IR_req_W1 == 1’b1))

mux_select_fifo_in = 2’b01;
else if ((pres_state == ‘execute_instr) && (Addr_req_W == 1’b1))

mux_select_fifo_in = 2’b10;
else

mux_select_fifo_in = 2’b11;
end

// Used to update opcode with the next instruction to be executed:
always @ (posedge clk) begin // or posedge control_reset) begin

if (control_reset == 1’b1)
opcode <= 8’b0;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
opcode <= ex_IR[24:31];

else
opcode <= opcode;

end

// Used to update ex_IR with the next instruction to be executed:
always @ (posedge clk) begin // or posedge control_reset) begin

if (control_reset == 1’b1)
exec_prog <= 1’b1;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b1))
exec_prog <= 1’b0;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b0))
exec_prog <= 1’b1;

else
exec_prog <= exec_prog;

end
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// Mux the input into the internal buffer:
always @ (mux_select_fifo_in or ex_IR or ex_IR_fifo_in or a0_reg or a0_operand) begin

case (mux_select_fifo_in)
2’b00:

fifo_mux_out = {a0_operand,ex_IR_fifo_in};
2’b01:

fifo_mux_out = ex_IR;
2’b10:

fifo_mux_out = a0_reg;
2’b11:

fifo_mux_out = 32’h00000000;
endcase

end

// FSM register
always @ (posedge clk) begin

if (control_reset == 1’b1)
pres_state <= ‘get_next_instr;

else
pres_state <= next_state;

end

// Determine next state
always @ (pres_state or control_reset or exec_prog or opcode or ex_instr_read

or rx_data_req or IR_req_W0 or IR_req_W1 or Addr_req_W or change_a0 or
rx_addr_req) begin

case (pres_state)
‘get_next_instr:

begin
if ((ex_instr_read == 1’b1))

next_state = ‘decode_instr;
else
next_state = ‘get_next_instr;

end
‘decode_instr:

next_state = ‘execute_instr;
‘execute_instr:

begin
//Continue executing until the instruction/address has been
//completed- that data can be written on its own.

if ((IR_req_W0 == 1’b1) || (IR_req_W1 == 1’b1) ||
(Addr_req_W == 1’b1) || (change_a0 == 1’b1) ||
(rx_data_req == 1’b1) || (rx_addr_req == 1’b1))

next_state = ‘execute_instr;
else

next_state = ‘get_next_instr;
end

endcase
end

always @ (mux_select_fifo_in or IR_req_W0 or IR_req_W1 or Addr_req_W or fifo_full) begin
case(mux_select_fifo_in)

2’b00:
begin

if ((IR_req_W0 == 1’b1) && (fifo_full == 1’b0))
fifo_write = 1’b1;

else
fifo_write = 1’b0;

end
2’b01:

begin
if ((IR_req_W1 == 1’b1) && (fifo_full == 1’b0))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b10:
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begin
if ((Addr_req_W == 1’b1) && (fifo_full == 1’b0))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b11:
fifo_write = 1’b0;

endcase
end

assign write_data_to_pe = ((pres_state == ‘execute_instr)
&& (rx_addr_req == 1’b0) && (rx_data_req == 1’b1)
&& (pe_can_write_data == 1’b1)
&& (FSL_S_Exists == 1’b1));

endmodule
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A.3 Consumer Debug Controller

//************************************************************************
// File: fsl_ce_for_fifo_plus.v
// Uses: fifo_plus.v and a SIMPPL Control Sequencer
// Descriptions: Provides a SIMPPL interface to a 16 deep 32-bit word
// synchronous FIFO (SRL)
// Uses the SIMPPL Communication Protocol
//
// LLS Octoober 2005
//************************************************************************

‘include "instr_defines.v"

module consumer_controller (
// inputs
clk,
rst, // rst should be driven by FSL_Rst

// Master FSL Signals
FSL_M_Clk,
FSL_M_Write,
FSL_M_Data,
FSL_M_Control,
FSL_M_Full,

// Slave FSL Signals
FSL_S_Clk,
FSL_S_Read,
FSL_S_Data,
FSL_S_Control,
FSL_S_Exists,

//PE Interface
pe_rst,
pe_data_in,
pe_write_data,
pe_write_addr,
pe_done_packet,
pe_can_write_data,
pe_can_write_addr,

//Program Interface
prog_instr,
program_cbit,
prog_instr_read,
valid_instr,
cont_prog,
exec_bypass_instr,
exec_rx_instr,

//Debugging ports:
//Debugging download link
debug_link_clk,
debug_link_write,
debug_link_data,
debug_link_control,
debug_link_full,

//Debug Control Signals
int_error,
chk_status,
status_rdy,
cont_execution,

// outputs
led0, // for debug
led1 // for debug
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);

input clk;
input rst;

output led0, led1;

// Slave FSL Signals
output FSL_S_Clk;
output FSL_S_Read;
input [0:31] FSL_S_Data;
input FSL_S_Control;
input FSL_S_Exists;

// Master FSL Signals
output FSL_M_Clk;
output FSL_M_Write;
output [0:31] FSL_M_Data;
output FSL_M_Control;
input FSL_M_Full;

//Debugging ports:
//Debugging download link
output debug_link_clk;
output debug_link_write;
output [0:31] debug_link_data;
output debug_link_control;
input debug_link_full;
//Debugging handshake signals
output int_error;
input chk_status;
output status_rdy;
input cont_execution;

//PE Interface
output pe_rst;
output [31:0] pe_data_in;
output pe_write_data;
output pe_write_addr;
output pe_done_packet;
input pe_can_write_data;
input pe_can_write_addr;

//Program Interface
input [0:31] prog_instr;
input program_cbit, valid_instr;
output prog_instr_read;
input cont_prog;
output exec_rx_instr, exec_bypass_instr;

//Program interface and Instruction Register Read signals:
wire [0:31] prog_instr; //connects to the program instrucion input port
wire program_cbit; //connects to the program’s control bit
wire cont_prog; //Used to override the receives higher priority
wire prog_instr_read; //reading from the port into the program IR

//Status bits:
wire exec_bypass_instr; //Status bit allowing writes to the fifo
wire exec_rx_instr; //NEW TO REPLACE WAIT RECEIVE INSTRUCTION

wire led0, led1; //for debug

//For Debugging ****
reg [3:0] status_cntr;
reg int_debug_link_write;
reg prev_status_rdy;
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reg int_chk_status;
reg int_int_error;
wire CE_error;
wire error0, error1, error2, error3, error4;
wire error5, error6, error7, error8, error9;
reg err_cbit;
reg ex_cbit;

//Debug ****
reg [0:31] a0_reg_bak, imm_addr, controller_status_reg, prog_PE_status_reg;
reg [0:31] ex_IR_bak, data_cntr_bak, prog_IR_bak, rx_IR_bak;
reg[0:31] err_type_reg, err_word_reg, exec_time_cntr, ce_id_reg;

//IR signals:
wire rx_IR_full;
wire [0:31] rx_IR;
wire rx_cbit; //receive control bit
wire prog_IR_full;
wire [0:31] prog_IR;
wire prog_cbit; //program control bit
reg exec_prog; //am I executing the program or an rx_IR**only valid when
//ex_IR_full is high

//Address registers:
reg [0:31] a0_reg; //Address register 0
reg [0:23] a0_operand; //latches the data portion of the instruction
reg write_a0;

//Mux control signals:
wire [0:31] a0_mux_output; //multiplexer output to the a0 reg
reg [0:31] fifo_mux_out; //output from multiplexer into buffering fifo

//Used to generate Computing element resets:
wire control_reset; //combines system reset and instruction reset
reg instr_reset; //generated via the reset instruction- clock period long

//Used to interface the ex_IR, A0 and data with the fifo:
reg [1:0] mux_select_fifo_in; //used to select
wire [0:7] ex_IR_fifo_in;
reg [7:0] opcode; //Used to store the opcode for 2-part instructions

//Control registers:
reg change_a0; //Flag to indicate when instruction will alter the value of a0
reg IR_req_W0; // Indicates when the instruction writes to the fifo
reg IR_req_W1; // Indicates when the instruction writes an immed to the fifo
reg Addr_req_W; // Indicates when the address register needs to be written to
//the fifo

reg tx_bypass; // Used to alter the control bit transferred as part of a
// bypass instruction (from program or rx link).

reg rx_data_req; // Used to indicate when data should be read in as part of
// the received instruction.

reg rx_addr_req; // Used to indicate when an address is read in as part of
// the received instruction.

reg [0:31] new_a0_total; //Output from Accumulator;
reg [23:0] data_cntr; // Used to store the number of data words left to write

wire [0:31] ex_IR; //wire used as mux output from prog and rx IRs
wire ex_IR_cbit; //wire used as mux output from

//prog and rx IR’s cbits
wire ex_IR_full; //used to mux prog an rx full output signals
wire ex_cbit_input; //wire used as mux output from prog and rx cbits
wire ex_instr_read; //reads an instruction into the ex_IR
wire reading_prog_IR; //reading the prog_IR clears it
wire reading_rx_IR; //reading the rx_IR clears it
wire sel_ex_IR_input; // selects the input to the ex_IR

//state and delay signals:
reg [1:0] prev_state; //Debug
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reg [1:0] pres_state;
reg [1:0] next_state;

wire fifo_full;
reg fifo_write; //Used to write fifo to the FSL Master side

wire write_data_to_pe; //Used to read data from the FSL Slave side to the PE

//States for overall execution path state machine:
‘define get_next_instr 0
‘define decode_instr 1
‘define execute_instr 2
‘define status_chk 3 //Debug

//Debug: ****
‘define num_regs 11 //Debug
‘define ce_id 32’h0000abbc //Debug: CE ID
‘define bit 31-14 //The subtracted number represents the power of two bit

//for debug
assign led0 = int_int_error ? 1’b0 : 1’b1;
assign led1 = (status_cntr == ‘num_regs) ? 1’b0 : 1’b1;

//Slave signals
assign FSL_S_Clk = clk;
assign FSL_S_Read = ((reading_rx_IR == 1’b1) || (write_data_to_pe == 1’b1));
assign rx_IR = FSL_S_Data;
assign rx_cbit = FSL_S_Control;
assign rx_IR_full = FSL_S_Exists;

assign FSL_M_Clk = clk;
assign FSL_M_Data = fifo_mux_out;
assign FSL_M_Control = (tx_bypass == 1’b1) ? ˜ex_cbit_input : ex_cbit_input;
assign FSL_M_Write = fifo_write;
assign fifo_full = FSL_M_Full;

assign ex_IR_fifo_in[0:3] = 4’b0000;
assign ex_IR_fifo_in[4] = (opcode == ‘bypass) ? opcode[3] : 1’b0;
assign ex_IR_fifo_in[5] = opcode[2];
assign ex_IR_fifo_in[6:7] = (exec_prog == 1’b1) ? opcode[1:0] : ˜opcode[1:0];

//External PE interface
assign pe_rst = control_reset;
assign pe_data_in = FSL_S_Data;
assign pe_write_data = write_data_to_pe;
assign pe_write_addr = ((reading_rx_IR == 1’b1) && (rx_addr_req == 1’b1));

//Status bits passed to the program from the PE via the controller
assign pe_done_packet = (pres_state == ‘get_next_instr);
assign exec_bypass_instr = tx_bypass;

//New status bit that can be used to determine if the program should
//get out of a "Wait Receive" stall state
//Status bit 2:
assign exec_rx_instr = ((pres_state != ‘get_next_instr) && (exec_prog == 1’b0));

assign ex_instr_read = ((pres_state == ‘get_next_instr)
&& (control_reset == 1’b0)
&& (((rx_IR_full && ˜cont_prog) || prog_IR_full)));

//Used to mux the outputs from the two different IRs:
assign sel_ex_IR_input = (pres_state == ‘get_next_instr) ?
((rx_IR_full==1’b1) && (cont_prog==1’b0)) : ˜exec_prog;
assign ex_IR = sel_ex_IR_input ? rx_IR : prog_IR ;
assign ex_IR_cbit = sel_ex_IR_input ? rx_cbit : prog_cbit ; //Debug
assign ex_cbit_input = (mux_select_fifo_in == 2’b00) ? IR_req_W0 : 1’b0;
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assign ex_IR_full = sel_ex_IR_input ? rx_IR_full : prog_IR_full ;

assign prog_IR = prog_instr;
assign prog_cbit = program_cbit;
assign prog_IR_full = valid_instr;

// Reads the prog_IR into the ex_IR depending on the mux select:
assign reading_prog_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b0) && (prog_IR_full == 1’b1));

////Used to Read the Program Instructions:
assign prog_instr_read = reading_prog_IR;

// Reads the rx_IR into the ex_IR depending on the mux select:
assign reading_rx_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)) ||
((rx_addr_req == 1’b1) && (pe_can_write_addr == 1’b1)))
&& (sel_ex_IR_input == 1’b1) && (rx_IR_full == 1’b1));

assign a0_mux_output = ((opcode[0] == 1’b1) && (opcode[2] == 1’b0)) ?
ex_IR : new_a0_total;

//Generates the overall controller reset signal and the video reset signal:
assign control_reset = rst || instr_reset;

always @ (posedge clk) begin
if (rst == 1’b1)

instr_reset <= 1’b0;
else if ((pres_state == ‘execute_instr) && (opcode == 8’h00) &&
(exec_prog == 1’b0))

instr_reset <= 1’b1;
else

instr_reset <= 1’b0;
end

//Used to add/subtract the a0 operand to the address register
always @ (opcode or a0_reg or a0_operand) begin

if (opcode[4] == 1’b1)
new_a0_total = a0_reg + a0_operand;

else
new_a0_total = a0_reg - a0_operand;

end

//The Address register
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_reg <= 32’h00000000;

else if (write_a0 == 1’b1)
a0_reg <= a0_mux_output;

else
a0_reg <= a0_reg;

end

//Used to store the initial Num Data Words (NDW) value
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_operand <= 32’h00000000;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
a0_operand <= ex_IR[0:23];

else
a0_operand <= a0_operand;

end
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//Used to write the new value to the address register
always @ (control_reset or change_a0 or Addr_req_W or ex_IR_full or opcode) begin

if (control_reset == 1’b1)
write_a0 = 1’b0;

else if ((change_a0 == 1’b1) && (Addr_req_W == 1’b0) &&
(((ex_IR_full == 1’b1) && (opcode == ‘write_Areg)) ||
(opcode != ‘write_Areg)))
write_a0 = 1’b1;

else
write_a0 = 1’b0;

end

always @ (posedge clk) begin
if (control_reset == 1’b1)

change_a0 <= 1’b0;
else if (write_a0 == 1’b1)

change_a0 <= 1’b0;
else if ((pres_state == ‘decode_instr) && ((opcode[3:0] == 4’b1000) ||
//autoincrement instructions
((opcode[4:2] == 3’b111) && ((opcode[1]==1’b1) || (opcode[0]==1’b1)))
//write to the Adress register
|| (opcode[4:0] == 5’b01011)))

change_a0 <= 1’b1;
else

change_a0 <= change_a0;
end

//Used to indicate when to negate the control bit when executing a
//bypass instruction
always @ (posedge clk) begin

if (control_reset == 1’b1)
tx_bypass <= 1’b0;

else if((((exec_prog == 1’b0) && (pres_state == ‘decode_instr)) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b0) &&
(pres_state == ‘execute_instr))) && (opcode == ‘bypass))
tx_bypass <= 1’b1;

else if (((exec_prog == 1’b0) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b1)
&& (pres_state == ‘execute_instr) && (opcode != ‘bypass)))
&& (fifo_write == 1’b1))
tx_bypass <= 1’b0;

else
tx_bypass <= tx_bypass;

end

//CHANGE FOR BYPASS
//Used to indicate when to write an instruction from the receive link
//or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W0 <= 1’b0;

//Set IR_req_W0 when you are in the decode stage and the instruction should
//be sent (examples of NOT sent instructions include: write_a0,
//add_a0, sub_a0

else if ((pres_state == ‘decode_instr) && (((exec_prog == 1’b1) &&
(opcode[3:0] != 4’b1000) && (opcode[3:0] != 4’b1011)) ||
(opcode[1:0] == 2’b10)))
IR_req_W0 <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b00))
IR_req_W0 <= 1’b0;

else
IR_req_W0 <= IR_req_W0;

end

//CHANGE FOR BYPASS
//Used to indicate when to write immediate values from the receive
//link or the program
always @ (posedge clk) begin
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if (control_reset == 1’b1)
IR_req_W1 <= 1’b0;

else if ((pres_state == ‘decode_instr) &&
//program sending a read request plus abs address
(((exec_prog == 1’b1) && (opcode[3:0] == 4’h6))
//controller received a bypass instruction
|| ((exec_prog == 1’b0) && (opcode == ‘bypass))))
IR_req_W1 <= 1’b1;

else if (((opcode[3:0] == 4’h6) ||
((opcode == ‘bypass) && (data_cntr == 24’h000001))) &&
(fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
IR_req_W1 <= 1’b0;

else
IR_req_W1 <= IR_req_W1;

end

//The received instruction includes an address
always @ (posedge clk) begin

if (control_reset == 1’b1)
rx_addr_req <= 1’b0;

else if ((pres_state == ‘decode_instr) && (opcode[2] == 2’b1) &&
((opcode[1] == 1’b1) || (opcode[0] == 1’b1)) &&
(exec_prog == 1’b0))
rx_addr_req <= 1’b1;

else if ((rx_addr_req == 1’b1) && (reading_rx_IR == 1’b1))
rx_addr_req <= 1’b0;

else
rx_addr_req <= rx_addr_req;

end

//Controls the request to write an address register to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
Addr_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) && (opcode[3:2] == 2’b11) &&
(opcode[1:0] != 2’b00))
Addr_req_W <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b10))
Addr_req_W <= 1’b0;

else
Addr_req_W <= Addr_req_W;

end

//Should ensure that data is properly read from the fsl to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
rx_data_req <= 1’b0;

else if ((pres_state == ‘decode_instr) &&
((exec_prog == 1’b0) && (opcode[0] == 1’b1)))

rx_data_req <= 1’b1;
else if ((data_cntr == 24’h000001) && (write_data_to_pe == 1’b1))

rx_data_req <= 1’b0;
else

rx_data_req <= rx_data_req;
end

//Loads the number of data values into the counter
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_cntr <= 24’h000000;

else if ((pres_state == ‘decode_instr) &&
((exec_prog == 1’b0) && ((opcode[0] == 1’b1) ||

(opcode == ‘bypass))))
data_cntr <= a0_operand;

else if (((mux_select_fifo_in == 2’b11) && (write_data_to_pe == 1’b1)) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)
&& (fifo_write == 1’b1)))
data_cntr <= data_cntr - 1;
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else
data_cntr <= data_cntr;

end

// Generate the select signal to the mux feeding the internal buffer:
always @ (pres_state or IR_req_W0 or IR_req_W1 or Addr_req_W ) begin
if ((pres_state == ‘execute_instr) && (IR_req_W0 == 1’b1))

mux_select_fifo_in = 2’b00;
else if ((pres_state == ‘execute_instr) && (IR_req_W1 == 1’b1))

mux_select_fifo_in = 2’b01;
else if ((pres_state == ‘execute_instr) && (Addr_req_W == 1’b1))

mux_select_fifo_in = 2’b10;
else

mux_select_fifo_in = 2’b11;
end

// Used to update opcode with the next instruction to be executed:
always @ (posedge clk) begin

if (control_reset == 1’b1)
opcode <= 8’b0;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
opcode <= ex_IR[24:31];

else
opcode <= opcode;

end

// Used to update ex_IR with the next instruction to be executed:
always @ (posedge clk) begin

if (control_reset == 1’b1)
exec_prog <= 1’b0;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b1))
exec_prog <= 1’b0;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b0))
exec_prog <= 1’b1;

else
exec_prog <= exec_prog;

end

// Mux the input into the internal buffer:
always @ (mux_select_fifo_in or ex_IR or ex_IR_fifo_in or a0_reg or a0_operand) begin

case (mux_select_fifo_in)
2’b00:

fifo_mux_out = {a0_operand,ex_IR_fifo_in};
2’b01:

fifo_mux_out = ex_IR;
2’b10:

fifo_mux_out = a0_reg;
2’b11:

fifo_mux_out = 32’h00000000;
endcase

end

// FSM register
always @ (posedge clk) begin

if (rst == 1’b1)
pres_state <= ‘get_next_instr;

else
pres_state <= next_state;

end

// Determine next state
always @ (pres_state or control_reset or exec_prog or opcode or ex_instr_read

or rx_data_req or IR_req_W0 or IR_req_W1 or Addr_req_W or change_a0 or
rx_addr_req or error0 or error1 or error2 or error3 or error4 or error5 or
error6 or error7 or error8 or error9 or int_int_error or int_chk_status or
status_cntr or cont_execution) begin

case (pres_state)
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‘get_next_instr:
begin

if ((error1 == 1’b1) || (error3 == 1’b1) || (error5 == 1’b1)
|| (error9 == 1’b1)) //Debug

next_state = ‘status_chk; //Debug
else if ((ex_instr_read == 1’b1))

next_state = ‘decode_instr;
else
next_state = ‘get_next_instr;

end
‘decode_instr:

begin
if ((error0 == 1’b1) || (error5 == 1’b1)) //Debug
next_state = ‘status_chk; //Debug

else
next_state = ‘execute_instr;

end
‘execute_instr:

begin
if ((error0 == 1’b1) || (error2 == 1’b1) || (error4 == 1’b1) || //Debug

(error5 == 1’b1) || (error6 == 1’b1) || (error7 == 1’b1) || //Debug
(error8 == 1’b1)) //Debug

next_state = ‘status_chk; //Debug
else if ((int_int_error == 1’b1) || ((int_chk_status == 1’b1) && //Debug

((IR_req_W0 == 1’b0) && (IR_req_W1 == 1’b0) && //Debug
(Addr_req_W == 1’b0) && (change_a0 == 1’b0) && //Debug
(rx_data_req == 1’b0) && (rx_addr_req == 1’b0)))) //Debug

next_state = ‘status_chk; //Debug
//Continue executing until the instruction/address has been
//completed- that data can be written on its own.

else if ((IR_req_W0 == 1’b1) || (IR_req_W1 == 1’b1) ||
(Addr_req_W == 1’b1) || (change_a0 == 1’b1) ||
(rx_data_req == 1’b1) || (rx_addr_req == 1’b1))

next_state = ‘execute_instr;
else

next_state = ‘get_next_instr;
end

‘status_chk: //Debug ****
begin

if ((status_cntr == ‘num_regs-1) &&
(cont_execution == 1’b1) && (int_int_error == 1’b0)) //Debug
next_state = ‘get_next_instr;
else
next_state = ‘status_chk;

end
endcase

end

always @ (mux_select_fifo_in or IR_req_W0 or IR_req_W1 or Addr_req_W or
fifo_full or ex_IR_full) begin

case(mux_select_fifo_in)
2’b00:

begin
if ((IR_req_W0 == 1’b1) && (fifo_full == 1’b0) &&

(int_int_error == 1’b0)) //Debug
fifo_write = 1’b1;

else
fifo_write = 1’b0;

end
2’b01:

begin
if ((IR_req_W1 == 1’b1) && (fifo_full == 1’b0) &&

(int_int_error == 1’b0) && (ex_IR_full == 1’b1)) //Debug
fifo_write = 1’b1;

else
fifo_write = 1’b0;

end
2’b10:
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begin
if ((Addr_req_W == 1’b1) && (fifo_full == 1’b0) &&

(int_int_error == 1’b0))
fifo_write = 1’b1;

else
fifo_write = 1’b0;

end
2’b11:

fifo_write = 1’b0;
endcase

end

assign write_data_to_pe = ((pres_state == ‘execute_instr)
&& (rx_addr_req == 1’b0) && (rx_data_req == 1’b1)
&& (pe_can_write_data == 1’b1)
&& (FSL_S_Exists == 1’b1));

//Debug register download order:
//0)int_debug_link_data <= err_type_reg;
//1)int_debug_link_data <= ex_IR_bak;
//2)int_debug_link_data <= imm_addr;
//3)int_debug_link_data <= a0_reg_bak;
//4)int_debug_link_data <= data_cntr_bak;
//5)int_debug_link_data <= prog_IR_bak;
//6)int_debug_link_data <= rx_IR_bak;
//7)int_debug_link_data <= controller_status_reg;
//8)int_debug_link_data <= prog_PE_status_reg;
//9)int_debug_link_data <= exec_time_cntr;

assign debug_link_clk = clk; //Debug
assign debug_link_data = ce_id_reg; //Debug
assign debug_link_control = 1’b0; //Debug
assign int_error = int_int_error; //Debug
assign CE_error = (error0 || error1 || error2 || error3 || error4 || error5 ||
error6 || error7 || error8 || error9);

//Debug Errors:
//Error0: reading an instruction outside the "fetch" stage
assign error0 = ((((prog_cbit == 1’b1) && (reading_prog_IR == 1’b1)) ||
((rx_cbit == 1’b1) && (reading_rx_IR == 1’b1))) &&
(pres_state != ‘get_next_instr));

//Error1: in the "fetch" stage but the IR has a data word
assign error1 = ((pres_state == ‘get_next_instr) &&
(((reading_rx_IR == 1’b1) && (rx_cbit == 1’b0)) ||
((reading_prog_IR == 1’b1) && (prog_cbit == 1’b0))));
//Error2: in the "execute" stage, but the execution time cntr has overflowed
assign error2 = ((pres_state == ‘execute_instr) &&
(exec_time_cntr[‘bit] == 1’b1));
//Error3: in the "fetch" stage, but the next instruction time cntr overflows
assign error3 = ((pres_state == ‘get_next_instr) &&
(exec_time_cntr[‘bit] == 1’b1));
//Error4: trying to write to a full FSL
assign error4 = ((FSL_M_Write == 1’b1) && (FSL_M_Full == 1’b1));
//Error5: trying to read from an empty FSL
assign error5 = ((FSL_S_Read == 1’b1) && (FSL_S_Exists == 1’b0));
//Error6: trying to write data to the PE when the PE isn’t ready
assign error6 = ((pe_write_data == 1’b1) && (pe_can_write_data == 1’b0));
//Error7: trying to write an address to the PE when the PE isn’t ready
assign error7 = ((pe_write_addr == 1’b1) && (pe_can_write_addr == 1’b0));
//Error8: trying to read data from the PE when there is none ready
//assign error8 = ((pe_read_data == 1’b1) && (pe_can_read == 1’b0)); //producer
assign error8 = 1’b0;
//Error9: trying to execute an invalid instruction
assign error9 = ((pres_state == ‘get_next_instr) && (((reading_rx_IR == 1’b1) &&
((rx_IR[24:27] != 4’h0) || (rx_IR[30:31] == 2’b10) ||
(rx_IR[28:29] == 2’b10) || ((rx_IR[28] == 1’b1) &&
(rx_IR[31] == 1’b1)))) || ((reading_prog_IR == 1’b1) &&
((prog_IR[24:26] != 3’b000) || (prog_IR[27:28] == 2’b10) ||



116

(prog_IR[28:31] == 4’b1010) || (prog_IR[30:31] == 2’b01) ||
((prog_IR[31] == 1’b1) && ((prog_IR[29] == 1’b1) ||
(prog_IR[28] == 1’b0) || (prog_IR[27] == 1’b1))) ||
((prog_IR[27] == 1’b1) && (prog_IR[29:30] == 2’b10))))));

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
int_int_error <= 1’b0;

else if (CE_error == 1’b1)
int_int_error <= 1’b1;

else
int_int_error <= int_int_error;

end

//Debug
always @ (posedge clk) begin

if (rst == 1’b1)
prev_state <= ‘get_next_instr;

else
prev_state <= pres_state;

end

//Debug:
//Status info is ready when all the registers have been downloaded to the
//debug link fifo
assign status_rdy = (status_cntr == ‘num_regs-1) ? 1’b1 : 1’b0; //Debug

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prev_status_rdy <= 1’b0;

else
prev_status_rdy <= status_rdy;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
int_chk_status <= 1’b0;

else if (chk_status == 1’b1)
int_chk_status <= 1’b1;

else if (status_rdy == 1’b1)
int_chk_status <= 1’b0;

else
int_chk_status <= int_chk_status;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
int_debug_link_write <= 1’b0;

else if (status_cntr == ‘num_regs)
int_debug_link_write <= 1’b0;

else if ((pres_state == ‘status_chk) && (debug_link_full == 1’b0) &&
(status_rdy == 1’b0) && (status_cntr != ‘num_regs))
int_debug_link_write <= 1’b1;

else
int_debug_link_write <= 1’b0;

end

assign debug_link_write = int_debug_link_write; //Debug

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
status_cntr <= 4’h0;

else if ((prev_state == ‘status_chk) && (pres_state == ‘get_next_instr))
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status_cntr <= 4’h0;
else if ((pres_state == ‘status_chk) && (int_debug_link_write == 1’b1))
status_cntr <= status_cntr + 1;

else
status_cntr <= status_cntr;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
ce_id_reg <= ‘ce_id;

else if (int_debug_link_write == 1’b1)
ce_id_reg <= err_type_reg;

else
ce_id_reg <= ‘ce_id;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
err_type_reg <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
err_type_reg <= err_word_reg;

else if (int_int_error == 1’b0)
begin

err_type_reg[0] <= error0;
err_type_reg[1] <= error1;
err_type_reg[2] <= error2;
err_type_reg[3] <= error3;
err_type_reg[4] <= error4;
err_type_reg[5] <= error5;
err_type_reg[6] <= error6;
err_type_reg[7] <= error7;
err_type_reg[8] <= error8;
err_type_reg[9] <= error9;
err_type_reg[10:30] <= 22’h000000;
err_type_reg[31] <= CE_error;

end
else if (pres_state == ‘get_next_instr)

err_type_reg <= 32’h00000000;
else
err_type_reg <= err_type_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
err_word_reg <= 32’h00000000;

else if (debug_link_write == 1’b1)
err_word_reg <= ex_IR_bak;

else if ((reading_prog_IR == 1’b1) && (CE_error == 1’b1))
err_word_reg <= prog_IR;

else if ((reading_rx_IR == 1’b1) && (CE_error == 1’b1))
err_word_reg <= rx_IR;

else if ((fifo_write == 1’b1) && (CE_error == 1’b1))
err_word_reg <= fifo_mux_out;

else if (pres_state == ‘get_next_instr)
err_word_reg <= 32’h00000000;

else
err_word_reg <= err_word_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
err_cbit <= 1’h0;

else if ((reading_prog_IR == 1’b1) && (CE_error == 1’b1))
err_cbit <= prog_cbit;
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else if ((reading_rx_IR == 1’b1) && (CE_error == 1’b1))
err_cbit <= rx_cbit;

else if ((fifo_write == 1’b1) && (CE_error == 1’b1) && (tx_bypass == 1’b1))
err_cbit <= ˜ex_cbit_input;

else if ((fifo_write == 1’b1) && (CE_error == 1’b1) && (tx_bypass == 1’b0))
err_cbit <= ex_cbit_input;

else
err_cbit <= err_cbit;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
ex_IR_bak <= 32’h00000000;

else if (((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
|| ((status_rdy == 1’b1) && (prev_status_rdy == 1’b0)))
ex_IR_bak <= ex_IR;

else if (debug_link_write == 1’b1)
ex_IR_bak <= imm_addr;

else
ex_IR_bak <= ex_IR_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
ex_cbit <= 1’b0;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
ex_cbit <= ex_IR_cbit;

else
ex_cbit <= ex_cbit;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
imm_addr <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
imm_addr <= 32’h00000000;

else if (debug_link_write == 1’b1)
imm_addr <= a0_reg_bak;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01) &&
(opcode != ‘bypass))
imm_addr <= ex_IR;

else
imm_addr <= imm_addr;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
a0_reg_bak <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
a0_reg_bak <= a0_reg;

else if (int_debug_link_write == 1’b1)
a0_reg_bak <= data_cntr_bak;

else if (write_a0 == 1’b1)
a0_reg_bak <= a0_mux_output;

else
a0_reg_bak <= a0_reg_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
data_cntr_bak <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
data_cntr_bak <= 32’h00000000;
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else if (int_debug_link_write == 1’b1)
data_cntr_bak <= prog_IR_bak;

else if (pres_state == ‘decode_instr)
data_cntr_bak <= {8’h00,a0_operand};

else if (((mux_select_fifo_in == 2’b11) && (write_data_to_pe == 1’b1)) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)
&& (fifo_write == 1’b1)))
data_cntr_bak <= data_cntr_bak - 1;

else
data_cntr_bak <= data_cntr_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prog_IR_bak <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
prog_IR_bak <= rx_IR_bak;

else if ((pres_state == ‘status_chk) && (prev_state == ‘status_chk))
prog_IR_bak <= prog_IR_bak;

else
prog_IR_bak <= prog_IR;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
rx_IR_bak <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
rx_IR_bak <= controller_status_reg;

else if ((pres_state == ‘status_chk) && (prev_state == ‘status_chk))
rx_IR_bak <= rx_IR_bak;

else
rx_IR_bak <= rx_IR;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
controller_status_reg <= 32’h00000000;

else if ((status_rdy == 1’b1) && (prev_status_rdy == 1’b0))
controller_status_reg <= 32’h00000000;

else if (debug_link_write == 1’b1)
controller_status_reg <= prog_PE_status_reg;

else if (((pres_state == ‘get_next_instr) || (pres_state == ‘decode_instr))
|| ((pres_state == ‘execute_instr) && (prev_state == ‘decode_instr)))
begin

controller_status_reg[0] <= ex_cbit;
controller_status_reg[1] <= IR_req_W0;
controller_status_reg[2] <= IR_req_W1;
controller_status_reg[3] <= Addr_req_W;
//controller_status_reg[4] <= data_req_W;
controller_status_reg[4] <= 1’b0;
controller_status_reg[5] <= tx_bypass;
controller_status_reg[6] <= exec_prog;
controller_status_reg[7] <= rx_addr_req;
controller_status_reg[8] <= rx_data_req;
controller_status_reg[9] <= change_a0;
controller_status_reg[10:15] <= 6’h00;
controller_status_reg[16] <= ex_cbit;
controller_status_reg[17] <= IR_req_W0;
controller_status_reg[18] <= IR_req_W1;
controller_status_reg[19] <= Addr_req_W;
//controller_status_reg[20] <= data_req_W;
controller_status_reg[20] <= 1’b0;
controller_status_reg[21] <= tx_bypass;
controller_status_reg[22] <= exec_prog;
controller_status_reg[23] <= rx_addr_req;
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controller_status_reg[24] <= rx_data_req;
controller_status_reg[25] <= change_a0;
controller_status_reg[26:31] <= 6’h00;

end
else if (pres_state == ‘execute_instr)
begin

controller_status_reg[0:15] <= controller_status_reg[0:15];
controller_status_reg[16] <= ex_cbit;
controller_status_reg[17] <= IR_req_W0;
controller_status_reg[18] <= IR_req_W1;
controller_status_reg[19] <= Addr_req_W;
//controller_status_reg[20] <= data_req_W;
controller_status_reg[20] <= 1’b0;
controller_status_reg[21] <= tx_bypass;
controller_status_reg[22] <= exec_prog;
controller_status_reg[23] <= rx_addr_req;
controller_status_reg[24] <= rx_data_req;
controller_status_reg[25] <= change_a0;
controller_status_reg[26:31] <= 6’h00;

end
else if ((pres_state == ‘status_chk) && (prev_state != ‘status_chk))
begin

controller_status_reg[0:15] <= controller_status_reg[0:15];
controller_status_reg[16] <= ex_cbit;
controller_status_reg[17] <= IR_req_W0;
controller_status_reg[18] <= IR_req_W1;
controller_status_reg[19] <= Addr_req_W;
//controller_status_reg[20] <= data_req_W;
controller_status_reg[20] <= 1’b0;
controller_status_reg[21] <= tx_bypass;
controller_status_reg[22] <= exec_prog;
controller_status_reg[23] <= rx_addr_req;
controller_status_reg[24] <= rx_data_req;
controller_status_reg[25] <= change_a0;
controller_status_reg[26:31] <= 6’h00;

end
else
controller_status_reg <= controller_status_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prog_PE_status_reg <= 32’h00000000;

else if ((status_rdy == 1’b1) && (prev_status_rdy == 1’b0))
prog_PE_status_reg <= 32’h00000000;

else if (debug_link_write == 1’b1)
prog_PE_status_reg <= exec_time_cntr;

else if ((pres_state == ‘get_next_instr) || (pres_state == ‘decode_instr) ||
((pres_state == ‘execute_instr) && (prev_state == ‘decode_instr)))
begin

prog_PE_status_reg[0] <= rx_IR_full;
prog_PE_status_reg[1] <= prog_IR_full;
prog_PE_status_reg[2] <= rx_cbit;
prog_PE_status_reg[3] <= prog_cbit;
prog_PE_status_reg[4] <= valid_instr;
prog_PE_status_reg[5] <= cont_prog;
//prog_PE_status_reg[6] <= pe_can_read;
prog_PE_status_reg[6] <= 1’b0;
prog_PE_status_reg[7] <= pe_can_write_data;
prog_PE_status_reg[8] <= pe_can_write_addr;
prog_PE_status_reg[9] <= err_cbit;
prog_PE_status_reg[10:11] <= pres_state;
prog_PE_status_reg[12:13] <= mux_select_fifo_in;
prog_PE_status_reg[14:15] <= 2’h0;
prog_PE_status_reg[16] <= rx_IR_full;
prog_PE_status_reg[17] <= prog_IR_full;
prog_PE_status_reg[18] <= rx_cbit;
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prog_PE_status_reg[19] <= prog_cbit;
prog_PE_status_reg[20] <= valid_instr;
prog_PE_status_reg[21] <= cont_prog;
//prog_PE_status_reg[22] <= pe_can_read;
prog_PE_status_reg[22] <= 1’b0;
prog_PE_status_reg[23] <= pe_can_write_data;
prog_PE_status_reg[24] <= pe_can_write_addr;
prog_PE_status_reg[25] <= err_cbit;
prog_PE_status_reg[26:27] <= pres_state;
prog_PE_status_reg[28:29] <= mux_select_fifo_in;
prog_PE_status_reg[30:31] <= 2’h0;

end
else if (pres_state == ‘execute_instr)
begin

prog_PE_status_reg[0:15] <= prog_PE_status_reg[0:15];
prog_PE_status_reg[16] <= rx_IR_full;
prog_PE_status_reg[17] <= prog_IR_full;
prog_PE_status_reg[18] <= rx_cbit;
prog_PE_status_reg[19] <= prog_cbit;
prog_PE_status_reg[20] <= valid_instr;
prog_PE_status_reg[21] <= cont_prog;
//prog_PE_status_reg[22] <= pe_can_read;
prog_PE_status_reg[22] <= 1’b0;
prog_PE_status_reg[23] <= pe_can_write_data;
prog_PE_status_reg[24] <= pe_can_write_addr;
prog_PE_status_reg[25] <= err_cbit;
prog_PE_status_reg[26:27] <= pres_state;
prog_PE_status_reg[28:29] <= mux_select_fifo_in;
prog_PE_status_reg[30:31] <= 2’h0;

end
else if ((pres_state == ‘status_chk) && (prev_state != ‘status_chk))
begin

prog_PE_status_reg[0:15] <= prog_PE_status_reg[0:15];
prog_PE_status_reg[16] <= rx_IR_full;
prog_PE_status_reg[17] <= prog_IR_full;
prog_PE_status_reg[18] <= rx_cbit;
prog_PE_status_reg[19] <= prog_cbit;
prog_PE_status_reg[20] <= valid_instr;
prog_PE_status_reg[21] <= cont_prog;
//prog_PE_status_reg[22] <= pe_can_read;
prog_PE_status_reg[22] <= 1’b0;
prog_PE_status_reg[23] <= pe_can_write_data;
prog_PE_status_reg[24] <= pe_can_write_addr;
prog_PE_status_reg[25] <= err_cbit;
prog_PE_status_reg[26:27] <= prog_PE_status_reg[26:27];
prog_PE_status_reg[28:29] <= prog_PE_status_reg[28:29];
prog_PE_status_reg[30:31] <= 2’h0;

end
else
prog_PE_status_reg <= prog_PE_status_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
exec_time_cntr <= 32’h00000000;

else if (((status_rdy == 1’b1) && (prev_status_rdy == 1’b0)) ||
((pres_state == ‘get_next_instr) && (prev_state == ‘execute_instr))
|| (pres_state == ‘decode_instr))
exec_time_cntr <= 32’h00000000;

else if (debug_link_write == 1’b1)
exec_time_cntr <= ‘ce_id; //END OF PIPELINED DEBUG DATA

else if((pres_state == ‘execute_instr) || (pres_state == ‘get_next_instr))
exec_time_cntr <= exec_time_cntr + 1;

else
exec_time_cntr <= exec_time_cntr;

end
endmodule
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A.4 Producer Execute Controller

//************************************************************************
// File: fsl_ce_for_cntr_pe.v
// Uses: cntr_pe.v and a SIMPPL Control Sequencer
// Description: Provides a SIMPPL interface to the four bit counter.
// Uses the SIMPPL Communication Protocol
//
// LLS April 2005
//************************************************************************
//

‘include "instr_defines.v"

module producer_controller (
// inputs
clk,
rst, // rst should be driven by FSL_Rst

//Master FSL Signals
FSL_M_Clk,
FSL_M_Write,
FSL_M_Data,
FSL_M_Control,
FSL_M_Full,

//Slave FSL Signals
FSL_S_Clk,
FSL_S_Read,
FSL_S_Data,
FSL_S_Control,
FSL_S_Exists,

//PE Interface:
pe_rst,
pe_data_out,
pe_read_data,
pe_can_read,

//Program Interface
prog_instr,
program_cbit,
prog_instr_read,
valid_instr,
cont_prog,
valid_data,
exec_rx_instr,

// outputs
led0, // for debug
led1 // for debug
);

input clk, rst;
output FSL_M_Clk, FSL_M_Write;
output [0:31] FSL_M_Data;
output FSL_M_Control;
input FSL_M_Full;
output FSL_S_Clk, FSL_S_Read;
input [0:31] FSL_S_Data;
input FSL_S_Control, FSL_S_Exists;
output led0, led1; // for debug

//PE Interface:
output pe_rst;
input [31:0] pe_data_out;
output pe_read_data;
input pe_can_read;
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//Program Interface:
input [0:31] prog_instr;
input program_cbit, valid_instr;
output prog_instr_read;
input cont_prog;
output valid_data, exec_rx_instr;

wire clk, rst;
wire FSL_M_Clk, FSL_M_Full;
wire FSL_M_Control;
wire FSL_M_Write;
wire [0:31] FSL_M_Data;

//Slave FSL wires:
wire FSL_S_Clk;
wire FSL_S_Read;
wire [0:31] FSL_S_Data;
wire FSL_S_Control;
wire FSL_S_Exists;

//PE Interface:
wire pe_rst;
wire [31:0] pe_data_out;
wire pe_read_data;
wire pe_can_read;

//Program interface and Instruction Register Read signals:
wire [0:31] prog_instr; //connects to the program instrucion input port
wire program_cbit; //connects to the program’s control bit
wire valid_instr; //Used to indicate that the instruction from the program is
//valid

wire cont_prog; //Used to override the receives higher priority
wire prog_instr_read; //reading from the port into the program IR

//Status bits:
//wire new_transaction; //status bit provided to the program for branching
wire valid_data; //status bit provided to the program for branching
wire exec_rx_instr; //status bit provided to be used in place of the
//"wait rx" instr

wire led0, led1; // for debug

//IR signals:
wire rx_IR_full;
wire [0:31] rx_IR;
wire rx_cbit; //receive control bit
wire prog_IR_full;
wire [0:31] prog_IR;
wire prog_cbit; //program control bit
reg exec_prog; //am I executing the program or an rx_IR**only valid when
//ex_IR_full is high

//Address registers:
reg [0:31] a0_reg; //Address register 0
reg [0:23] a0_operand; //latches the data portion of the instruction
reg write_a0;

//Mux control signals:
wire [0:31] a0_mux_output; //multiplexer output to the a0 reg
reg [0:31] fifo_mux_out; //output from multiplexer into buffering fifo

wire control_reset; //combines system reset and instruction reset
reg instr_reset; //generated via the reset instruction- clock period long

//Used to interface the ex_IR, A0 and data with the fifo:
reg [1:0] mux_select_fifo_in; //used to select
wire [0:7] ex_IR_fifo_in;
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reg [7:0] opcode; //Used to store the opcode for 2-part instructions

//Control registers:
reg change_a0; //Flag to indicate when instruction will alter the value of a0
reg IR_req_W0; // Indicates when the instruction writes to the fifo
reg IR_req_W1; // Indicates when the instruction writes an immed to the fifo
reg Addr_req_W; //Indicates when the address register needs to be written to
//the fifo

reg data_req_W; // Indicates that there is data to be written to the fifo
reg tx_bypass; // Used to alter the control bit transferred as part of a
// bypass instruction (from program or rx link).

reg [0:31] new_a0_total; //Output from Accumulator;
reg [23:0] data_cntr; // used to store the number of data words left to write

wire [0:31] ex_IR; //wire used as mux output from prog and rx IRs
wire ex_cbit_input; //wire used as mux output from prog and rx cbits
wire ex_instr_read; //reads an instruction into the ex_IR
wire reading_prog_IR; //reading the prog_IR clears it
wire reading_rx_IR; //reading the rx_IR clears it
wire sel_ex_IR_input; // selects the input to the ex_IR

reg [1:0] pres_state;
reg [1:0] next_state;

reg fifo_write; //write data to the Master FSL
wire fifo_full;

wire read_data; //read data from the pe to the Master FSL

//States for overall execution path state machine:
‘define get_next_instr 0
‘define decode_instr 1
‘define execute_instr 2

// for debug
assign led0 = exec_rx_instr ? 1’b0 : 1’b1;
assign led1 = valid_data ? 1’b0 : 1’b1;

//Slave signals:
assign FSL_S_Clk = clk;
//Used to Read the Slave fsl data:
assign FSL_S_Read = reading_rx_IR;
assign rx_IR = FSL_S_Data;
assign rx_cbit = FSL_S_Control;
assign rx_IR_full = FSL_S_Exists;

//Master signals:
assign FSL_M_Clk = clk;
assign FSL_M_Data = fifo_mux_out;
assign FSL_M_Control = (tx_bypass == 1’b1) ? ˜ex_cbit_input : ex_cbit_input;
//Used to Write the data from the counter to the FSL:
assign FSL_M_Write = fifo_write;
assign fifo_full = FSL_M_Full;

assign ex_IR_fifo_in[0:3] = 4’b0000;
assign ex_IR_fifo_in[4] = (opcode == ‘bypass) ? opcode[3] : 1’b0;
assign ex_IR_fifo_in[5] = opcode[2];
assign ex_IR_fifo_in[6:7] = (exec_prog == 1’b1) ? opcode[1:0] : ˜opcode[1:0];

assign pe_rst = control_reset;
assign pe_read_data = read_data;

//Status bits received from the PE and sent to the program via the controller:
assign valid_data = pe_can_read;

//Status bit 2:
assign exec_rx_instr = ((pres_state != ‘get_next_instr) && (exec_prog == 1’b0));
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//Used to Read an instruction into the Executing IR:
assign ex_instr_read = ((pres_state == ‘get_next_instr)
&& (control_reset == 1’b0)

&& (((rx_IR_full && ˜cont_prog )|| prog_IR_full)));

//Used to mux the outputs from the two different IRs such that the rx_IR
//takes precedence when the cont_prog flag is low:
assign sel_ex_IR_input = (pres_state == ‘get_next_instr) ?
((rx_IR_full==1’b1) && (cont_prog==1’b0)) : ˜exec_prog;
assign ex_IR = sel_ex_IR_input ? rx_IR : prog_IR ;
assign ex_cbit_input = (mux_select_fifo_in == 2’b00) ? IR_req_W0 : 1’b0;

assign prog_IR = prog_instr;
assign prog_cbit = program_cbit;
assign prog_IR_full = valid_instr;

// Reads the prog_IR into the ex_IR depending on the mux select:
assign reading_prog_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b0) && (prog_IR_full == 1’b1));

//Used to Read the Program Instructions:
assign prog_instr_read = reading_prog_IR;

// Reads the rx_IR into the ex_IR depending on the mux select:
assign reading_rx_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b1) && (rx_IR_full == 1’b1));

//Used to multiplex an immediate or incremented/decremented value to a0
assign a0_mux_output = ((opcode[0] == 1’b1) && (opcode[2] == 1’b0)) ?
ex_IR : new_a0_total;

//Generates the overall controller reset signal:
assign control_reset = rst || instr_reset;

//Used to generate the controller’s reset signal from the reset instruction:
always @ (posedge clk) begin // or posedge rst) begin

if (rst == 1’b1)
instr_reset <= 1’b0;

else if ((pres_state == ‘execute_instr) && (opcode == 8’h00) &&
(exec_prog == 1’b0))

instr_reset <= 1’b1;
else

instr_reset <= 1’b0;
end

//Used to add/subtract the a0 operand to the address register
always @ (opcode or a0_reg or a0_operand) begin

if (opcode[4] == 1’b1)
new_a0_total = a0_reg + a0_operand;

else
new_a0_total = a0_reg - a0_operand;

end

//The address register
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_reg <= 32’h00000000;

else if (write_a0 == 1’b1)
a0_reg <= a0_mux_output;

else
a0_reg <= a0_reg;

end
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//Used to store the initial NDW value
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_operand <= 32’h00000000;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
a0_operand <= ex_IR[0:23];

else
a0_operand <= a0_operand;

end

//Used to write the new value to the address register
always @ (control_reset or change_a0 or Addr_req_W) begin

if (control_reset == 1’b1)
write_a0 = 1’b0;

else if ( (change_a0 == 1’b1) &&
(Addr_req_W == 1’b0) )

write_a0 = 1’b1;
else

write_a0 = 1’b0;
end

//Used to indicate that the value of the address register will change
always @ (posedge clk) begin

if (control_reset == 1’b1)
change_a0 <= 1’b0;

else if (write_a0 == 1’b1)
change_a0 <= 1’b0;

else if ((pres_state == ‘decode_instr) && ((opcode[3:0] == 4’b1000) ||
//autoincrement instructions
((opcode[4:2] == 3’b111) && ((opcode[1]==1’b1) || (opcode[0]==1’b1)))
//write to the Adress register
|| (opcode[4:0] == 5’b01011)))

change_a0 <= 1’b1;
else

change_a0 <= change_a0;
end

//Used to indicate when to negate the control bit when executing a
//bypass instruction
always @ (posedge clk) begin

if (control_reset == 1’b1)
tx_bypass <= 1’b0;

else if((((exec_prog == 1’b0) && (pres_state == ‘decode_instr)) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b0) &&
(pres_state == ‘execute_instr))) && (opcode == ‘bypass))
tx_bypass <= 1’b1;

else if (((exec_prog == 1’b0) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b1)
&& (pres_state == ‘execute_instr) && (opcode != ‘bypass)))
&& (fifo_write == 1’b1))
tx_bypass <= 1’b0;

else
tx_bypass <= tx_bypass;

end

//Used to indicate when to write an instruction from the receive link
//or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W0 <= 1’b0;

//Set IR_req_W0 when you are in the decode stage and the instruction should
//be sent (examples of NOT sent instructions include: write_a0,
//add_a0, sub_a0

else if ((pres_state == ‘decode_instr) && (((exec_prog == 1’b1) &&
((opcode[3:0] != 4’b1000) && (opcode[3:0] != 4’b1011)))
|| (opcode[1:0] == 2’b10)))
IR_req_W0 <= 1’b1;
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else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b00))
IR_req_W0 <= 1’b0;

else
IR_req_W0 <= IR_req_W0;

end

// Used to indicate when to write immediate values from the receive
// link or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W1 <= 1’b0;

else if ((pres_state == ‘decode_instr) && ((opcode[2] == 1’b1) &&
(((exec_prog == 1’b1) && ((opcode[0] == 1’b1) || (opcode[1]==1’b1))
&& (opcode[3] == 1’b0)) //Not an Areg operation
|| ((exec_prog == 1’b0) && ((opcode == ‘bypass) ||
(opcode[1:0] == 2’b10))))))
IR_req_W1 <= 1’b1;

else if (((opcode != ‘bypass) ||
((opcode == ‘bypass) && (data_cntr == 24’h000001))) &&
(fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
IR_req_W1 <= 1’b0;

else
IR_req_W1 <= IR_req_W1;

end

//Controls the request to write an address register to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
Addr_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) && (opcode[3:2] == 2’b11) &&
(opcode[1:0] != 2’b00))
Addr_req_W <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b10))
Addr_req_W <= 1’b0;

else
Addr_req_W <= Addr_req_W;

end

//Controls the request to write data to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) &&
(((exec_prog == 1’b1) && (opcode[0] == 1’b1)) ||

((exec_prog == 1’b0) && (opcode[1:0] == 2’b10))) &&
(opcode[3:2] != 2’b10))

data_req_W <= 1’b1;
else if ((data_cntr == 24’h000001) && (fifo_write == 1’b1)
//needed for when only 1 data word is sent

&& (mux_select_fifo_in == 2’b11))
data_req_W <= 1’b0;

else
data_req_W <= data_req_W;

end

//Loads the number of data values into the counter
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_cntr <= 24’h000000;

else if ((pres_state == ‘decode_instr) &&
(((exec_prog == 1’b1) && (opcode[0] == 1’b1)) ||

((exec_prog == 1’b0) && ((opcode[1:0] == 2’b10) ||
(opcode == ‘bypass)))) && (opcode[3:2] != 2’b10))

data_cntr <= a0_operand;
else if (((mux_select_fifo_in == 2’b11) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)))
&& (fifo_write == 1’b1))
data_cntr <= data_cntr - 1;
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else
data_cntr <= data_cntr;

end

// Generate the select signal to the mux feeding the internal buffer:
always @ (pres_state or IR_req_W0 or IR_req_W1 or Addr_req_W) begin
if ((pres_state == ‘execute_instr) && (IR_req_W0 == 1’b1))

mux_select_fifo_in = 2’b00;
else if ((pres_state == ‘execute_instr) && (IR_req_W1 == 1’b1))

mux_select_fifo_in = 2’b01;
else if ((pres_state == ‘execute_instr) && (Addr_req_W == 1’b1))

mux_select_fifo_in = 2’b10;
else

mux_select_fifo_in = 2’b11;
end

// Used to update opcode with the next instruction to be executed:
always @ (posedge clk) begin

if (control_reset == 1’b1)
opcode <= 8’b0;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
opcode <= ex_IR[24:31];

else
opcode <= opcode;

end
// Used to update ex_IR with the next instruction to be executed:
always @ (posedge clk) begin

if (control_reset == 1’b1)
exec_prog <= 1’b1;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b1))
exec_prog <= 1’b0;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b0))
exec_prog <= 1’b1;

else
exec_prog <= exec_prog;

end

// Mux the input into the internal buffer:
always @ (mux_select_fifo_in or ex_IR or ex_IR_fifo_in or a0_reg or a0_operand

or pe_data_out) begin
case (mux_select_fifo_in)
2’b00:

fifo_mux_out = {a0_operand,ex_IR_fifo_in};
2’b01:

fifo_mux_out = ex_IR;
2’b10:

fifo_mux_out = a0_reg;
2’b11:

//fifo_mux_out = cntr_pe_data;
fifo_mux_out = pe_data_out;

endcase
end

always @ (posedge clk) begin // or posedge control_reset) begin
if (control_reset == 1’b1)
pres_state <= ‘get_next_instr;

else
pres_state <= next_state;

end

// Determine next state
always @ (pres_state or ex_instr_read or IR_req_W0 or IR_req_W1 or Addr_req_W

or change_a0 or data_req_W) begin
case (pres_state)
‘get_next_instr:

begin
if ((ex_instr_read == 1’b1))

next_state = ‘decode_instr;
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else
next_state = ‘get_next_instr;

end
‘decode_instr:

next_state = ‘execute_instr;
‘execute_instr:

begin
//Continue executing until the instruction/address has been
//completed- that data can be written on its own.

if ((IR_req_W0 == 1’b1) || (IR_req_W1 == 1’b1) ||
(Addr_req_W == 1’b1) || (change_a0 == 1’b1) ||
(data_req_W == 1’b1)) //||

next_state = ‘execute_instr;
else

next_state = ‘get_next_instr;
end

endcase
end

always @ (mux_select_fifo_in or IR_req_W0 or IR_req_W1 or Addr_req_W or
data_req_W or fifo_full or valid_data )begin

case(mux_select_fifo_in)
2’b00:

begin
if ((IR_req_W0 == 1’b1) && (fifo_full == 1’b0) &&

//Instr does not tx data
((data_req_W == 1’b0) ||

//Instr does tx data- wait for data to be available before
//sending instruction
((data_req_W == 1’b1) && (valid_data == 1’b1))))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b01:
begin

if ((IR_req_W1 == 1’b1) && (fifo_full == 1’b0))
fifo_write = 1’b1;

else
fifo_write = 1’b0;

end
2’b10:

begin
if ((Addr_req_W == 1’b1) && (fifo_full == 1’b0))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b11:
begin

if ((data_req_W == 1’b1) && (fifo_full == 1’b0) &&
(valid_data == 1’b1))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

endcase
end

assign read_data = ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b11));

endmodule
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A.5 Producer Debug Controller

//************************************************************************
// File: fsl_ce_for_cntr_pe.v
// Uses: cntr_pe.v and a SIMPPL Control Sequencer
// Description: Provides a SIMPPL interface to the four bit counter.
// Uses the SIMPPL Communication Protocol
//
// LLS April 2005
//************************************************************************
//

‘include "instr_defines.v"

module producer_controller (
// inputs
clk,
rst, // rst should be driven by FSL_Rst

//Master FSL Signals
FSL_M_Clk,
FSL_M_Write,
FSL_M_Data,
FSL_M_Control,
FSL_M_Full,

//Slave FSL Signals
FSL_S_Clk,
FSL_S_Read,
FSL_S_Data,
FSL_S_Control,
FSL_S_Exists,

//PE Interface:
pe_rst,
pe_data_out,
pe_read_data,
pe_can_read,

//Program Interface
prog_instr,
program_cbit,
prog_instr_read,
valid_instr,
cont_prog,
valid_data,
exec_rx_instr,

//Debugging ports:
//Debugging download link
debug_link_clk,
debug_link_write,
debug_link_data,
debug_link_control,
debug_link_full,

//Debug Control Signals
int_error,
chk_status,
status_rdy,
cont_execution,

// outputs
led0, // for debug
led1 // for debug
);

input clk, rst;
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output FSL_M_Clk, FSL_M_Write;
output [0:31] FSL_M_Data;
output FSL_M_Control;
input FSL_M_Full;
output FSL_S_Clk, FSL_S_Read;
input [0:31] FSL_S_Data;
input FSL_S_Control, FSL_S_Exists;
output led0, led1; // for debug

//Debugging ports:
//Debugging download link
output debug_link_clk;
output debug_link_write;
output [0:31] debug_link_data;
output debug_link_control;
input debug_link_full;
//Debugging handshake signals
output int_error;
input chk_status;
output status_rdy;
input cont_execution;

//PE Interface:
output pe_rst;
input [31:0] pe_data_out;
output pe_read_data;
input pe_can_read;

//Program Interface:
input [0:31] prog_instr;
input program_cbit, valid_instr;
output prog_instr_read;
input cont_prog;
output valid_data, exec_rx_instr;

//Program interface and Instruction Register Read signals:
wire [0:31] prog_instr; //connects to the program instrucion input port
wire program_cbit; //connects to the program’s control bit
wire valid_instr; //Used to indicate that the instruction from the program is
//valid

wire cont_prog; //Used to override the receives higher priority
wire prog_instr_read; //reading from the port into the program IR

//Status bits:
wire valid_data; //status bit provided to the program for branching
wire exec_rx_instr; //status bit provided to be used in place of the
//"wait rx" instr

wire led0, led1; // for debug

//For Debugging ****
reg [3:0] status_cntr;
reg int_debug_link_write;
reg prev_status_rdy;
reg int_chk_status;
reg int_int_error;
wire CE_error;
wire error0, error1, error2, error3, error4, error5, error6, error7, error8;

//Debug ****
reg [0:31] a0_reg_bak, imm_addr, controller_status_reg, prog_PE_status_reg;
reg [0:31] ex_IR_bak, data_cntr_bak, prog_IR_bak, rx_IR_bak;
reg[0:31] err_type_reg, exec_time_cntr;

//IR signals:
wire rx_IR_full;
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wire [0:31] rx_IR;
wire rx_cbit; //receive control bit
wire prog_IR_full;
wire [0:31] prog_IR;
wire prog_cbit; //program control bit
reg exec_prog; //am I executing the program or an rx_IR**only valid when
//ex_IR_full is high

//Address registers:
reg [0:31] a0_reg; //Address register 0
reg [0:23] a0_operand; //latches the data portion of the instruction
reg write_a0;

//Mux control signals:
wire [0:31] a0_mux_output; //multiplexer output to the a0 reg
reg [0:31] fifo_mux_out; //output from multiplexer into buffering fifo

wire control_reset; //combines system reset and instruction reset
reg instr_reset; //generated via the reset instruction- clock period long

//Used to interface the ex_IR, A0 and data with the fifo:
reg [1:0] mux_select_fifo_in; //used to select
wire [0:7] ex_IR_fifo_in;
reg [7:0] opcode; //Used to store the opcode for 2-part instructions

//Control registers:
reg change_a0; //Flag to indicate when instruction will alter the value of a0
reg IR_req_W0; // Indicates when the instruction writes to the fifo
reg IR_req_W1; // Indicates when the instruction writes an immed to the fifo
reg Addr_req_W; //Indicates when the address register needs to be written to
//the fifo

reg data_req_W; // Indicates that there is data to be written to the fifo
reg tx_bypass; // Used to alter the control bit transferred as part of a
// bypass instruction (from program or rx link).

reg [0:31] new_a0_total; //Output from Accumulator;
reg [23:0] data_cntr; // used to store the number of data words left to write

wire [0:31] ex_IR; //wire used as mux output from prog and rx IRs
wire [0:31] ex_IR_cbit; //wire used as mux output from

//prog and rx IR’s cbits
wire ex_cbit_input; //wire used as mux output from prog and rx cbits
wire ex_instr_read; //reads an instruction into the ex_IR
wire reading_prog_IR; //reading the prog_IR clears it
wire reading_rx_IR; //reading the rx_IR clears it
wire sel_ex_IR_input; // selects the input to the ex_IR

reg [1:0] prev_state; //Debug
reg [1:0] pres_state;
reg [1:0] next_state;

reg fifo_write; //write data to the Master FSL
wire fifo_full;

wire read_data; //read data from the pe to the Master FSL

//States for overall execution path state machine:
‘define get_next_instr 0
‘define decode_instr 1
‘define execute_instr 2
‘define status_chk 3 //Debug

//Debug: ****
‘define num_regs 9 //Debug
‘define bit 31-27 //The subtracted number represents the power of two bit

// for debug
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assign led0 = exec_rx_instr ? 1’b0 : 1’b1;
assign led1 = valid_data ? 1’b0 : 1’b1;

//Slave signals:
assign FSL_S_Clk = clk;
//Used to Read the Slave fsl data:
assign FSL_S_Read = reading_rx_IR;
assign rx_IR = FSL_S_Data;
assign rx_cbit = FSL_S_Control;
assign rx_IR_full = FSL_S_Exists;

//Master signals:
assign FSL_M_Clk = clk;
assign FSL_M_Data = fifo_mux_out;
assign FSL_M_Control = (tx_bypass == 1’b1) ? ˜ex_cbit_input : ex_cbit_input;
//Used to Write the data from the counter to the FSL:
assign FSL_M_Write = fifo_write;
assign fifo_full = FSL_M_Full;

assign ex_IR_fifo_in[0:3] = 4’b0000;
assign ex_IR_fifo_in[4] = (opcode == ‘bypass) ? opcode[3] : 1’b0;
assign ex_IR_fifo_in[5] = opcode[2];
assign ex_IR_fifo_in[6:7] = (exec_prog == 1’b1) ? opcode[1:0] : ˜opcode[1:0];

assign pe_rst = control_reset;
assign pe_read_data = read_data;

//Status bits received from the PE and sent to the program via the controller:
assign valid_data = pe_can_read;

//Status bit 2:
assign exec_rx_instr = ((pres_state != ‘get_next_instr) && (exec_prog == 1’b0));

//Used to Read an instruction into the Executing IR:
assign ex_instr_read = ((pres_state == ‘get_next_instr)
&& (control_reset == 1’b0)

&& (((rx_IR_full && ˜cont_prog )|| prog_IR_full)));

//Used to mux the outputs from the two different IRs such that the rx_IR
//takes precedence when the cont_prog flag is low:
assign sel_ex_IR_input = (pres_state == ‘get_next_instr) ?
((rx_IR_full==1’b1) && (cont_prog==1’b0)) : ˜exec_prog;
assign ex_IR = sel_ex_IR_input ? rx_IR : prog_IR ;
assign ex_IR_cbit = sel_ex_IR_input ? rx_cbit : prog_cbit ; //Debug
assign ex_cbit_input = (mux_select_fifo_in == 2’b00) ? IR_req_W0 : 1’b0;

assign prog_IR = prog_instr;
assign prog_cbit = program_cbit;
assign prog_IR_full = valid_instr;

// Reads the prog_IR into the ex_IR depending on the mux select:
assign reading_prog_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b0) && (prog_IR_full == 1’b1));

//Used to Read the Program Instructions:
assign prog_instr_read = reading_prog_IR;

// Reads the rx_IR into the ex_IR depending on the mux select:
assign reading_rx_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b1) && (rx_IR_full == 1’b1));

//Used to multiplex an immediate or incremented/decremented value to a0
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assign a0_mux_output = ((opcode[0] == 1’b1) && (opcode[2] == 1’b0)) ?
ex_IR : new_a0_total;

//Generates the overall controller reset signal:
assign control_reset = rst || instr_reset;

//Used to generate the controller’s reset signal from the reset instruction:
always @ (posedge clk) begin

if (rst == 1’b1)
instr_reset <= 1’b0;

else if ((pres_state == ‘execute_instr) && (opcode == 8’h00) &&
(exec_prog == 1’b0))

instr_reset <= 1’b1;
else

instr_reset <= 1’b0;
end

//Used to add/subtract the a0 operand to the address register
always @ (opcode or a0_reg or a0_operand) begin

if (opcode[4] == 1’b1)
new_a0_total = a0_reg + a0_operand;

else
new_a0_total = a0_reg - a0_operand;

end

//The address register
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_reg <= 32’h00000000;

else if (write_a0 == 1’b1)
a0_reg <= a0_mux_output;

else
a0_reg <= a0_reg;

end

//Used to store the initial NDW value
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_operand <= 32’h00000000;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
a0_operand <= ex_IR[0:23];

else
a0_operand <= a0_operand;

end

//Used to write the new value to the address register
always @ (control_reset or change_a0 or Addr_req_W) begin

if (control_reset == 1’b1)
write_a0 = 1’b0;

else if ( (change_a0 == 1’b1) &&
(Addr_req_W == 1’b0) )

write_a0 = 1’b1;
else

write_a0 = 1’b0;
end

//Used to indicate that the value of the address register will change
always @ (posedge clk) begin

if (control_reset == 1’b1)
change_a0 <= 1’b0;

else if (write_a0 == 1’b1)
change_a0 <= 1’b0;

else if ((pres_state == ‘decode_instr) && ((opcode[3:0] == 4’b1000) ||
//autoincrement instructions
((opcode[4:2] == 3’b111) && ((opcode[1]==1’b1) || (opcode[0]==1’b1)))
//write to the Adress register
|| (opcode[4:0] == 5’b01011)))

change_a0 <= 1’b1;
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else
change_a0 <= change_a0;

end

//Used to indicate when to negate the control bit when executing a
//bypass instruction
always @ (posedge clk) begin

if (control_reset == 1’b1)
tx_bypass <= 1’b0;

else if((((exec_prog == 1’b0) && (pres_state == ‘decode_instr)) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b0) &&
(pres_state == ‘execute_instr))) && (opcode == ‘bypass))
tx_bypass <= 1’b1;

else if (((exec_prog == 1’b0) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b1)
&& (pres_state == ‘execute_instr) && (opcode != ‘bypass)))
&& (fifo_write == 1’b1))
tx_bypass <= 1’b0;

else
tx_bypass <= tx_bypass;

end

//Used to indicate when to write an instruction from the receive link
//or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W0 <= 1’b0;

//Set IR_req_W0 when you are in the decode stage and the instruction should
//be sent (examples of NOT sent instructions include: write_a0,
//add_a0, sub_a0

else if ((pres_state == ‘decode_instr) && (((exec_prog == 1’b1) &&
((opcode[3:0] != 4’b1000) && (opcode[3:0] != 4’b1011)))
|| (opcode[1:0] == 2’b10)))
IR_req_W0 <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b00))
IR_req_W0 <= 1’b0;

else
IR_req_W0 <= IR_req_W0;

end

// Used to indicate when to write immediate values from the receive
// link or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W1 <= 1’b0;

else if ((pres_state == ‘decode_instr) && ((opcode[2] == 1’b1) &&
(((exec_prog == 1’b1) && ((opcode[0] == 1’b1) || (opcode[1]==1’b1))
&& (opcode[3] == 1’b0)) //Not an Areg operation
|| ((exec_prog == 1’b0) && ((opcode == ‘bypass) ||
(opcode[1:0] == 2’b10))))))
IR_req_W1 <= 1’b1;

else if (((opcode != ‘bypass) ||
((opcode == ‘bypass) && (data_cntr == 24’h000001))) &&
(fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
IR_req_W1 <= 1’b0;

else
IR_req_W1 <= IR_req_W1;

end

//Controls the request to write an address register to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
Addr_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) && (opcode[3:2] == 2’b11) &&
(opcode[1:0] != 2’b00))
Addr_req_W <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b10))
Addr_req_W <= 1’b0;
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else
Addr_req_W <= Addr_req_W;

end

//Controls the request to write data to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) &&
(((exec_prog == 1’b1) && (opcode[0] == 1’b1)) ||

((exec_prog == 1’b0) && (opcode[1:0] == 2’b10))) &&
(opcode[3:2] != 2’b10))

data_req_W <= 1’b1;
else if ((data_cntr == 24’h000001) && (fifo_write == 1’b1)
//needed for when only 1 data word is sent

&& (mux_select_fifo_in == 2’b11))
data_req_W <= 1’b0;

else
data_req_W <= data_req_W;

end

//Loads the number of data values into the counter
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_cntr <= 24’h000000;

else if ((pres_state == ‘decode_instr) &&
(((exec_prog == 1’b1) && (opcode[0] == 1’b1)) ||

((exec_prog == 1’b0) && ((opcode[1:0] == 2’b10) ||
(opcode == ‘bypass)))) && (opcode[3:2] != 2’b10))

data_cntr <= a0_operand;
else if (((mux_select_fifo_in == 2’b11) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)))
&& (fifo_write == 1’b1))
data_cntr <= data_cntr - 1;

else
data_cntr <= data_cntr;

end

// Generate the select signal to the mux feeding the internal buffer:
always @ (pres_state or IR_req_W0 or IR_req_W1 or Addr_req_W) begin
if ((pres_state == ‘execute_instr) && (IR_req_W0 == 1’b1))

mux_select_fifo_in = 2’b00;
else if ((pres_state == ‘execute_instr) && (IR_req_W1 == 1’b1))

mux_select_fifo_in = 2’b01;
else if ((pres_state == ‘execute_instr) && (Addr_req_W == 1’b1))

mux_select_fifo_in = 2’b10;
else

mux_select_fifo_in = 2’b11;
end

// Used to update opcode with the next instruction to be executed:
always @ (posedge clk) begin

if (control_reset == 1’b1)
opcode <= 8’b0;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
opcode <= ex_IR[24:31];

else
opcode <= opcode;

end

// Used to update ex_IR with the next instruction to be executed:
always @ (posedge clk) begin // or posedge control_reset) begin

if (control_reset == 1’b1)
exec_prog <= 1’b1;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b1))
exec_prog <= 1’b0;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b0))
exec_prog <= 1’b1;
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else
exec_prog <= exec_prog;

end

// Mux the input into the internal buffer:
always @ (mux_select_fifo_in or ex_IR or ex_IR_fifo_in or a0_reg or a0_operand

or pe_data_out) begin
case (mux_select_fifo_in)
2’b00:

fifo_mux_out = {a0_operand,ex_IR_fifo_in};
2’b01:

fifo_mux_out = ex_IR;
2’b10:

fifo_mux_out = a0_reg;
2’b11:

fifo_mux_out = pe_data_out;
endcase

end

always @ (posedge clk) begin
if (control_reset == 1’b1)
pres_state <= ‘get_next_instr;

else
pres_state <= next_state;

end

// Determine next state
always @ (pres_state or ex_instr_read or IR_req_W0 or IR_req_W1 or Addr_req_W

or change_a0 or data_req_W or error0 or error1 or error2 or error3 or
error4 or error5 or error6 or error7 or error8 or int_int_error or
int_chk_status or status_cntr or cont_execution) begin

case (pres_state)
‘get_next_instr:

begin
if ((error1 == 1’b1) || (error3 == 1’b1) || (error5 == 1’b1)) //Debug
next_state = ‘status_chk; //Debug

else if ((ex_instr_read == 1’b1))
next_state = ‘decode_instr;

else
next_state = ‘get_next_instr;

end
‘decode_instr:

if ((error0 == 1’b1) || (error5 == 1’b1)) //Debug
next_state = ‘status_chk; //Debug

else
next_state = ‘execute_instr;

‘execute_instr:
begin

if ((error0 == 1’b1) || (error2 == 1’b1) || (error4 == 1’b1) || //Debug
(error5 == 1’b1) || (error6 == 1’b1) || (error7 == 1’b1) || //Debug
(error8 == 1’b1)) //Debug

next_state = ‘status_chk; //Debug
else if ((int_int_error == 1’b1) || ((int_chk_status == 1’b1) && //Debug

((IR_req_W0 == 1’b0) && (IR_req_W1 == 1’b0) && //Debug
(Addr_req_W == 1’b0) && (change_a0 == 1’b0) && //Debug
(data_req_W == 1’b0)))) //Debug

next_state = ‘status_chk; //Debug
//Continue executing until the instruction/address has been
//completed- that data can be written on its own.

else if ((IR_req_W0 == 1’b1) || (IR_req_W1 == 1’b1) ||
(Addr_req_W == 1’b1) || (change_a0 == 1’b1) ||
(data_req_W == 1’b1))

next_state = ‘execute_instr;
else

next_state = ‘get_next_instr;
end

‘status_chk: //Debug ****
begin
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//if ((((status_cntr == ‘num_regs-2) && (int_debug_link_write == 1’b1))
// || (status_cntr == ‘num_regs-1))
if ((status_cntr == ‘num_regs-1) &&
(cont_execution == 1’b1) && (int_int_error == 1’b0)) //Debug
next_state = ‘get_next_instr;
else
next_state = ‘status_chk;

end
endcase

end

always @ (mux_select_fifo_in or IR_req_W0 or IR_req_W1 or Addr_req_W or
data_req_W or fifo_full or valid_data )begin

case(mux_select_fifo_in)
2’b00:

begin
if ((IR_req_W0 == 1’b1) && (fifo_full == 1’b0) &&

//Instr does not tx data
((data_req_W == 1’b0) ||

//Instr does tx data- wait for data to be available before
//sending instruction
((data_req_W == 1’b1) && (valid_data == 1’b1))))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b01:
begin

if ((IR_req_W1 == 1’b1) && (fifo_full == 1’b0))
fifo_write = 1’b1;

else
fifo_write = 1’b0;

end
2’b10:

begin
if ((Addr_req_W == 1’b1) && (fifo_full == 1’b0))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b11:
begin

if ((data_req_W == 1’b1) && (fifo_full == 1’b0) &&
(valid_data == 1’b1))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

endcase
end

assign read_data = ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b11));

//Debug register download order:
//0)int_debug_link_data <= err_type_reg;
//1)int_debug_link_data <= ex_IR_bak;
//2)int_debug_link_data <= imm_addr;
//3)int_debug_link_data <= a0_reg_bak;
//4)int_debug_link_data <= data_cntr_bak;
//5)int_debug_link_data <= prog_IR_bak;
//6)int_debug_link_data <= rx_IR_bak;
//7)int_debug_link_data <= controller_status_reg;
//8)int_debug_link_data <= prog_PE_status_reg;
//8)int_debug_link_data <= exec_time_cntr;

assign debug_link_clk = clk; //Debug
assign debug_link_data = err_type_reg; //Debug
assign debug_link_control = 1’b0; //Debug
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assign int_error = int_int_error; //Debug
assign CE_error = (error0 || error1 || error2 || error3 || error4 || error5 ||
error6 || error7 || error8);

//Debug Errors:
assign error0 = ((((prog_cbit == 1’b1) && (reading_prog_IR == 1’b1)) ||
((rx_cbit == 1’b1) && (reading_rx_IR == 1’b1))) &&
(pres_state != ‘get_next_instr));

assign error1 = ((pres_state == ‘get_next_instr) &&
(((rx_IR_full == 1’b1) && (rx_cbit == 1’b0)) ||
((prog_IR_full == 1’b1) && (prog_cbit == 1’b0))));
assign error2 = ((pres_state == ‘execute_instr) &&
(exec_time_cntr[‘bit] == 1’b1));
assign error3 = ((pres_state == ‘get_next_instr) &&
(exec_time_cntr[‘bit] == 1’b1));
assign error4 = ((FSL_M_Write == 1’b1) && (FSL_M_Full == 1’b1));
assign error5 = ((FSL_S_Read == 1’b1) && (FSL_S_Exists == 1’b0));
//assign error6 = ((pe_write_data == 1’b1) && (pe_can_write_data == 1’b0));
assign error6 = 1’b0;
//assign error7 = ((pe_write_addr == 1’b1) && (pe_can_write_addr == 1’b0));
assign error7 = 1’b0;
assign error8 = ((pe_read_data == 1’b1) && (pe_can_read == 1’b0)); //producer

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
int_int_error <= 1’b0;

else if (CE_error == 1’b1)
int_int_error <= 1’b1;

else
int_int_error <= int_int_error;

end

//Debug
always @ (posedge clk) begin

if (rst == 1’b1)
prev_state <= ‘get_next_instr;

else
prev_state <= pres_state;

end

//Debug:
//Status info is ready when all the registers have been downloaded to the
//debug link fifo
assign status_rdy = (status_cntr == ‘num_regs-1) ? 1’b1 : 1’b0; //Debug

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prev_status_rdy <= 1’b0;

else
prev_status_rdy <= status_rdy;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
int_chk_status <= 1’b0;

else if (chk_status == 1’b1)
int_chk_status <= 1’b1;

else if (status_rdy == 1’b1)
int_chk_status <= 1’b0;

else
int_chk_status <= int_chk_status;

end

//Debug:
always @ (posedge clk) begin
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if (rst == 1’b1)
int_debug_link_write <= 1’b0;

else if ((pres_state == ‘status_chk) && (debug_link_full == 1’b0) &&
(status_rdy == 1’b0))
int_debug_link_write <= 1’b1;

else
int_debug_link_write <= 1’b0;

end

assign debug_link_write = int_debug_link_write; //Debug

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
status_cntr <= 4’h0;

else if ((prev_state == ‘status_chk) && (pres_state == ‘get_next_instr))
status_cntr <= 4’h0;

else if ((pres_state == ‘status_chk) && (int_debug_link_write == 1’b1))
status_cntr <= status_cntr + 1;

else
status_cntr <= status_cntr;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
err_type_reg <= 32’h00000000;

else if (int_int_error == 1’b0)
begin

err_type_reg[0] <= error0;
err_type_reg[1] <= error1;
err_type_reg[2] <= error2;
err_type_reg[3] <= error3;
err_type_reg[4] <= error4;
err_type_reg[5] <= error5;
err_type_reg[6] <= error6;
err_type_reg[7] <= error7;
err_type_reg[8] <= error8;
err_type_reg[9:30] <= 22’h000000;
err_type_reg[31] <= CE_error;

end
else if (int_debug_link_write == 1’b1)
err_type_reg <= ex_IR_bak;

else
err_type_reg <= err_type_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
ex_IR_bak <= 32’h00000000;

else if (((pres_state == ‘status_chk) || (pres_state == ‘execute_instr)) &&
(next_state == ‘get_next_instr))
ex_IR_bak <= 32’h00000000;

else if (debug_link_write == 1’b1)
ex_IR_bak <= imm_addr;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
ex_IR_bak <= ex_IR;

else
ex_IR_bak <= ex_IR_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
imm_addr <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
imm_addr <= 32’h00000000;
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else if (debug_link_write == 1’b1)
imm_addr <= a0_reg_bak;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01) &&
(opcode != ‘bypass))
imm_addr <= ex_IR;

else
imm_addr <= imm_addr;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
a0_reg_bak <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
a0_reg_bak <= a0_reg;

else if (int_debug_link_write == 1’b1)
a0_reg_bak <= data_cntr_bak;

else if (write_a0 == 1’b1)
a0_reg_bak <= a0_mux_output;

else
a0_reg_bak <= a0_reg_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
data_cntr_bak <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
data_cntr_bak <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
data_cntr_bak <= prog_IR_bak;

else if (pres_state == ‘decode_instr)
data_cntr_bak <= {8’h00,a0_operand};

else if (((mux_select_fifo_in == 2’b11) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)))
&& (fifo_write == 1’b1))
data_cntr_bak <= data_cntr_bak - 1;

else
data_cntr_bak <= data_cntr_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prog_IR_bak <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
prog_IR_bak <= rx_IR_bak;

else if (pres_state != ‘status_chk)
prog_IR_bak <= prog_IR;

else
prog_IR_bak <= prog_IR_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
rx_IR_bak <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
rx_IR_bak <= controller_status_reg;

else if (pres_state != ‘status_chk)
rx_IR_bak <= rx_IR;

else
rx_IR_bak <= rx_IR_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
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controller_status_reg <= 32’h00000000;
else if ((status_rdy == 1’b1) && (prev_status_rdy == 1’b0))
controller_status_reg <= 32’h00000000;

else if (debug_link_write == 1’b1)
controller_status_reg <= prog_PE_status_reg;

else if (((pres_state == ‘get_next_instr) || (pres_state == ‘decode_instr))
|| ((pres_state == ‘execute_instr) && (prev_state == ‘decode_instr)))
begin

controller_status_reg[0] <= ex_IR_cbit;
controller_status_reg[1] <= IR_req_W0;
controller_status_reg[2] <= IR_req_W1;
controller_status_reg[3] <= Addr_req_W;
controller_status_reg[4] <= data_req_W;
controller_status_reg[5] <= tx_bypass;
controller_status_reg[6] <= exec_prog;
//controller_status_reg[7] <= rx_addr_req;
//controller_status_reg[8] <= rx_data_req;
controller_status_reg[7] <= 1’b0;
controller_status_reg[8] <= 1’b0;
controller_status_reg[9] <= change_a0;
controller_status_reg[10:15] <= 6’h00;
controller_status_reg[16] <= ex_IR_cbit;
controller_status_reg[17] <= IR_req_W0;
controller_status_reg[18] <= IR_req_W1;
controller_status_reg[19] <= Addr_req_W;
controller_status_reg[20] <= data_req_W;
controller_status_reg[21] <= tx_bypass;
controller_status_reg[22] <= exec_prog;
//controller_status_reg[23] <= rx_addr_req;
//controller_status_reg[24] <= rx_data_req;
controller_status_reg[23] <= 1’b0;
controller_status_reg[24] <= 1’b0;
controller_status_reg[25] <= change_a0;
controller_status_reg[26:31] <= 6’h00;

end
else if (pres_state == ‘execute_instr)
begin

controller_status_reg[0:15] <= controller_status_reg[0:15];
controller_status_reg[16] <= ex_IR_cbit;
controller_status_reg[17] <= IR_req_W0;
controller_status_reg[18] <= IR_req_W1;
controller_status_reg[19] <= Addr_req_W;
controller_status_reg[20] <= data_req_W;
controller_status_reg[21] <= tx_bypass;
controller_status_reg[22] <= exec_prog;
//controller_status_reg[23] <= rx_addr_req;
//controller_status_reg[24] <= rx_data_req;
controller_status_reg[23] <= 1’b0;
controller_status_reg[24] <= 1’b0;
controller_status_reg[25] <= change_a0;
controller_status_reg[26:31] <= 6’h00;

end
else
controller_status_reg <= controller_status_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prog_PE_status_reg <= 32’h00000000;

else if ((status_rdy == 1’b1) && (prev_status_rdy == 1’b0))
prog_PE_status_reg <= 32’h00000000;

else if (debug_link_write == 1’b1)
prog_PE_status_reg <= exec_time_cntr;

else if ((pres_state == ‘get_next_instr) || (pres_state == ‘decode_instr) ||
((pres_state == ‘execute_instr) && (prev_state == ‘decode_instr)))
begin

prog_PE_status_reg[0] <= rx_IR_full;
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prog_PE_status_reg[1] <= prog_IR_full;
prog_PE_status_reg[2] <= rx_cbit;
prog_PE_status_reg[3] <= prog_cbit;
prog_PE_status_reg[4] <= valid_instr;
prog_PE_status_reg[5] <= cont_prog;
prog_PE_status_reg[6] <= pe_can_read;
//prog_PE_status_reg[7] <= pe_can_write_data;
//prog_PE_status_reg[8] <= pe_can_write_addr;
prog_PE_status_reg[7] <= 1’b0;
prog_PE_status_reg[8] <= 1’b0;
prog_PE_status_reg[9:10] <= pres_state;
prog_PE_status_reg[11:12] <= mux_select_fifo_in;
prog_PE_status_reg[13:15] <= 3’h0;
prog_PE_status_reg[16] <= rx_IR_full;
prog_PE_status_reg[17] <= prog_IR_full;
prog_PE_status_reg[18] <= rx_cbit;
prog_PE_status_reg[19] <= prog_cbit;
prog_PE_status_reg[20] <= valid_instr;
prog_PE_status_reg[21] <= cont_prog;
prog_PE_status_reg[22] <= pe_can_read;
//prog_PE_status_reg[23] <= pe_can_write_data;
//prog_PE_status_reg[24] <= pe_can_write_addr;
prog_PE_status_reg[23] <= 1’b0;
prog_PE_status_reg[24] <= 1’b0;
prog_PE_status_reg[25:26] <= pres_state;
prog_PE_status_reg[27:28] <= mux_select_fifo_in;
prog_PE_status_reg[29:31] <= 3’h0;

end
else if (pres_state == ‘execute_instr)
begin

prog_PE_status_reg[0:15] <= prog_PE_status_reg[0:15];
prog_PE_status_reg[16] <= rx_IR_full;
prog_PE_status_reg[17] <= prog_IR_full;
prog_PE_status_reg[18] <= rx_cbit;
prog_PE_status_reg[19] <= prog_cbit;
prog_PE_status_reg[20] <= valid_instr;
prog_PE_status_reg[21] <= cont_prog;
prog_PE_status_reg[22] <= pe_can_read;
//prog_PE_status_reg[23] <= pe_can_write_data;
//prog_PE_status_reg[24] <= pe_can_write_addr;
prog_PE_status_reg[23] <= 1’b0;
prog_PE_status_reg[24] <= 1’b0;
prog_PE_status_reg[25:26] <= pres_state;
prog_PE_status_reg[27:28] <= mux_select_fifo_in;
prog_PE_status_reg[29:31] <= 3’h0;

end
else
prog_PE_status_reg <= prog_PE_status_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
exec_time_cntr <= 32’h00000000;

else if (((status_rdy == 1’b1) && (prev_status_rdy == 1’b0)) ||
((pres_state == ‘get_next_instr) && (prev_state == ‘execute_instr))
|| (pres_state == ‘decode_instr))
exec_time_cntr <= 32’h00000000;

else if (debug_link_write == 1’b1)
exec_time_cntr <= 32’hdeaddead; //END OF PIPELINED DEBUG DATA

else if((pres_state == ‘execute_instr) && (pres_state == ‘get_next_instr))
exec_time_cntr <= exec_time_cntr + 1;

else
exec_time_cntr <= exec_time_cntr;

end

endmodule
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A.6 Full Execute Controller

//************************************************************************
// File: fsl_ce_for_cntr_pe.v
// Uses: cntr_pe.v and a SIMPPL Control Sequencer
// Description: Provides a SIMPPL interface to the four bit counter.
// Uses the SIMPPL Communication Protocol
//
// LLS April 2005
//************************************************************************
//

‘include "instr_defines.v"

module producer_controller (
// inputs
clk,
rst, // rst should be driven by FSL_Rst

//Master FSL Signals
FSL_M_Clk,
FSL_M_Write,
FSL_M_Data,
FSL_M_Control,
FSL_M_Full,

//Slave FSL Signals
FSL_S_Clk,
FSL_S_Read,
FSL_S_Data,
FSL_S_Control,
FSL_S_Exists,

//PE Interface:
pe_rst,
pe_data_out,
pe_read_data,
pe_can_read,

//Program Interface
prog_instr,
program_cbit,
prog_instr_read,
valid_instr,
cont_prog,
valid_data,
exec_rx_instr,

// outputs
led0, // for debug
led1 // for debug
);

input clk, rst;
output FSL_M_Clk, FSL_M_Write;
output [0:31] FSL_M_Data;
output FSL_M_Control;
input FSL_M_Full;
output FSL_S_Clk, FSL_S_Read;
input [0:31] FSL_S_Data;
input FSL_S_Control, FSL_S_Exists;
output led0, led1; // for debug

//PE Interface:
output pe_rst;
input [31:0] pe_data_out;
output pe_read_data;
input pe_can_read;
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//Program Interface:
input [0:31] prog_instr;
input program_cbit, valid_instr;
output prog_instr_read;
input cont_prog;
output valid_data, exec_rx_instr;

wire clk, rst;
wire FSL_M_Clk, FSL_M_Full;
wire FSL_M_Control;
wire FSL_M_Write;
wire [0:31] FSL_M_Data;

//Slave FSL wires:
wire FSL_S_Clk;
wire FSL_S_Read;
wire [0:31] FSL_S_Data;
wire FSL_S_Control;
wire FSL_S_Exists;

//PE Interface:
wire pe_rst;
wire [31:0] pe_data_out;
wire pe_read_data;
wire pe_can_read;

//Program interface and Instruction Register Read signals:
wire [0:31] prog_instr; //connects to the program instrucion input port
wire program_cbit; //connects to the program’s control bit
wire valid_instr; //Used to indicate that the instruction from the program is
//valid

wire cont_prog; //Used to override the receives higher priority
wire prog_instr_read; //reading from the port into the program IR

//Status bits:
//wire new_transaction; //status bit provided to the program for branching
wire valid_data; //status bit provided to the program for branching
wire exec_rx_instr; //status bit provided to be used in place of the
//"wait rx" instr

wire led0, led1; // for debug

//IR signals:
wire rx_IR_full;
wire [0:31] rx_IR;
wire rx_cbit; //receive control bit
wire prog_IR_full;
wire [0:31] prog_IR;
wire prog_cbit; //program control bit
reg exec_prog; //am I executing the program or an rx_IR**only valid when
//ex_IR_full is high

//Address registers:
reg [0:31] a0_reg; //Address register 0
reg [0:23] a0_operand; //latches the data portion of the instruction
reg write_a0;

//Mux control signals:
wire [0:31] a0_mux_output; //multiplexer output to the a0 reg
reg [0:31] fifo_mux_out; //output from multiplexer into buffering fifo

wire control_reset; //combines system reset and instruction reset
reg instr_reset; //generated via the reset instruction- clock period long

//Used to interface the ex_IR, A0 and data with the fifo:
reg [1:0] mux_select_fifo_in; //used to select
wire [0:7] ex_IR_fifo_in;
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reg [7:0] opcode; //Used to store the opcode for 2-part instructions

//Control registers:
reg change_a0; //Flag to indicate when instruction will alter the value of a0
reg IR_req_W0; // Indicates when the instruction writes to the fifo
reg IR_req_W1; // Indicates when the instruction writes an immed to the fifo
reg Addr_req_W; //Indicates when the address register needs to be written to
//the fifo

reg data_req_W; // Indicates that there is data to be written to the fifo
reg tx_bypass; // Used to alter the control bit transferred as part of a
// bypass instruction (from program or rx link).

reg [0:31] new_a0_total; //Output from Accumulator;
reg [23:0] data_cntr; // used to store the number of data words left to write

wire [0:31] ex_IR; //wire used as mux output from prog and rx IRs
wire ex_cbit_input; //wire used as mux output from prog and rx cbits
wire ex_instr_read; //reads an instruction into the ex_IR
wire reading_prog_IR; //reading the prog_IR clears it
wire reading_rx_IR; //reading the rx_IR clears it
wire sel_ex_IR_input; // selects the input to the ex_IR

reg [1:0] pres_state;
reg [1:0] next_state;

reg fifo_write; //write data to the Master FSL
wire fifo_full;

wire read_data; //read data from the pe to the Master FSL

//States for overall execution path state machine:
‘define get_next_instr 0
‘define decode_instr 1
‘define execute_instr 2

// for debug
assign led0 = exec_rx_instr ? 1’b0 : 1’b1;
assign led1 = valid_data ? 1’b0 : 1’b1;

//Slave signals:
assign FSL_S_Clk = clk;
//Used to Read the Slave fsl data:
assign FSL_S_Read = reading_rx_IR;
assign rx_IR = FSL_S_Data;
assign rx_cbit = FSL_S_Control;
assign rx_IR_full = FSL_S_Exists;

//Master signals:
assign FSL_M_Clk = clk;
assign FSL_M_Data = fifo_mux_out;
assign FSL_M_Control = (tx_bypass == 1’b1) ? ˜ex_cbit_input : ex_cbit_input;
//Used to Write the data from the counter to the FSL:
assign FSL_M_Write = fifo_write;
assign fifo_full = FSL_M_Full;

assign ex_IR_fifo_in[0:3] = 4’b0000;
assign ex_IR_fifo_in[4] = (opcode == ‘bypass) ? opcode[3] : 1’b0;
assign ex_IR_fifo_in[5] = opcode[2];
assign ex_IR_fifo_in[6:7] = (exec_prog == 1’b1) ? opcode[1:0] : ˜opcode[1:0];

assign pe_rst = control_reset;
assign pe_read_data = read_data;

//Status bits received from the PE and sent to the program via the controller:
assign valid_data = pe_can_read;

//Status bit 2:
assign exec_rx_instr = ((pres_state != ‘get_next_instr) && (exec_prog == 1’b0));
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//Used to Read an instruction into the Executing IR:
assign ex_instr_read = ((pres_state == ‘get_next_instr)
&& (control_reset == 1’b0)

&& (((rx_IR_full && ˜cont_prog )|| prog_IR_full)));

//Used to mux the outputs from the two different IRs such that the rx_IR
//takes precedence when the cont_prog flag is low:
assign sel_ex_IR_input = (pres_state == ‘get_next_instr) ?
((rx_IR_full==1’b1) && (cont_prog==1’b0)) : ˜exec_prog;
assign ex_IR = sel_ex_IR_input ? rx_IR : prog_IR ;
assign ex_cbit_input = (mux_select_fifo_in == 2’b00) ? IR_req_W0 : 1’b0;

assign prog_IR = prog_instr;
assign prog_cbit = program_cbit;
assign prog_IR_full = valid_instr;

// Reads the prog_IR into the ex_IR depending on the mux select:
assign reading_prog_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b0) && (prog_IR_full == 1’b1));

//Used to Read the Program Instructions:
assign prog_instr_read = reading_prog_IR;

// Reads the rx_IR into the ex_IR depending on the mux select:
assign reading_rx_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b1) && (rx_IR_full == 1’b1));

//Used to multiplex an immediate or incremented/decremented value to a0
assign a0_mux_output = ((opcode[0] == 1’b1) && (opcode[2] == 1’b0)) ?
ex_IR : new_a0_total;

//Generates the overall controller reset signal:
assign control_reset = rst || instr_reset;

//Used to generate the controller’s reset signal from the reset instruction:
always @ (posedge clk) begin // or posedge rst) begin

if (rst == 1’b1)
instr_reset <= 1’b0;

else if ((pres_state == ‘execute_instr) && (opcode == 8’h00) &&
(exec_prog == 1’b0))

instr_reset <= 1’b1;
else

instr_reset <= 1’b0;
end

//Used to add/subtract the a0 operand to the address register
always @ (opcode or a0_reg or a0_operand) begin

if (opcode[4] == 1’b1)
new_a0_total = a0_reg + a0_operand;

else
new_a0_total = a0_reg - a0_operand;

end

//The address register
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_reg <= 32’h00000000;

else if (write_a0 == 1’b1)
a0_reg <= a0_mux_output;

else
a0_reg <= a0_reg;

end
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//Used to store the initial NDW value
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_operand <= 32’h00000000;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
a0_operand <= ex_IR[0:23];

else
a0_operand <= a0_operand;

end

//Used to write the new value to the address register
always @ (control_reset or change_a0 or Addr_req_W) begin

if (control_reset == 1’b1)
write_a0 = 1’b0;

else if ( (change_a0 == 1’b1) &&
(Addr_req_W == 1’b0) )

write_a0 = 1’b1;
else

write_a0 = 1’b0;
end

//Used to indicate that the value of the address register will change
always @ (posedge clk) begin

if (control_reset == 1’b1)
change_a0 <= 1’b0;

else if (write_a0 == 1’b1)
change_a0 <= 1’b0;

else if ((pres_state == ‘decode_instr) && ((opcode[3:0] == 4’b1000) ||
//autoincrement instructions
((opcode[4:2] == 3’b111) && ((opcode[1]==1’b1) || (opcode[0]==1’b1)))
//write to the Adress register
|| (opcode[4:0] == 5’b01011)))

change_a0 <= 1’b1;
else

change_a0 <= change_a0;
end

//Used to indicate when to negate the control bit when executing a
//bypass instruction
always @ (posedge clk) begin

if (control_reset == 1’b1)
tx_bypass <= 1’b0;

else if((((exec_prog == 1’b0) && (pres_state == ‘decode_instr)) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b0) &&
(pres_state == ‘execute_instr))) && (opcode == ‘bypass))
tx_bypass <= 1’b1;

else if (((exec_prog == 1’b0) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b1)
&& (pres_state == ‘execute_instr) && (opcode != ‘bypass)))
&& (fifo_write == 1’b1))
tx_bypass <= 1’b0;

else
tx_bypass <= tx_bypass;

end

//Used to indicate when to write an instruction from the receive link
//or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W0 <= 1’b0;

//Set IR_req_W0 when you are in the decode stage and the instruction should
//be sent (examples of NOT sent instructions include: write_a0,
//add_a0, sub_a0

else if ((pres_state == ‘decode_instr) && (((exec_prog == 1’b1) &&
((opcode[3:0] != 4’b1000) && (opcode[3:0] != 4’b1011)))
|| (opcode[1:0] == 2’b10)))
IR_req_W0 <= 1’b1;
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else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b00))
IR_req_W0 <= 1’b0;

else
IR_req_W0 <= IR_req_W0;

end

// Used to indicate when to write immediate values from the receive
// link or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W1 <= 1’b0;

else if ((pres_state == ‘decode_instr) && ((opcode[2] == 1’b1) &&
(((exec_prog == 1’b1) && ((opcode[0] == 1’b1) || (opcode[1]==1’b1))
&& (opcode[3] == 1’b0)) //Not an Areg operation
|| ((exec_prog == 1’b0) && ((opcode == ‘bypass) ||
(opcode[1:0] == 2’b10))))))
IR_req_W1 <= 1’b1;

else if (((opcode != ‘bypass) ||
((opcode == ‘bypass) && (data_cntr == 24’h000001))) &&
(fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
IR_req_W1 <= 1’b0;

else
IR_req_W1 <= IR_req_W1;

end

//Controls the request to write an address register to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
Addr_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) && (opcode[3:2] == 2’b11) &&
(opcode[1:0] != 2’b00))
Addr_req_W <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b10))
Addr_req_W <= 1’b0;

else
Addr_req_W <= Addr_req_W;

end

//Controls the request to write data to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) &&
(((exec_prog == 1’b1) && (opcode[0] == 1’b1)) ||

((exec_prog == 1’b0) && (opcode[1:0] == 2’b10))) &&
(opcode[3:2] != 2’b10))

data_req_W <= 1’b1;
else if ((data_cntr == 24’h000001) && (fifo_write == 1’b1)
//needed for when only 1 data word is sent

&& (mux_select_fifo_in == 2’b11))
data_req_W <= 1’b0;

else
data_req_W <= data_req_W;

end

//Loads the number of data values into the counter
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_cntr <= 24’h000000;

else if ((pres_state == ‘decode_instr) &&
(((exec_prog == 1’b1) && (opcode[0] == 1’b1)) ||

((exec_prog == 1’b0) && ((opcode[1:0] == 2’b10) ||
(opcode == ‘bypass)))) && (opcode[3:2] != 2’b10))

data_cntr <= a0_operand;
else if (((mux_select_fifo_in == 2’b11) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)))
&& (fifo_write == 1’b1))
data_cntr <= data_cntr - 1;
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else
data_cntr <= data_cntr;

end

// Generate the select signal to the mux feeding the internal buffer:
always @ (pres_state or IR_req_W0 or IR_req_W1 or Addr_req_W) begin
if ((pres_state == ‘execute_instr) && (IR_req_W0 == 1’b1))

mux_select_fifo_in = 2’b00;
else if ((pres_state == ‘execute_instr) && (IR_req_W1 == 1’b1))

mux_select_fifo_in = 2’b01;
else if ((pres_state == ‘execute_instr) && (Addr_req_W == 1’b1))

mux_select_fifo_in = 2’b10;
else

mux_select_fifo_in = 2’b11;
end

// Used to update opcode with the next instruction to be executed:
always @ (posedge clk) begin

if (control_reset == 1’b1)
opcode <= 8’b0;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
opcode <= ex_IR[24:31];

else
opcode <= opcode;

end
// Used to update ex_IR with the next instruction to be executed:
always @ (posedge clk) begin

if (control_reset == 1’b1)
exec_prog <= 1’b1;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b1))
exec_prog <= 1’b0;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b0))
exec_prog <= 1’b1;

else
exec_prog <= exec_prog;

end

// Mux the input into the internal buffer:
always @ (mux_select_fifo_in or ex_IR or ex_IR_fifo_in or a0_reg or a0_operand

or pe_data_out) begin
case (mux_select_fifo_in)
2’b00:

fifo_mux_out = {a0_operand,ex_IR_fifo_in};
2’b01:

fifo_mux_out = ex_IR;
2’b10:

fifo_mux_out = a0_reg;
2’b11:

//fifo_mux_out = cntr_pe_data;
fifo_mux_out = pe_data_out;

endcase
end

always @ (posedge clk) begin // or posedge control_reset) begin
if (control_reset == 1’b1)
pres_state <= ‘get_next_instr;

else
pres_state <= next_state;

end

// Determine next state
always @ (pres_state or ex_instr_read or IR_req_W0 or IR_req_W1 or Addr_req_W

or change_a0 or data_req_W) begin
case (pres_state)
‘get_next_instr:

begin
if ((ex_instr_read == 1’b1))

next_state = ‘decode_instr;
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else
next_state = ‘get_next_instr;

end
‘decode_instr:

next_state = ‘execute_instr;
‘execute_instr:

begin
//Continue executing until the instruction/address has been
//completed- that data can be written on its own.

if ((IR_req_W0 == 1’b1) || (IR_req_W1 == 1’b1) ||
(Addr_req_W == 1’b1) || (change_a0 == 1’b1) ||
(data_req_W == 1’b1)) //||

next_state = ‘execute_instr;
else

next_state = ‘get_next_instr;
end

endcase
end

always @ (mux_select_fifo_in or IR_req_W0 or IR_req_W1 or Addr_req_W or
data_req_W or fifo_full or valid_data )begin

case(mux_select_fifo_in)
2’b00:

begin
if ((IR_req_W0 == 1’b1) && (fifo_full == 1’b0) &&

//Instr does not tx data
((data_req_W == 1’b0) ||

//Instr does tx data- wait for data to be available before
//sending instruction
((data_req_W == 1’b1) && (valid_data == 1’b1))))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b01:
begin

if ((IR_req_W1 == 1’b1) && (fifo_full == 1’b0))
fifo_write = 1’b1;

else
fifo_write = 1’b0;

end
2’b10:

begin
if ((Addr_req_W == 1’b1) && (fifo_full == 1’b0))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b11:
begin

if ((data_req_W == 1’b1) && (fifo_full == 1’b0) &&
(valid_data == 1’b1))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

endcase
end

assign read_data = ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b11));

endmodule
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A.7 Full Debug Controller

//************************************************************************
// File: fsl_ce_for_cntr_pe.v
// Uses: cntr_pe.v and a SIMPPL Control Sequencer
// Description: Provides a SIMPPL interface to the four bit counter.
// Uses the SIMPPL Communication Protocol
//
// LLS April 2005
//************************************************************************
//

‘include "instr_defines.v"

module producer_controller (
// inputs
clk,
rst, // rst should be driven by FSL_Rst

//Master FSL Signals
FSL_M_Clk,
FSL_M_Write,
FSL_M_Data,
FSL_M_Control,
FSL_M_Full,

//Slave FSL Signals
FSL_S_Clk,
FSL_S_Read,
FSL_S_Data,
FSL_S_Control,
FSL_S_Exists,

//PE Interface:
pe_rst,
pe_data_out,
pe_read_data,
pe_can_read,

//Program Interface
prog_instr,
program_cbit,
prog_instr_read,
valid_instr,
cont_prog,
valid_data,
exec_rx_instr,

//Debugging ports:
//Debugging download link
debug_link_clk,
debug_link_write,
debug_link_data,
debug_link_control,
debug_link_full,

//Debug Control Signals
int_error,
chk_status,
status_rdy,
cont_execution,

// outputs
led0, // for debug
led1 // for debug
);

input clk, rst;
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output FSL_M_Clk, FSL_M_Write;
output [0:31] FSL_M_Data;
output FSL_M_Control;
input FSL_M_Full;
output FSL_S_Clk, FSL_S_Read;
input [0:31] FSL_S_Data;
input FSL_S_Control, FSL_S_Exists;
output led0, led1; // for debug

//Debugging ports:
//Debugging download link
output debug_link_clk;
output debug_link_write;
output [0:31] debug_link_data;
output debug_link_control;
input debug_link_full;
//Debugging handshake signals
output int_error;
input chk_status;
output status_rdy;
input cont_execution;

//PE Interface:
output pe_rst;
input [31:0] pe_data_out;
output pe_read_data;
input pe_can_read;

//Program Interface:
input [0:31] prog_instr;
input program_cbit, valid_instr;
output prog_instr_read;
input cont_prog;
output valid_data, exec_rx_instr;

//Program interface and Instruction Register Read signals:
wire [0:31] prog_instr; //connects to the program instrucion input port
wire program_cbit; //connects to the program’s control bit
wire valid_instr; //Used to indicate that the instruction from the program is
//valid

wire cont_prog; //Used to override the receives higher priority
wire prog_instr_read; //reading from the port into the program IR

//Status bits:
wire valid_data; //status bit provided to the program for branching
wire exec_rx_instr; //status bit provided to be used in place of the
//"wait rx" instr

wire led0, led1; // for debug

//For Debugging ****
reg [3:0] status_cntr;
reg int_debug_link_write;
reg prev_status_rdy;
reg int_chk_status;
reg int_int_error;
wire CE_error;
wire error0, error1, error2, error3, error4, error5, error6, error7, error8;

//Debug ****
reg [0:31] a0_reg_bak, imm_addr, controller_status_reg, prog_PE_status_reg;
reg [0:31] ex_IR_bak, data_cntr_bak, prog_IR_bak, rx_IR_bak;
reg[0:31] err_type_reg, exec_time_cntr;

//IR signals:
wire rx_IR_full;
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wire [0:31] rx_IR;
wire rx_cbit; //receive control bit
wire prog_IR_full;
wire [0:31] prog_IR;
wire prog_cbit; //program control bit
reg exec_prog; //am I executing the program or an rx_IR**only valid when
//ex_IR_full is high

//Address registers:
reg [0:31] a0_reg; //Address register 0
reg [0:23] a0_operand; //latches the data portion of the instruction
reg write_a0;

//Mux control signals:
wire [0:31] a0_mux_output; //multiplexer output to the a0 reg
reg [0:31] fifo_mux_out; //output from multiplexer into buffering fifo

wire control_reset; //combines system reset and instruction reset
reg instr_reset; //generated via the reset instruction- clock period long

//Used to interface the ex_IR, A0 and data with the fifo:
reg [1:0] mux_select_fifo_in; //used to select
wire [0:7] ex_IR_fifo_in;
reg [7:0] opcode; //Used to store the opcode for 2-part instructions

//Control registers:
reg change_a0; //Flag to indicate when instruction will alter the value of a0
reg IR_req_W0; // Indicates when the instruction writes to the fifo
reg IR_req_W1; // Indicates when the instruction writes an immed to the fifo
reg Addr_req_W; //Indicates when the address register needs to be written to
//the fifo

reg data_req_W; // Indicates that there is data to be written to the fifo
reg tx_bypass; // Used to alter the control bit transferred as part of a
// bypass instruction (from program or rx link).

reg [0:31] new_a0_total; //Output from Accumulator;
reg [23:0] data_cntr; // used to store the number of data words left to write

wire [0:31] ex_IR; //wire used as mux output from prog and rx IRs
wire [0:31] ex_IR_cbit; //wire used as mux output from

//prog and rx IR’s cbits
wire ex_cbit_input; //wire used as mux output from prog and rx cbits
wire ex_instr_read; //reads an instruction into the ex_IR
wire reading_prog_IR; //reading the prog_IR clears it
wire reading_rx_IR; //reading the rx_IR clears it
wire sel_ex_IR_input; // selects the input to the ex_IR

reg [1:0] prev_state; //Debug
reg [1:0] pres_state;
reg [1:0] next_state;

reg fifo_write; //write data to the Master FSL
wire fifo_full;

wire read_data; //read data from the pe to the Master FSL

//States for overall execution path state machine:
‘define get_next_instr 0
‘define decode_instr 1
‘define execute_instr 2
‘define status_chk 3 //Debug

//Debug: ****
‘define num_regs 9 //Debug
‘define bit 31-27 //The subtracted number represents the power of two bit

// for debug
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assign led0 = exec_rx_instr ? 1’b0 : 1’b1;
assign led1 = valid_data ? 1’b0 : 1’b1;

//Slave signals:
assign FSL_S_Clk = clk;
//Used to Read the Slave fsl data:
assign FSL_S_Read = reading_rx_IR;
assign rx_IR = FSL_S_Data;
assign rx_cbit = FSL_S_Control;
assign rx_IR_full = FSL_S_Exists;

//Master signals:
assign FSL_M_Clk = clk;
assign FSL_M_Data = fifo_mux_out;
assign FSL_M_Control = (tx_bypass == 1’b1) ? ˜ex_cbit_input : ex_cbit_input;
//Used to Write the data from the counter to the FSL:
assign FSL_M_Write = fifo_write;
assign fifo_full = FSL_M_Full;

assign ex_IR_fifo_in[0:3] = 4’b0000;
assign ex_IR_fifo_in[4] = (opcode == ‘bypass) ? opcode[3] : 1’b0;
assign ex_IR_fifo_in[5] = opcode[2];
assign ex_IR_fifo_in[6:7] = (exec_prog == 1’b1) ? opcode[1:0] : ˜opcode[1:0];

assign pe_rst = control_reset;
assign pe_read_data = read_data;

//Status bits received from the PE and sent to the program via the controller:
assign valid_data = pe_can_read;

//Status bit 2:
assign exec_rx_instr = ((pres_state != ‘get_next_instr) && (exec_prog == 1’b0));

//Used to Read an instruction into the Executing IR:
assign ex_instr_read = ((pres_state == ‘get_next_instr)
&& (control_reset == 1’b0)

&& (((rx_IR_full && ˜cont_prog )|| prog_IR_full)));

//Used to mux the outputs from the two different IRs such that the rx_IR
//takes precedence when the cont_prog flag is low:
assign sel_ex_IR_input = (pres_state == ‘get_next_instr) ?
((rx_IR_full==1’b1) && (cont_prog==1’b0)) : ˜exec_prog;
assign ex_IR = sel_ex_IR_input ? rx_IR : prog_IR ;
assign ex_IR_cbit = sel_ex_IR_input ? rx_cbit : prog_cbit ; //Debug
assign ex_cbit_input = (mux_select_fifo_in == 2’b00) ? IR_req_W0 : 1’b0;

assign prog_IR = prog_instr;
assign prog_cbit = program_cbit;
assign prog_IR_full = valid_instr;

// Reads the prog_IR into the ex_IR depending on the mux select:
assign reading_prog_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b0) && (prog_IR_full == 1’b1));

//Used to Read the Program Instructions:
assign prog_instr_read = reading_prog_IR;

// Reads the rx_IR into the ex_IR depending on the mux select:
assign reading_rx_IR = (((ex_instr_read == 1’b1) ||
((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
|| ((write_a0 == 1’b1) && (opcode[0] == 1’b1) &&
(opcode[2] == 1’b0)))
&& (sel_ex_IR_input == 1’b1) && (rx_IR_full == 1’b1));

//Used to multiplex an immediate or incremented/decremented value to a0
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assign a0_mux_output = ((opcode[0] == 1’b1) && (opcode[2] == 1’b0)) ?
ex_IR : new_a0_total;

//Generates the overall controller reset signal:
assign control_reset = rst || instr_reset;

//Used to generate the controller’s reset signal from the reset instruction:
always @ (posedge clk) begin

if (rst == 1’b1)
instr_reset <= 1’b0;

else if ((pres_state == ‘execute_instr) && (opcode == 8’h00) &&
(exec_prog == 1’b0))

instr_reset <= 1’b1;
else

instr_reset <= 1’b0;
end

//Used to add/subtract the a0 operand to the address register
always @ (opcode or a0_reg or a0_operand) begin

if (opcode[4] == 1’b1)
new_a0_total = a0_reg + a0_operand;

else
new_a0_total = a0_reg - a0_operand;

end

//The address register
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_reg <= 32’h00000000;

else if (write_a0 == 1’b1)
a0_reg <= a0_mux_output;

else
a0_reg <= a0_reg;

end

//Used to store the initial NDW value
always @ (posedge clk) begin

if (control_reset == 1’b1)
a0_operand <= 32’h00000000;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
a0_operand <= ex_IR[0:23];

else
a0_operand <= a0_operand;

end

//Used to write the new value to the address register
always @ (control_reset or change_a0 or Addr_req_W) begin

if (control_reset == 1’b1)
write_a0 = 1’b0;

else if ( (change_a0 == 1’b1) &&
(Addr_req_W == 1’b0) )

write_a0 = 1’b1;
else

write_a0 = 1’b0;
end

//Used to indicate that the value of the address register will change
always @ (posedge clk) begin

if (control_reset == 1’b1)
change_a0 <= 1’b0;

else if (write_a0 == 1’b1)
change_a0 <= 1’b0;

else if ((pres_state == ‘decode_instr) && ((opcode[3:0] == 4’b1000) ||
//autoincrement instructions
((opcode[4:2] == 3’b111) && ((opcode[1]==1’b1) || (opcode[0]==1’b1)))
//write to the Adress register
|| (opcode[4:0] == 5’b01011)))

change_a0 <= 1’b1;
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else
change_a0 <= change_a0;

end

//Used to indicate when to negate the control bit when executing a
//bypass instruction
always @ (posedge clk) begin

if (control_reset == 1’b1)
tx_bypass <= 1’b0;

else if((((exec_prog == 1’b0) && (pres_state == ‘decode_instr)) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b0) &&
(pres_state == ‘execute_instr))) && (opcode == ‘bypass))
tx_bypass <= 1’b1;

else if (((exec_prog == 1’b0) ||
((exec_prog == 1’b1) && (IR_req_W0 == 1’b1)
&& (pres_state == ‘execute_instr) && (opcode != ‘bypass)))
&& (fifo_write == 1’b1))
tx_bypass <= 1’b0;

else
tx_bypass <= tx_bypass;

end

//Used to indicate when to write an instruction from the receive link
//or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W0 <= 1’b0;

//Set IR_req_W0 when you are in the decode stage and the instruction should
//be sent (examples of NOT sent instructions include: write_a0,
//add_a0, sub_a0

else if ((pres_state == ‘decode_instr) && (((exec_prog == 1’b1) &&
((opcode[3:0] != 4’b1000) && (opcode[3:0] != 4’b1011)))
|| (opcode[1:0] == 2’b10)))
IR_req_W0 <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b00))
IR_req_W0 <= 1’b0;

else
IR_req_W0 <= IR_req_W0;

end

// Used to indicate when to write immediate values from the receive
// link or program
always @ (posedge clk) begin

if (control_reset == 1’b1)
IR_req_W1 <= 1’b0;

else if ((pres_state == ‘decode_instr) && ((opcode[2] == 1’b1) &&
(((exec_prog == 1’b1) && ((opcode[0] == 1’b1) || (opcode[1]==1’b1))
&& (opcode[3] == 1’b0)) //Not an Areg operation
|| ((exec_prog == 1’b0) && ((opcode == ‘bypass) ||
(opcode[1:0] == 2’b10))))))
IR_req_W1 <= 1’b1;

else if (((opcode != ‘bypass) ||
((opcode == ‘bypass) && (data_cntr == 24’h000001))) &&
(fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01))
IR_req_W1 <= 1’b0;

else
IR_req_W1 <= IR_req_W1;

end

//Controls the request to write an address register to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
Addr_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) && (opcode[3:2] == 2’b11) &&
(opcode[1:0] != 2’b00))
Addr_req_W <= 1’b1;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b10))
Addr_req_W <= 1’b0;
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else
Addr_req_W <= Addr_req_W;

end

//Controls the request to write data to the fifo
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_req_W <= 1’b0;

else if ((pres_state == ‘decode_instr) &&
(((exec_prog == 1’b1) && (opcode[0] == 1’b1)) ||

((exec_prog == 1’b0) && (opcode[1:0] == 2’b10))) &&
(opcode[3:2] != 2’b10))

data_req_W <= 1’b1;
else if ((data_cntr == 24’h000001) && (fifo_write == 1’b1)
//needed for when only 1 data word is sent

&& (mux_select_fifo_in == 2’b11))
data_req_W <= 1’b0;

else
data_req_W <= data_req_W;

end

//Loads the number of data values into the counter
always @ (posedge clk) begin

if (control_reset == 1’b1)
data_cntr <= 24’h000000;

else if ((pres_state == ‘decode_instr) &&
(((exec_prog == 1’b1) && (opcode[0] == 1’b1)) ||

((exec_prog == 1’b0) && ((opcode[1:0] == 2’b10) ||
(opcode == ‘bypass)))) && (opcode[3:2] != 2’b10))

data_cntr <= a0_operand;
else if (((mux_select_fifo_in == 2’b11) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)))
&& (fifo_write == 1’b1))
data_cntr <= data_cntr - 1;

else
data_cntr <= data_cntr;

end

// Generate the select signal to the mux feeding the internal buffer:
always @ (pres_state or IR_req_W0 or IR_req_W1 or Addr_req_W) begin
if ((pres_state == ‘execute_instr) && (IR_req_W0 == 1’b1))

mux_select_fifo_in = 2’b00;
else if ((pres_state == ‘execute_instr) && (IR_req_W1 == 1’b1))

mux_select_fifo_in = 2’b01;
else if ((pres_state == ‘execute_instr) && (Addr_req_W == 1’b1))

mux_select_fifo_in = 2’b10;
else

mux_select_fifo_in = 2’b11;
end

// Used to update opcode with the next instruction to be executed:
always @ (posedge clk) begin

if (control_reset == 1’b1)
opcode <= 8’b0;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
opcode <= ex_IR[24:31];

else
opcode <= opcode;

end

// Used to update ex_IR with the next instruction to be executed:
always @ (posedge clk) begin // or posedge control_reset) begin

if (control_reset == 1’b1)
exec_prog <= 1’b1;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b1))
exec_prog <= 1’b0;

else if ((ex_instr_read == 1’b1) && (sel_ex_IR_input == 1’b0))
exec_prog <= 1’b1;
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else
exec_prog <= exec_prog;

end

// Mux the input into the internal buffer:
always @ (mux_select_fifo_in or ex_IR or ex_IR_fifo_in or a0_reg or a0_operand

or pe_data_out) begin
case (mux_select_fifo_in)
2’b00:

fifo_mux_out = {a0_operand,ex_IR_fifo_in};
2’b01:

fifo_mux_out = ex_IR;
2’b10:

fifo_mux_out = a0_reg;
2’b11:

fifo_mux_out = pe_data_out;
endcase

end

always @ (posedge clk) begin
if (control_reset == 1’b1)
pres_state <= ‘get_next_instr;

else
pres_state <= next_state;

end

// Determine next state
always @ (pres_state or ex_instr_read or IR_req_W0 or IR_req_W1 or Addr_req_W

or change_a0 or data_req_W or error0 or error1 or error2 or error3 or
error4 or error5 or error6 or error7 or error8 or int_int_error or
int_chk_status or status_cntr or cont_execution) begin

case (pres_state)
‘get_next_instr:

begin
if ((error1 == 1’b1) || (error3 == 1’b1) || (error5 == 1’b1)) //Debug
next_state = ‘status_chk; //Debug

else if ((ex_instr_read == 1’b1))
next_state = ‘decode_instr;

else
next_state = ‘get_next_instr;

end
‘decode_instr:

if ((error0 == 1’b1) || (error5 == 1’b1)) //Debug
next_state = ‘status_chk; //Debug

else
next_state = ‘execute_instr;

‘execute_instr:
begin

if ((error0 == 1’b1) || (error2 == 1’b1) || (error4 == 1’b1) || //Debug
(error5 == 1’b1) || (error6 == 1’b1) || (error7 == 1’b1) || //Debug
(error8 == 1’b1)) //Debug

next_state = ‘status_chk; //Debug
else if ((int_int_error == 1’b1) || ((int_chk_status == 1’b1) && //Debug

((IR_req_W0 == 1’b0) && (IR_req_W1 == 1’b0) && //Debug
(Addr_req_W == 1’b0) && (change_a0 == 1’b0) && //Debug
(data_req_W == 1’b0)))) //Debug

next_state = ‘status_chk; //Debug
//Continue executing until the instruction/address has been
//completed- that data can be written on its own.

else if ((IR_req_W0 == 1’b1) || (IR_req_W1 == 1’b1) ||
(Addr_req_W == 1’b1) || (change_a0 == 1’b1) ||
(data_req_W == 1’b1))

next_state = ‘execute_instr;
else

next_state = ‘get_next_instr;
end

‘status_chk: //Debug ****
begin
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//if ((((status_cntr == ‘num_regs-2) && (int_debug_link_write == 1’b1))
// || (status_cntr == ‘num_regs-1))
if ((status_cntr == ‘num_regs-1) &&
(cont_execution == 1’b1) && (int_int_error == 1’b0)) //Debug
next_state = ‘get_next_instr;
else
next_state = ‘status_chk;

end
endcase

end

always @ (mux_select_fifo_in or IR_req_W0 or IR_req_W1 or Addr_req_W or
data_req_W or fifo_full or valid_data )begin

case(mux_select_fifo_in)
2’b00:

begin
if ((IR_req_W0 == 1’b1) && (fifo_full == 1’b0) &&

//Instr does not tx data
((data_req_W == 1’b0) ||

//Instr does tx data- wait for data to be available before
//sending instruction
((data_req_W == 1’b1) && (valid_data == 1’b1))))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b01:
begin

if ((IR_req_W1 == 1’b1) && (fifo_full == 1’b0))
fifo_write = 1’b1;

else
fifo_write = 1’b0;

end
2’b10:

begin
if ((Addr_req_W == 1’b1) && (fifo_full == 1’b0))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

2’b11:
begin

if ((data_req_W == 1’b1) && (fifo_full == 1’b0) &&
(valid_data == 1’b1))

fifo_write = 1’b1;
else

fifo_write = 1’b0;
end

endcase
end

assign read_data = ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b11));

//Debug register download order:
//0)int_debug_link_data <= err_type_reg;
//1)int_debug_link_data <= ex_IR_bak;
//2)int_debug_link_data <= imm_addr;
//3)int_debug_link_data <= a0_reg_bak;
//4)int_debug_link_data <= data_cntr_bak;
//5)int_debug_link_data <= prog_IR_bak;
//6)int_debug_link_data <= rx_IR_bak;
//7)int_debug_link_data <= controller_status_reg;
//8)int_debug_link_data <= prog_PE_status_reg;
//8)int_debug_link_data <= exec_time_cntr;

assign debug_link_clk = clk; //Debug
assign debug_link_data = err_type_reg; //Debug
assign debug_link_control = 1’b0; //Debug
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assign int_error = int_int_error; //Debug
assign CE_error = (error0 || error1 || error2 || error3 || error4 || error5 ||
error6 || error7 || error8);

//Debug Errors:
assign error0 = ((((prog_cbit == 1’b1) && (reading_prog_IR == 1’b1)) ||
((rx_cbit == 1’b1) && (reading_rx_IR == 1’b1))) &&
(pres_state != ‘get_next_instr));

assign error1 = ((pres_state == ‘get_next_instr) &&
(((rx_IR_full == 1’b1) && (rx_cbit == 1’b0)) ||
((prog_IR_full == 1’b1) && (prog_cbit == 1’b0))));
assign error2 = ((pres_state == ‘execute_instr) &&
(exec_time_cntr[‘bit] == 1’b1));
assign error3 = ((pres_state == ‘get_next_instr) &&
(exec_time_cntr[‘bit] == 1’b1));
assign error4 = ((FSL_M_Write == 1’b1) && (FSL_M_Full == 1’b1));
assign error5 = ((FSL_S_Read == 1’b1) && (FSL_S_Exists == 1’b0));
//assign error6 = ((pe_write_data == 1’b1) && (pe_can_write_data == 1’b0));
assign error6 = 1’b0;
//assign error7 = ((pe_write_addr == 1’b1) && (pe_can_write_addr == 1’b0));
assign error7 = 1’b0;
assign error8 = ((pe_read_data == 1’b1) && (pe_can_read == 1’b0)); //producer

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
int_int_error <= 1’b0;

else if (CE_error == 1’b1)
int_int_error <= 1’b1;

else
int_int_error <= int_int_error;

end

//Debug
always @ (posedge clk) begin

if (rst == 1’b1)
prev_state <= ‘get_next_instr;

else
prev_state <= pres_state;

end

//Debug:
//Status info is ready when all the registers have been downloaded to the
//debug link fifo
assign status_rdy = (status_cntr == ‘num_regs-1) ? 1’b1 : 1’b0; //Debug

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prev_status_rdy <= 1’b0;

else
prev_status_rdy <= status_rdy;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
int_chk_status <= 1’b0;

else if (chk_status == 1’b1)
int_chk_status <= 1’b1;

else if (status_rdy == 1’b1)
int_chk_status <= 1’b0;

else
int_chk_status <= int_chk_status;

end

//Debug:
always @ (posedge clk) begin
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if (rst == 1’b1)
int_debug_link_write <= 1’b0;

else if ((pres_state == ‘status_chk) && (debug_link_full == 1’b0) &&
(status_rdy == 1’b0))
int_debug_link_write <= 1’b1;

else
int_debug_link_write <= 1’b0;

end

assign debug_link_write = int_debug_link_write; //Debug

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
status_cntr <= 4’h0;

else if ((prev_state == ‘status_chk) && (pres_state == ‘get_next_instr))
status_cntr <= 4’h0;

else if ((pres_state == ‘status_chk) && (int_debug_link_write == 1’b1))
status_cntr <= status_cntr + 1;

else
status_cntr <= status_cntr;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
err_type_reg <= 32’h00000000;

else if (int_int_error == 1’b0)
begin

err_type_reg[0] <= error0;
err_type_reg[1] <= error1;
err_type_reg[2] <= error2;
err_type_reg[3] <= error3;
err_type_reg[4] <= error4;
err_type_reg[5] <= error5;
err_type_reg[6] <= error6;
err_type_reg[7] <= error7;
err_type_reg[8] <= error8;
err_type_reg[9:30] <= 22’h000000;
err_type_reg[31] <= CE_error;

end
else if (int_debug_link_write == 1’b1)
err_type_reg <= ex_IR_bak;

else
err_type_reg <= err_type_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
ex_IR_bak <= 32’h00000000;

else if (((pres_state == ‘status_chk) || (pres_state == ‘execute_instr)) &&
(next_state == ‘get_next_instr))
ex_IR_bak <= 32’h00000000;

else if (debug_link_write == 1’b1)
ex_IR_bak <= imm_addr;

else if ((ex_instr_read == 1’b1) && (pres_state == ‘get_next_instr))
ex_IR_bak <= ex_IR;

else
ex_IR_bak <= ex_IR_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
imm_addr <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
imm_addr <= 32’h00000000;
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else if (debug_link_write == 1’b1)
imm_addr <= a0_reg_bak;

else if ((fifo_write == 1’b1) && (mux_select_fifo_in == 2’b01) &&
(opcode != ‘bypass))
imm_addr <= ex_IR;

else
imm_addr <= imm_addr;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
a0_reg_bak <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
a0_reg_bak <= a0_reg;

else if (int_debug_link_write == 1’b1)
a0_reg_bak <= data_cntr_bak;

else if (write_a0 == 1’b1)
a0_reg_bak <= a0_mux_output;

else
a0_reg_bak <= a0_reg_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
data_cntr_bak <= 32’h00000000;

else if (pres_state == ‘get_next_instr)
data_cntr_bak <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
data_cntr_bak <= prog_IR_bak;

else if (pres_state == ‘decode_instr)
data_cntr_bak <= {8’h00,a0_operand};

else if (((mux_select_fifo_in == 2’b11) ||
((opcode == ‘bypass) && (mux_select_fifo_in == 2’b01)))
&& (fifo_write == 1’b1))
data_cntr_bak <= data_cntr_bak - 1;

else
data_cntr_bak <= data_cntr_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prog_IR_bak <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
prog_IR_bak <= rx_IR_bak;

else if (pres_state != ‘status_chk)
prog_IR_bak <= prog_IR;

else
prog_IR_bak <= prog_IR_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
rx_IR_bak <= 32’h00000000;

else if (int_debug_link_write == 1’b1)
rx_IR_bak <= controller_status_reg;

else if (pres_state != ‘status_chk)
rx_IR_bak <= rx_IR;

else
rx_IR_bak <= rx_IR_bak;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
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controller_status_reg <= 32’h00000000;
else if ((status_rdy == 1’b1) && (prev_status_rdy == 1’b0))
controller_status_reg <= 32’h00000000;

else if (debug_link_write == 1’b1)
controller_status_reg <= prog_PE_status_reg;

else if (((pres_state == ‘get_next_instr) || (pres_state == ‘decode_instr))
|| ((pres_state == ‘execute_instr) && (prev_state == ‘decode_instr)))
begin

controller_status_reg[0] <= ex_IR_cbit;
controller_status_reg[1] <= IR_req_W0;
controller_status_reg[2] <= IR_req_W1;
controller_status_reg[3] <= Addr_req_W;
controller_status_reg[4] <= data_req_W;
controller_status_reg[5] <= tx_bypass;
controller_status_reg[6] <= exec_prog;
//controller_status_reg[7] <= rx_addr_req;
//controller_status_reg[8] <= rx_data_req;
controller_status_reg[7] <= 1’b0;
controller_status_reg[8] <= 1’b0;
controller_status_reg[9] <= change_a0;
controller_status_reg[10:15] <= 6’h00;
controller_status_reg[16] <= ex_IR_cbit;
controller_status_reg[17] <= IR_req_W0;
controller_status_reg[18] <= IR_req_W1;
controller_status_reg[19] <= Addr_req_W;
controller_status_reg[20] <= data_req_W;
controller_status_reg[21] <= tx_bypass;
controller_status_reg[22] <= exec_prog;
//controller_status_reg[23] <= rx_addr_req;
//controller_status_reg[24] <= rx_data_req;
controller_status_reg[23] <= 1’b0;
controller_status_reg[24] <= 1’b0;
controller_status_reg[25] <= change_a0;
controller_status_reg[26:31] <= 6’h00;

end
else if (pres_state == ‘execute_instr)
begin

controller_status_reg[0:15] <= controller_status_reg[0:15];
controller_status_reg[16] <= ex_IR_cbit;
controller_status_reg[17] <= IR_req_W0;
controller_status_reg[18] <= IR_req_W1;
controller_status_reg[19] <= Addr_req_W;
controller_status_reg[20] <= data_req_W;
controller_status_reg[21] <= tx_bypass;
controller_status_reg[22] <= exec_prog;
//controller_status_reg[23] <= rx_addr_req;
//controller_status_reg[24] <= rx_data_req;
controller_status_reg[23] <= 1’b0;
controller_status_reg[24] <= 1’b0;
controller_status_reg[25] <= change_a0;
controller_status_reg[26:31] <= 6’h00;

end
else
controller_status_reg <= controller_status_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
prog_PE_status_reg <= 32’h00000000;

else if ((status_rdy == 1’b1) && (prev_status_rdy == 1’b0))
prog_PE_status_reg <= 32’h00000000;

else if (debug_link_write == 1’b1)
prog_PE_status_reg <= exec_time_cntr;

else if ((pres_state == ‘get_next_instr) || (pres_state == ‘decode_instr) ||
((pres_state == ‘execute_instr) && (prev_state == ‘decode_instr)))
begin

prog_PE_status_reg[0] <= rx_IR_full;
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prog_PE_status_reg[1] <= prog_IR_full;
prog_PE_status_reg[2] <= rx_cbit;
prog_PE_status_reg[3] <= prog_cbit;
prog_PE_status_reg[4] <= valid_instr;
prog_PE_status_reg[5] <= cont_prog;
prog_PE_status_reg[6] <= pe_can_read;
//prog_PE_status_reg[7] <= pe_can_write_data;
//prog_PE_status_reg[8] <= pe_can_write_addr;
prog_PE_status_reg[7] <= 1’b0;
prog_PE_status_reg[8] <= 1’b0;
prog_PE_status_reg[9:10] <= pres_state;
prog_PE_status_reg[11:12] <= mux_select_fifo_in;
prog_PE_status_reg[13:15] <= 3’h0;
prog_PE_status_reg[16] <= rx_IR_full;
prog_PE_status_reg[17] <= prog_IR_full;
prog_PE_status_reg[18] <= rx_cbit;
prog_PE_status_reg[19] <= prog_cbit;
prog_PE_status_reg[20] <= valid_instr;
prog_PE_status_reg[21] <= cont_prog;
prog_PE_status_reg[22] <= pe_can_read;
//prog_PE_status_reg[23] <= pe_can_write_data;
//prog_PE_status_reg[24] <= pe_can_write_addr;
prog_PE_status_reg[23] <= 1’b0;
prog_PE_status_reg[24] <= 1’b0;
prog_PE_status_reg[25:26] <= pres_state;
prog_PE_status_reg[27:28] <= mux_select_fifo_in;
prog_PE_status_reg[29:31] <= 3’h0;

end
else if (pres_state == ‘execute_instr)
begin

prog_PE_status_reg[0:15] <= prog_PE_status_reg[0:15];
prog_PE_status_reg[16] <= rx_IR_full;
prog_PE_status_reg[17] <= prog_IR_full;
prog_PE_status_reg[18] <= rx_cbit;
prog_PE_status_reg[19] <= prog_cbit;
prog_PE_status_reg[20] <= valid_instr;
prog_PE_status_reg[21] <= cont_prog;
prog_PE_status_reg[22] <= pe_can_read;
//prog_PE_status_reg[23] <= pe_can_write_data;
//prog_PE_status_reg[24] <= pe_can_write_addr;
prog_PE_status_reg[23] <= 1’b0;
prog_PE_status_reg[24] <= 1’b0;
prog_PE_status_reg[25:26] <= pres_state;
prog_PE_status_reg[27:28] <= mux_select_fifo_in;
prog_PE_status_reg[29:31] <= 3’h0;

end
else
prog_PE_status_reg <= prog_PE_status_reg;

end

//Debug:
always @ (posedge clk) begin

if (rst == 1’b1)
exec_time_cntr <= 32’h00000000;

else if (((status_rdy == 1’b1) && (prev_status_rdy == 1’b0)) ||
((pres_state == ‘get_next_instr) && (prev_state == ‘execute_instr))
|| (pres_state == ‘decode_instr))
exec_time_cntr <= 32’h00000000;

else if (debug_link_write == 1’b1)
exec_time_cntr <= 32’hdeaddead; //END OF PIPELINED DEBUG DATA

else if((pres_state == ‘execute_instr) && (pres_state == ‘get_next_instr))
exec_time_cntr <= exec_time_cntr + 1;

else
exec_time_cntr <= exec_time_cntr;

end

endmodule



Appendix B

Input File Format for the System
Generator

/* Filename: gen_ublaze_system_input_format.c

* Author: Lesley Shannon

* Date: July 28, 2005

* Description:

* This file describe the format for the input file used

* to describe the system to be generated by the system

* generator. To provide the information for the input

* file, draw a DAG and label the nodes (CEs) from 0 to

* NumNodes-1 and label the edges (Links) from 0 to

* NumLinks-1.

*********************************************************/

NumNodes
NumLinks
NumClocks
UseMDM?
ExtResetHigh?

Node0 Software? ClockID NumInputs NumOutputs [OPB Peripheral?: if SW]/
[FSL Switch?: if HW] [ExtMem?: if SW]/[Associated Proc: if Switch]

*Input(s)

*Output(s)

Node1 Software? ClockID NumInputs NumOutputs [OPB Peripheral?: if SW]/
[FSL Switch?: if HW] [ExtMem?: if SW]/[Associated Proc: if Switch]

*Input(s)

*Output(s)

...

Node(NumNodes-1) Software? ClockID? NumInputs NumOutputs
[OPB Peripheral?: if SW]/[Switch?: if HW] [ExtMem?: if SW]/
[Associated Proc: if Switch]

*Input(s)

*Output(s)

Link0 FSL? [default parameters?: if FSL]/[Master?: if wire]
SourceType SourceID SinkType SinkID
[Clk: if FSL using default parameters, a synchronous clock]
[Asynch? use_control?
MClk SClk
width depth: if an FSL not using default parameters]

Link1 FSL? [default parameters?: if FSL]/[Master?: if wire]
SourceType SourceID SinkType SinkID
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[Clk: if FSL using default parameters, a synchronous clock]
[Asynch? use_control?
MClk SClk
width depth: if an FSL not using default parameters]

...

Link(NumLinks-1) FSL? [default parameters?: if FSL]/
[Master?: if wire]

SourceType SourceID SinkType SinkID
[Clk: if FSL using default parameters, a synchronous clock]
[Asynch? use_control?
MClk SClk
width depth: if an FSL not using default parameters]

************************************************
Notes:

*Nodes may be either Processors (software) or dedicated
hardware modules (hardware) or switches (hardware,
but designed to act as an interface between fsls
from a processor and the wires in a network)

*Links may be either FSLs or wires connecting to FSLs (the
user must specify whether they connect to the Master
or Slave side of an FSL) or FSLs via switches

*Wires connect to either nodes or FSLs, but cannot connect
together two FSLs;

*FSLS connect to either wires or nodes;

*SourceType/SinkType: 0 = CE; 1 = FSL; 2 = wire;



Appendix C

On-chip Testbed Source and Sink Packet
Interpreters

C.1 Transmitter Testbed
/****************************************************************************/
/* simppl_test.c */
/* ============= */
/* */
/* 05/18/2005 */
/* apatel */
/* */
/* Test application skeleton for validating SIMPPL Systems. */
/* */
/****************************************************************************/

#include "xparameters.h"
#include "xutil.h"
#include "mb_interface.h"

typedef unsigned char u8;
typedef unsigned int u32;

#define printf xil_printf

#define GET_NDW(x) (((x) >> 8) & 0xFFFFFF)
#define GET_OP(x) ((x) & 0xFF)

#define DEBUG 1
// Opcode Definitions - Taken from instr_defines.v

#define OP_RESET 0x00
#define OP_NOOP 0x04
#define OP_BYPASS 0x0C

#define OP_READA_IMM 0x01
#define OP_READR_IMM 0x02
#define OP_WRITE_IMM 0x03

#define OP_READA_ABS_ADDR 0x05
#define OP_READR_ABS_ADDR 0x06 // These first 9 instructions will be
#define OP_WRITE_ABS_ADDR 0x07 // read and transmitted.

//***These instructions are NOT transmitted***//
#define OP_READ_AREG 0x0A //NOT IMPLEMENTED YET!!!
#define OP_WRITE_AREG 0x0B

#define OP_ADD_IMM_AREG 0x18
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#define OP_SUB_IMM_AREG 0x08

#define OP_READA_AREG_INDIRECT 0x0D
#define OP_READR_AREG_INDIRECT 0x0E
#define OP_WRITE_AREG_INDIRECT 0x0F

#define OP_READA_AREG_AUTOINC 0x1D
#define OP_READR_AREG_AUTOINC 0x1E
#define OP_WRITE_AREG_AUTOINC 0x1F

//#define DEBUG

u32 test_case_1[10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
u32 address_1 = 0x00002200;

u32 test_case_2[6] = {0, 1 , 2, 3, 4, 5 };
u32 address_2 = 0x00001100;

u32 test_case_3[9] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
u32 address_3 = 0x00005500;

u32 test_case_4[2] = {0, 1};
u32 address_4 = 0x0000ee00;

u32 test_case_5[35] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34};

u32 address_5 = 0x0000ab00;

u32 test_case_typ[64]={ 75,20,9,0,0,0,0,0,
21,12,0,0,0,0,0,0,
8,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0

};
u32 macrotype;
u32 scalecode;
u32 address_typ;

void reset();
void noop();
void bypass(u32, u32, u32, u32, u32, u32*);
//0: ndw; 1: # of bypasses; 2: opcode of bypassed instruction (sub_opcode);
//3: sub_ndw; 4: Sub-Address field (if necessary), otherwise -1
//5: Pointer to Payload

void reada_imm(u32, u32*); //NDW; Pointer to Payload
void readr_imm(u32); //NDW
void write_imm(u32, u32*); //NDW; Pointer to Payload

void reada_abs_addr(u32, u32, u32*); //NDW; Address; Pointer to Payload
void readr_abs_addr(u32, u32); //NDW; Address; Pointer to Payload
void write_abs_addr(u32, u32, u32*); //NDW; Address; Pointer to Payload

//***THESE INSTRUCTIONS ARE NEVER TRANSMITTED TO A CONTROLLER***

//void read_areg();
//void write_areg();
//
//void add_imm_areg(u32);
//void sub_imm_areg(u32);
//
//void reada_areg_indirect();
//void readr_areg_indirect();
//void write_areg_indirect();
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//
//void reada_areg_autoinc();
//void readr_areg_autoinc();
//void write_areg_autoinc();

void simppl_packet_error();
void simppl_rx_packet(u32);

u32 g_addr;
u32* fsl_data;

int main (void)
{

u32 i, rx_data;

#ifdef DEBUG
printf("Testing TX 123...\r\n");

#endif

//A sample transmitted program:
reset();
noop();
bypass(2, 2, OP_NOOP, 0, -1, 0x0);

reada_imm(10, test_case_1);
readr_imm(64);
write_imm(6, test_case_2);

reada_abs_addr(9, address_3, test_case_3);
readr_abs_addr(96, 0xDEADBEEF);
write_abs_addr(2, address_4, test_case_4);

bypass(1, 1, OP_READR_IMM, 16, -1, 0x0);
bypass(2, 1, OP_READR_ABS_ADDR, 48, 0x00001122, 0x0);
bypass(35, 2, OP_WRITE_ABS_ADDR, 32, 0x0000aabb, test_case_5);
bypass(5, 4, OP_WRITE_ABS_ADDR, 0, 0xdeadbeef, 0x0);

#ifdef DEBUG
printf("\r\nDone!\r\n");
for (;;)
{
}

#endif
return 0;

}

void reset()
{

u32 ndw, opcode, control_word;

opcode = OP_RESET;
ndw = 0;
control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** Reset Instruction Transmitted **\r\n");
#endif

//g_addr = 0;
}

void noop()
{

u32 ndw, opcode, control_word;

opcode = OP_NOOP;
ndw = 0;
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control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** No-Op Instruction Transmitted **\r\n");
#endif
}

//0: NDW; 1: Pointer to Payload
void reada_imm(u32 ndw, u32 *fsl_data)
{

u32 opcode, control_word;
int i;

opcode = OP_READA_IMM;
control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** Read ACK of Imm Data Transmitted **\r\n");
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

#endif

for (i = 0; i < ndw; i++)
{

microblaze_bwrite_datafsl(fsl_data[i], 0);
#ifdef DEBUG

printf(" 0x%08x [%d]\r\n", fsl_data[i], i);
#endif

}
}

//0: NDW
void readr_imm(u32 ndw)
{

u32 opcode, control_word;
int i;

opcode = OP_READR_IMM;
control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** Read Request for Imm Data Transmitted **\r\n");
#endif
}

//0: NDW; 1: Pointer to Payload
void write_imm(u32 ndw, u32 *fsl_data)
{

u32 opcode, control_word;
int i;

opcode = OP_WRITE_IMM;
control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** Write Imm Data Transmitted **\r\n");
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

#endif

for (i = 0; i < ndw; i++)
{

microblaze_bwrite_datafsl(fsl_data[i], 0);
#ifdef DEBUG

printf(" 0x%08x [%d]\r\n", fsl_data[i], i);
#endif
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}
}

//0: NDW; 1: Address; 2: Pointer to Payload
void reada_abs_addr(u32 ndw, u32 address, u32 *fsl_data)
{

u32 opcode, control_word;
int i;

opcode = OP_READA_ABS_ADDR;
control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** Read ACK of Data from Abs Addr Transmitted **\r\n");
#endif

microblaze_bwrite_datafsl(address, 0);
#ifdef DEBUG

printf(" Address = 0x%08x\r\n", address);
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

#endif

for (i = 0; i < ndw; i++)
{

microblaze_bwrite_datafsl(fsl_data[i], 0);
#ifdef DEBUG

printf(" 0x%08x [%d]\r\n", fsl_data[i], i);
#endif

}
}

//0: NDW; 1: Address
void readr_abs_addr(u32 ndw, u32 address)
{

u32 opcode, control_word;
int i;

opcode = OP_READR_ABS_ADDR;
control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** Read Request for data from Abs Addr Transmitted **\r\n");
#endif

microblaze_bwrite_datafsl(address, 0);
#ifdef DEBUG

printf(" Address = 0x%08x\r\n", address);
#endif DEBUG

}

//0: NDW; 1: Address; 2: Pointer to Payload
void write_abs_addr(u32 ndw, u32 address, u32 *fsl_data)
{

u32 opcode, control_word;
int i;

opcode = OP_WRITE_ABS_ADDR;
control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** Write Data to Abs Addr Instruction Transmitted **\r\n");
#endif

microblaze_bwrite_datafsl(address, 0);
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#ifdef DEBUG
printf(" Address = 0x%08x\r\n", address);
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

#endif

for (i = 0; i < ndw; i++)
{

microblaze_bwrite_datafsl(fsl_data[i], 0);
#ifdef DEBUG

printf(" 0x%08x [%d]\r\n", fsl_data[i], i);
#endif

}
}

//0: ndw; 1: # of bypasses; 2: opcode of bypassed instruction (sub_opcode);
//3: sub_ndw; 4: Sub-Address field (if necessary), otherwise -1
//5: Pointer to Payload
void bypass(u32 ndw, u32 num_bypasses, u32 sub_opcode, u32 sub_ndw,

u32 sub_address, u32 *fsl_data)
{

u32 opcode, control_word;
int i;

opcode = OP_BYPASS;
control_word = (ndw<<8) + opcode;

microblaze_bwrite_cntlfsl(control_word, 0);
#ifdef DEBUG

printf("\r\n** Bypass Instruction Transmitted **\r\n");
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

#endif
ndw--;

for (i=1; i<num_bypasses; i++, ndw--)
{
control_word = (ndw<<8) + opcode;
microblaze_bwrite_datafsl(control_word, 0);

#ifdef DEBUG
printf(" Bypass Recursion Count = %d\r\n", i);
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

#endif
}

control_word = (sub_ndw<<8) + sub_opcode;
microblaze_bwrite_datafsl(control_word, 0);

#ifdef DEBUG
printf(" Bypassed Instruction = 0x%08x\r\n", control_word);

#endif

if ((sub_opcode == OP_READR_ABS_ADDR) || (sub_opcode == OP_WRITE_ABS_ADDR)
|| (sub_opcode == OP_READA_ABS_ADDR))
{
microblaze_bwrite_datafsl(sub_address, 0);

if (ndw != 0)
ndw--;

#ifdef DEBUG
printf(" Bypassed Instruction Address = 0x%08x\r\n", sub_address);

#endif
}

#ifdef DEBUG
printf("** Bypassed Data **\r\n");

#endif

for (i = 0; i < ndw; i++)
{

microblaze_bwrite_datafsl(fsl_data[i], 0);
#ifdef DEBUG
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printf(" 0x%08x [%d]\r\n", fsl_data[i], i);
#endif

}
#ifdef DEBUG

printf("** End Bypass Instruction **\r\n");
#endif
}

/*
void read_areg()
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void write_areg()
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void add_imm_areg(u32 ndw)
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void sub_imm_areg(u32 ndw)
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void reada_areg_indirect()
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void readr_areg_indirect()
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void write_areg_indirect()
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void reada_areg_autoinc()
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void readr_areg_autoinc()
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

void write_areg_autoinc()
{

printf("\r\n** Not a Transmittable instruction **\r\n");
}

*/
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C.2 Receiver Testbed

/****************************************************************************/
/* simppl_test.c */
/* ============= */
/* */
/* 05/18/2005 */
/* apatel */
/* */
/* Test application skeleton for validating SIMPPL Systems. */
/* */
/****************************************************************************/

#include "xparameters.h"
#include "xutil.h"
#include "mb_interface.h"

typedef unsigned char u8;
typedef unsigned int u32;

#define printf xil_printf

#define GET_NDW(x) (((x) >> 8) & 0xFFFFFF)
#define GET_OP(x) ((x) & 0xFF)

// Opcode Definitions - Taken from instr_defines.v

#define OP_RESET 0x00
#define OP_NOOP 0x04

#define OP_READA_IMM 0x01
#define OP_READR_IMM 0x02
#define OP_WRITE_IMM 0x03

#define OP_READA_ABS_ADDR 0x05
#define OP_READR_ABS_ADDR 0x06 // These first 8 instructions will be
#define OP_WRITE_ABS_ADDR 0x07 // read and transmitted.

#define OP_READ_AREG 0x0A //NOT IMPLEMENTED YET!!!
#define OP_WRITE_AREG 0x0B

#define OP_ADD_IMM_AREG 0x18
#define OP_SUB_IMM_AREG 0x08
#define OP_BYPASS 0x0C

#define OP_READA_AREG_INDIRECT 0x0D
#define OP_READR_AREG_INDIRECT 0x0E
#define OP_WRITE_AREG_INDIRECT 0x0F

#define OP_READA_AREG_AUTOINC 0x1D
#define OP_READR_AREG_AUTOINC 0x1E
#define OP_WRITE_AREG_AUTOINC 0x1F

//#define DEBUG

//Test example:
//u32 test_case_1[16] = {};
//tx_write_abs_addr(address, test_case_1, 16);

void reset();
void noop();
void reada_imm(u32);
void readr_imm();
void write_imm(u32);

void reada_abs_addr(u32);
void readr_abs_addr();
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void write_abs_addr(u32);

void read_areg();
void write_areg();

void add_imm_areg(u32);
void sub_imm_areg(u32);
void bypass(u32, u32);

void reada_areg_indirect();
void readr_areg_indirect();
void write_areg_indirect();

void reada_areg_autoinc();
void readr_areg_autoinc();
void write_areg_autoinc();

void simppl_packet_error();
void simppl_rx_packet(u32);

u32 g_addr;

int main (void)
{

u32 i, j;

#ifdef DEBUG
printf("\r\nTesting RX 123...\r\n");

#endif

#if 0
for (i = 0; i < 1024; i++)
{

j = 0;
microblaze_bread_datafsl(j, 0);
printf("Read back fsl[%d] = %08x\r\n", i, j);

}
#endif

for (j = 0; j < 200; j ++)
{

simppl_rx_packet(0);
}

printf("Done!\r\n");
for (;;)
{
}

}

void simppl_rx_packet(u32 recursion_count)
{

u32 fsl_data;
u32 ndw;
u8 opcode;

// Step 1 - Fetch the instruction word and decode it
microblaze_bread_datafsl(fsl_data, 0);

opcode = GET_OP(fsl_data);
ndw = GET_NDW(fsl_data);

switch (opcode)
{

case OP_RESET:
reset();

break;
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case OP_NOOP:
noop();

break;

case OP_READA_IMM:
reada_imm(ndw);

break;

case OP_READR_IMM:
readr_imm();

break;

case OP_WRITE_IMM:
write_imm(ndw);

break;

case OP_READA_ABS_ADDR:
reada_abs_addr(ndw);

break;

case OP_READR_ABS_ADDR:
readr_abs_addr();

break;

case OP_WRITE_ABS_ADDR:
write_abs_addr(ndw);

break;

case OP_READ_AREG:
read_areg();

break;

case OP_WRITE_AREG:
write_areg();

break;

case OP_ADD_IMM_AREG:
add_imm_areg(ndw);

break;

case OP_SUB_IMM_AREG:
sub_imm_areg(ndw);

break;

case OP_BYPASS:
bypass(ndw, recursion_count);

break;

case OP_READA_AREG_INDIRECT:
reada_areg_indirect();

break;

case OP_READR_AREG_INDIRECT:
readr_areg_indirect();

break;

case OP_WRITE_AREG_INDIRECT:
write_areg_indirect();

break;

case OP_READA_AREG_AUTOINC:
reada_areg_autoinc();

break;

case OP_READR_AREG_AUTOINC:
readr_areg_autoinc();

break;
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case OP_WRITE_AREG_AUTOINC:
write_areg_autoinc();

break;

default:
simppl_packet_error(fsl_data);

}

}

void reset()
{

printf("\r\n** Reset Instruction Received **\r\n");
g_addr = 0;

}

void noop()
{

printf("\r\n** No-Op Instruction Received **\r\n");
}

void reada_imm(u32 ndw)
{

u32 fsl_data;
int i;

printf("\r\n** Read ACK + Imm Data **\r\n");
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

for (i = 0; i < ndw; i++)
{

microblaze_bread_datafsl(fsl_data, 0);
printf(" 0x%08x [%d]\r\n", fsl_data, i);

}
}

void readr_imm()
{

printf("\r\n** Read Request Imm Data **\r\n");
}

void write_imm(u32 ndw)
{

u32 fsl_data;
int i;

printf("\r\n** Write Imm Data **\r\n");
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

for (i = 0; i < ndw; i++)
{

microblaze_bread_datafsl(fsl_data, 0);
printf(" 0x%08x [%d]\r\n", fsl_data, i);

}
}

void reada_abs_addr(u32 ndw)
{

u32 fsl_data;
int i;

printf("\r\n** Read ACK Data from Abs Addr **\r\n");

microblaze_bread_datafsl(fsl_data, 0);
printf(" Address = 0x%08x\r\n", fsl_data);
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printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

for (i = 0; i < ndw; i++)
{

microblaze_bread_datafsl(fsl_data, 0);
printf(" 0x%08x [%d]\r\n", fsl_data, i);

}
}

void readr_abs_addr()
{

u32 fsl_data;
int i;

printf("\r\n** Read Request from Abs Addr **\r\n");

microblaze_bread_datafsl(fsl_data, 0);
printf(" Address = 0x%08x\r\n", fsl_data);

}

void write_abs_addr(u32 ndw)
{

u32 fsl_data;
int i;

#ifdef DEBUG
printf("\r\n** Write Data to Abs Addr **\r\n");

#endif

microblaze_bread_datafsl(fsl_data, 0);
#ifdef DEBUG

printf(" Address = 0x%08x\r\n", fsl_data, i);

printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);
#endif

for (i = 0; i < ndw; i++)
{

microblaze_bread_datafsl(fsl_data, 0);
#ifdef DEBUG

printf(" %d [%d]\r\n", fsl_data, i);
#endif

}
}

void read_areg()
{

printf("\r\n** Read Addr Reg **\r\n");
printf(" NOT IMPLEMENTED YET\r\n");

}

void write_areg()
{

u32 fsl_data;

printf("\r\n** Write Data to Addr Reg **\r\n");
microblaze_bread_datafsl(fsl_data, 0);
printf(" Address = 0x%08x\r\n", fsl_data);
g_addr = fsl_data;

}

void add_imm_areg(u32 ndw)
{

printf("\r\n** Add Imm to Addr Reg **\r\n");
printf(" Immediate = 0x%08x\n", ndw);
g_addr = (g_addr + ndw) & 0x00ffffff;
printf(" New Address = 0x%08x\n", g_addr);
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}

void sub_imm_areg(u32 ndw)
{

printf("\r\n** Subtract Imm from Addr Reg **\r\n");
printf(" Immediate = 0x%08x\n", ndw);
g_addr = (g_addr - ndw) & 0x00ffffff;
printf(" New Address = 0x%08x\n", g_addr);

}
void bypass(u32 ndw, u32 recursion_count)
{

int i;
u32 sub_opcode;

printf("\r\n** Bypass Data **\r\n");
printf(" Recursion Count = %d\r\n", recursion_count);
printf(" Payload size = %d (0x%08x)\r\n", ndw, ndw);

simppl_rx_packet(recursion_count+1);

if (recursion_count == 0)
{

printf("** End Bypass Instruction **\r\n");
return;

}

}

void reada_areg_indirect()
{ printf("** reada_areg_indirect not implemented! **\r\n"); }
void readr_areg_indirect()
{ printf("** readr_areg_indirect not implemented! **\r\n"); }
void write_areg_indirect()
{ printf("** write_areg_indirect not implemented! **\r\n"); }

void reada_areg_autoinc()
{ printf("** reada_areg_autoinc not implemented! **\r\n"); }
void readr_areg_autoinc()
{ printf("** readr_areg_autoinc not implemented! **\r\n"); }
void write_areg_autoinc()
{ printf("** write_areg_autoinc not implemented! **\r\n"); }

void simppl_packet_error(u32 fsl_data)
{

printf("Unrecognized Opcode: 0x%08x\n", fsl_data);
}
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Table D.1: mb-gprof Statistics on Functions comprising the Dhrystone Benchmark after
One Hundred and One Million Passes.

Function SW Multiply & Divide HW Multiply & SW Divide HW Multiply & Divide

Name 100 Passes One Million Passes 100 Passes One Million Passes 100 Passes One Million Passes

Percent Percent Percent Percent Percent Percent Percent Percent Percent

Time Time Time Time Time Time Time Time Time

(100Hz) (6Hz) (100Hz) (100Hz) (6Hz) (100Hz) (100Hz) (6Hz) (100Hz)

start1 25.00 — 0.00 30.00 — — 25.00 — 0.00

mulsi3 16.67 33.33 10.20 — — — — — —

Func 2 8.33 33.20 5.38 10.00 7.82 0.00 0.00 4.00 6.50

Proc 1 8.33 0.00 7.17 0.00 7.91 9.09 0.00 15.97 13.63

Proc 3 8.33 0.00 4.55 0.00 4.50 5.79 12.50 4.00 4.55

Proc 5 8.33 0.00 3.73 0.00 5.62 0.00 0.00 4.00 5.19

Proc 8 8.33 0.02 8.97 10.00 5.60 9.09 0.00 4.00 7.47

main 8.33 0.11 8.55 0.00 10.14 0.00 0.00 12.03 10.72

strcmp 8.33 — 5.52 — 7.87 9.09 — 8.00 7.79

Func 1 0.00 33.27 10.07 0.00 10.16 18.18 25.00 12.00 13.31

Proc 7 0.00 0.04 10.21 10.00 13.46 12.40 25.00 12.00 12.34

Func 3 0.00 0.00 3.59 10.00 4.50 9.09 0.00 4.00 5.19

Proc 2 0.00 0.00 4.55 0.00 3.39 9.09 0.00 7.97 5.19

Proc 4 0.00 0.04 4.55 0.00 4.45 9.09 12.50 8.00 2.92

Proc 6 0.00 0.00 5.66 10.00 4.47 0.01 0.00 4.03 5.20

divsi3 — — 7.31 20.00 10.11 9.09 — — —
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Table D.2: Cycle-Accurate Results using SnoopP to Profile Dhrystone on MicroBlaze sys-
tems that include and exclude the Hardware Multiplier and Divider.

Function Percentage Percentage Percentage Percentage
Name of Execution of Execution of Execution of Execution

Time Time Time Time
(100 Passes) (A Million (100 Passes) (100 Passes)

Passes) HW multiply HW multiply
& divide

mulsi3 23.49 23.56 — —
divsi3 14.88 14.93 20.68 —

main 14.75 14.51 19.22 23.90
strcmp 10.80 10.83 15.00 18.99
Proc 1 9.62 9.65 13.37 16.92
Proc 8 7.49 7.52 5.39 6.83
Func 2 4.88 4.89 6.78 8.58
Proc 6 3.39 3.40 4.72 5.97
Proc 3 2.17 2.17 3.01 3.81
Func 1 1.98 1.98 2.75 3.48
Proc 4 1.75 1.76 2.44 3.08
Proc 7 1.64 1.65 2.28 2.89
Proc 2 1.54 1.54 2.13 2.70
Func 3 0.82 0.83 1.15 1.45
Proc 5 0.76 0.77 1.06 1.34
malloc 0.02 0.00 0.03 0.04

Table D.3: The Results from Profiling AES on-chip with SnoopP for Both 2 and 400 Keys.
Function Percentage of
Name Execution Time

modsi3 39.59
mul 23.30

mulsi3 13.17
MixColumns 7.10
vfprintf r 5.37

ShiftRows 2.18
AddRoundKey 1.44
Substitution 1.23
blockEncrypt 0.70
cipherInit 0.46
sprintf 0.32
rijndaelEncrypt 0.17
main 0.14
memcpy 0.13

divsi3 0.11
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Table D.4: mb-gprof Statistics on Functions Comprising the AES Benchmark for 2 and
400 Different Keys with 10 Thousand Blocks Each.

Function 2 Keys 400 Keys
Name Percent Percent Percent Percent

Time (6Hz) Time (100Hz) Time (6Hz) Time (100Hz)
modsi3 36.20 35.57 32.21 5.80

mul 29.50 29.37 13.41 8.42
mulsi3 11.85 11.88 18.04 4.71

MixColumns 6.63 7.01 10.84 22.57
vfprintf r 4.71 4.80 7.49 18.19
mbtowc r 2.20 2.35 3.45 3.16

ShiftRows 2.05 2.34 3.58 8.86
AddRoundKey 1.50 1.69 2.66 6.77
Substitution 1.49 1.52 2.27 5.79

sfvwrite 1.31 0.88 2.02 3.99
blockEncrypt 0.66 0.74 1.05 3.35
cipherInit 0.46 0.42 0.71 1.90
vfprintf 0.37 0.31 0.44 1.39
sprintf 0.27 0.31 0.46 1.43
memmove 0.26 0.20 0.47 0.93
rijndaelEncrypt 0.20 0.18 0.29 0.82
memcpy 0.14 0.11 0.19 0.51

divsi3 0.07 0.14 0.16 0.63
localeconv 0.07 0.04 0.06 0.20
main 0.06 0.13 0.19 0.59
HexToBin 0.00 0.00 0.00 0.00
makeKey 0.00 0.00 0.00 0.00
rijndaelKeySched 0.00 0.0 0.00 0.0
start1 — 0.00 — 0.00

strncpy — — — 0.00
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SnoopP HDL Source Code

--snoopy_types.vhd file
----------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;

package snoopy_types is
constant cntrsize : integer := 32;
type cntrArray is array (natural range <>) of std_logic_vector(0 to cntrsize-1);

end package snoopy_types;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
-- snoopy_wrapper.vhd file
----------------------------------------------------------------------------
library IEEE;
use IEEE.STD_Logic_1164.all;
use IEEE.STD_Logic_arith.all;
use IEEE.STD_Logic_unsigned.all;

use Work.snoopy_types.all;

entity snoopy is
generic(C_OPB_AWIDTH: INTEGER := 32;
C_OPB_DWIDTH: INTEGER := 32;
NUM_COUNTERS: INTEGER := 2; --Max of 10, Min of 1
C_BASEADDR: STD_LOGIC_VECTOR(0 to 31) := X"FFFF_FFE0";
C_HIGHADDR: STD_LOGIC_VECTOR(0 to 31) := X"FFFF_FFFF";
RESET_ADDR: STD_LOGIC_VECTOR(0 to 31) := X"FFFF_FFE4";
INSTR_LOWERBND0: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND0: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND1: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND1: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND2: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND2: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND3: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND3: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND4: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND4: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND5: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND5: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND6: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND6: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND7: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND7: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND8: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
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INSTR_UPPERBND8: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND9: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND9: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND10: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND10: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND11: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND11: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND12: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND12: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND13: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND13: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND14: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND14: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154";
INSTR_LOWERBND15: STD_LOGIC_VECTOR(0 to 31) := X"0080_0140";
INSTR_UPPERBND15: STD_LOGIC_VECTOR(0 to 31) := X"0080_0154"
);
port( OPB_Clk: in STD_LOGIC;

OPB_Rst: in STD_LOGIC;

OPB_ABus: in STD_LOGIC_VECTOR(0 to C_OPB_AWIDTH-1);
OPB_BE: in STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH/8 -1);
OPB_DBus: in STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
OPB_RNW: in STD_LOGIC;
OPB_select: in STD_LOGIC;
OPB_seqAddr: in STD_LOGIC;

snoopy_DBus: out STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
snoopy_errAck: out STD_LOGIC;
snoopy_retry: out STD_LOGIC;
snoopy_toutSup: out STD_LOGIC;
snoopy_xferAck: out STD_LOGIC;

PC_EX: in STD_LOGIC_VECTOR(0 to 31);
valid_instr: in STD_LOGIC);

end entity snoopy;

architecture behaviour of snoopy is
signal int_data_val: cntrArray(0 to NUM_COUNTERS-1);
signal int_snoopy_DBus: STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
signal instr_lowerbnds: cntrArray(0 to 15);
signal instr_upperbnds: cntrArray(0 to 15);
signal rd_xferAck: STD_LOGIC;
signal wr_xferAck: STD_LOGIC;
signal int_snoopy_xferAck: STD_LOGIC;
signal reset: STD_LOGIC;
signal cntr_fx_sel: STD_LOGIC_VECTOR(0 to 1);

COMPONENT var_instr_cntrs IS
GENERIC(C_OPB_AWIDTH: INTEGER := 32;

C_OPB_DWIDTH: INTEGER := 32;
NUM_COUNTERS: INTEGER := NUM_COUNTERS --Max of 10, Min of 1
);
PORT(clk: in STD_LOGIC;

reset: in STD_LOGIC;
instr_lowerbnds: in cntrArray(0 to NUM_COUNTERS-1);
instr_upperbnds: in cntrArray(0 to NUM_COUNTERS-1);
cntrs: out cntrArray(0 to NUM_COUNTERS-1);
cntr_fx_sel: in STD_LOGIC_VECTOR(0 to 1);
PC_EX: in STD_LOGIC_VECTOR(0 to 31);
valid_instr: in STD_LOGIC);
END COMPONENT var_instr_cntrs;

COMPONENT opb_output IS
GENERIC(C_OPB_AWIDTH: INTEGER := C_OPB_AWIDTH;
C_OPB_DWIDTH: INTEGER := C_OPB_DWIDTH;
NUM_COUNTERS: INTEGER := NUM_COUNTERS; --Max of 10, Min of 1

RESET_ADDR: STD_LOGIC_VECTOR(0 to 31) := RESET_ADDR;
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C_BASEADDR: STD_LOGIC_VECTOR(0 to 31) := C_BASEADDR;
C_HIGHADDR: STD_LOGIC_VECTOR(0 to 31) := C_HIGHADDR

);
PORT( OPB_ABus: in STD_LOGIC_VECTOR(0 to C_OPB_AWIDTH-1);

OPB_Clk: in STD_LOGIC;
OPB_RNW: in STD_LOGIC;
OPB_select: in STD_LOGIC;
cntrs: in cntrArray(0 to NUM_COUNTERS-1);
snoopy_DBus: out STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
reset: out STD_LOGIC;
snoopy_xferAck: out STD_LOGIC);
END COMPONENT opb_output;

begin

instr_lowerbnds(0) <= INSTR_LOWERBND0;
instr_upperbnds(0) <= INSTR_UPPERBND0;
instr_lowerbnds(1) <= INSTR_LOWERBND1;
instr_upperbnds(1) <= INSTR_UPPERBND1;
instr_lowerbnds(2) <= INSTR_LOWERBND2;
instr_upperbnds(2) <= INSTR_UPPERBND2;
instr_lowerbnds(3) <= INSTR_LOWERBND3;
instr_upperbnds(3) <= INSTR_UPPERBND3;
instr_lowerbnds(4) <= INSTR_LOWERBND4;
instr_upperbnds(4) <= INSTR_UPPERBND4;
instr_lowerbnds(5) <= INSTR_LOWERBND5;
instr_upperbnds(5) <= INSTR_UPPERBND5;
instr_lowerbnds(6) <= INSTR_LOWERBND6;
instr_upperbnds(6) <= INSTR_UPPERBND6;
instr_lowerbnds(7) <= INSTR_LOWERBND7;
instr_upperbnds(7) <= INSTR_UPPERBND7;
instr_lowerbnds(8) <= INSTR_LOWERBND8;
instr_upperbnds(8) <= INSTR_UPPERBND8;
instr_lowerbnds(9) <= INSTR_LOWERBND9;
instr_upperbnds(9) <= INSTR_UPPERBND9;
instr_lowerbnds(10) <= INSTR_LOWERBND10;
instr_upperbnds(10) <= INSTR_UPPERBND10;
instr_lowerbnds(11) <= INSTR_LOWERBND11;
instr_upperbnds(11) <= INSTR_UPPERBND11;
instr_lowerbnds(12) <= INSTR_LOWERBND12;
instr_upperbnds(12) <= INSTR_UPPERBND12;
instr_lowerbnds(13) <= INSTR_LOWERBND13;
instr_upperbnds(13) <= INSTR_UPPERBND13;
instr_lowerbnds(14) <= INSTR_LOWERBND14;
instr_upperbnds(14) <= INSTR_UPPERBND14;
instr_lowerbnds(15) <= INSTR_LOWERBND15;
instr_upperbnds(15) <= INSTR_UPPERBND15;

cntr_fx_sel <= OPB_ABus(C_OPB_AWIDTH-4 to C_OPB_AWIDTH-3);

--Instantiates the proper number of counters and attaches them to the PC_EX bus
--looking for valid instructions that are in the specified range for each counter
V0: var_instr_cntrs port map ( OPB_Clk, reset, instr_lowerbnds(0 to NUM_COUNTERS-1),
instr_upperbnds(0 to NUM_COUNTERS-1),
int_data_val, cntr_fx_sel, PC_EX, valid_instr);

--Attaches the counters via a mux to the OPB bus. Outputs the proper counter values
--when a valid address is read by the Master and Resets the counters when the Master
--writes to the reset address
O0: opb_output port map (OPB_ABus, OPB_Clk, OPB_RNW, OPB_select, int_data_val,
int_snoopy_DBus, reset, int_snoopy_xferAck);

snoopy_errAck <= ’0’;
snoopy_retry <= ’0’;
snoopy_toutSup <= ’0’;
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snoopy_DBus <= int_snoopy_DBus;
snoopy_xferAck <= int_snoopy_xferAck;

end architecture behaviour;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
-- var_instr_cntrs.vhd file
----------------------------------------------------------------------------
library IEEE;
use IEEE.STD_Logic_1164.all;
use IEEE.STD_Logic_arith.all;
use IEEE.STD_Logic_unsigned.all;

use Work.snoopy_types.all;

entity var_instr_cntrs is

generic(C_OPB_AWIDTH: INTEGER := 32;
C_OPB_DWIDTH: INTEGER := 32;
NUM_COUNTERS: INTEGER := 2 --Max of 10, Min of 1
);
port( clk: in STD_LOGIC;

reset: in STD_LOGIC;
instr_lowerbnds: in cntrArray(0 to NUM_COUNTERS-1);
instr_upperbnds: in cntrArray(0 to NUM_COUNTERS-1);

cntrs: out cntrArray(0 to NUM_COUNTERS-1);
cntr_fx_sel: in STD_LOGIC_VECTOR(0 to 1);
PC_EX: in STD_LOGIC_VECTOR(0 to 31);
valid_instr: in STD_LOGIC);

end entity var_instr_cntrs;

architecture behaviour of var_instr_cntrs is
signal int_data_val: cntrArray(0 to NUM_COUNTERS-1);
signal int_snoopy_DBus: STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
signal enable: STD_LOGIC_VECTOR(0 to NUM_COUNTERS-1);
signal int_pc_ex: STD_LOGIC_VECTOR(0 to 31);

COMPONENT clk_cntr IS
PORT(
clk : in STD_LOGIC;
reset : in STD_LOGIC;
enable : in STD_LOGIC;
sel_bits: in STD_LOGIC_VECTOR(0 to 1); --enable different
cnt : out STD_LOGIC_VECTOR(0 TO 31));
END COMPONENT clk_cntr;

COMPONENT valid_pc_addr IS
GENERIC( NUM_MSBS : INTEGER := 30);
PORT( pc_ex : in STD_LOGIC_VECTOR(0 TO 31);
lowerbnd : in STD_LOGIC_VECTOR(0 TO 31);
upperbnd : in STD_LOGIC_VECTOR(0 TO 31);
clk : in STD_LOGIC;
reset : in STD_LOGIC;
enable : out STD_LOGIC);
END COMPONENT valid_pc_addr;

COMPONENT reg IS
PORT( clk : IN STD_LOGIC;
reset : IN STD_LOGIC;
enable : IN STD_LOGIC;
d : IN STD_LOGIC;
q : OUT STD_LOGIC);
END COMPONENT reg;

begin
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--latch each ’valid’ PC_EX:
gen0: FOR i IN 0 TO 31 GENERATE

regs: reg port map (clk, reset, valid_instr, pc_ex(i), int_pc_ex(i));
end generate;

GEN1: FOR i in 0 to (NUM_COUNTERS-1) GENERATE
enc: valid_pc_addr port map (int_pc_ex, instr_lowerbnds(i), instr_upperbnds(i),
clk, reset, enable(i));
cnt: clk_cntr port map (clk, reset, enable(i), cntr_fx_sel,
int_data_val(i));

END GENERATE;

cntrs <= int_data_val;

end architecture behaviour;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
--clk_cntr.vhd
----------------------------------------------------------------------------
library IEEE;
use IEEE.STD_Logic_1164.all;
use IEEE.STD_Logic_arith.all;
use IEEE.STD_Logic_unsigned.all;

entity clk_cntr is
port(clk: in STD_LOGIC;

reset: in STD_LOGIC;
enable: in STD_LOGIC;
sel_bits: in STD_LOGIC_VECTOR(0 to 1); --enable different
cnt: out STD_LOGIC_VECTOR(0 TO 31));
end entity clk_cntr;

architecture behaviour of clk_cntr is
constant cntrsize : INTEGER := 46; --46 bits
signal int_cnt : STD_LOGIC_VECTOR(0 TO cntrsize-1);

begin

process(clk, reset)
begin

if (reset = ’1’) then
int_cnt <= (OTHERS => ’0’);
elsif ( (rising_edge(clk)) and (enable = ’1’) ) then

int_cnt <= int_cnt + ’1’;
else

int_cnt <= int_cnt;
end if;
end process;

--***REMEMBER THE "000...000" TERM SIZE IS DETERMINED BY THE CNTRSIZE***
cnt <= (("000000000000000000") & int_cnt(0 to cntrsize-33))
WHEN sel_bits = "00" ELSE
int_cnt(cntrsize-32 to cntrsize-1) WHEN sel_bits = "01"
ELSE (OTHERS=> ’0’);

end architecture behaviour;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
--valid_pc_addr.vhd
----------------------------------------------------------------------------
library IEEE;
use IEEE.STD_Logic_1164.all;
use IEEE.STD_Logic_arith.all;
use IEEE.STD_Logic_signed.all;
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entity valid_pc_addr is
generic(NUM_MSBS : INTEGER := 24);
port( pc_ex : in STD_LOGIC_VECTOR(0 TO 31);

lowerbnd : in STD_LOGIC_VECTOR(0 to 31);
upperbnd : in STD_LOGIC_VECTOR(0 to 31);
clk : in STD_LOGIC;
reset : in STD_LOGIC;
enable : out STD_LOGIC);

end valid_pc_addr;

architecture behaviour of valid_pc_addr is
signal met_lowerbnd: STD_LOGIC;
signal met_upperbnd: STD_LOGIC;
signal base_sub: STD_LOGIC_VECTOR(0 to NUM_MSBS-1);
signal high_sub: STD_LOGIC_VECTOR(0 to NUM_MSBS-1);

COMPONENT flipflop IS
PORT( clk : IN STD_LOGIC;
reset : IN STD_LOGIC;
reset_val: IN STD_LOGIC;
d : IN STD_LOGIC;
q : OUT STD_LOGIC);
END COMPONENT flipflop;

begin

--in range = equal or greater than
base_sub <= pc_ex(0 TO NUM_MSBS-1) - lowerbnd(0 TO NUM_MSBS-1);
high_sub <= upperbnd(0 TO NUM_MSBS-1) - pc_ex(0 TO NUM_MSBS-1);

ff0: flipflop port map (clk, reset, ’1’, base_sub(0), met_lowerbnd);
ff1: flipflop port map (clk, reset, ’1’, high_sub(0), met_upperbnd);

--the address is guaranteed to be valid due to the latching of the pc_ex,
--this determines if it is in range for a counter (stalls will also be
--caught as the latched value only changes when there is a valid address
--in the pc_ex

enable <= met_lowerbnd nor met_upperbnd; --if either is 1, disable

end behaviour;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
--flipflop.vhd
----------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.all;

--Entity Declaration:
entity flipflop is
port( clk : in STD_LOGIC;
reset : in STD_LOGIC;
reset_val : in STD_LOGIC;
d : in STD_LOGIC;
q : out STD_LOGIC);
end flipflop;

--Architecture Description:
architecture Behaviour OF flipflop IS

signal int_q : STD_LOGIC;

begin
process(clk, reset)
begin

if (reset = ’1’) then
int_q <= reset_val;
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elsif (rising_edge(clk)) then
int_q <= d;

else
int_q <= int_q;

end if;
END PROCESS;

q <= int_q;
END Behaviour;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
--reg.vhd
----------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.all;

--Entity Declaration:
entity reg is
port( clk : in STD_LOGIC;
reset : in STD_LOGIC;
enable : in STD_LOGIC;
d : in STD_LOGIC;
q : out STD_LOGIC);
end reg;

--Architecture Description:
architecture Behaviour OF reg IS

signal int_q : STD_LOGIC;

begin
process(clk, reset)
begin

if (reset = ’1’) then
int_q <= ’0’;

elsif ((rising_edge(clk)) and (enable = ’1’)) then
int_q <= d;

else
int_q <= int_q;

end if;
END PROCESS;

q <= int_q;
END Behaviour;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
--opb_output.vhd
----------------------------------------------------------------------------

library IEEE;
use IEEE.STD_Logic_1164.all;
use Work.snoopy_types.all;

entity opb_output is
generic(C_OPB_AWIDTH: INTEGER := 32;
C_OPB_DWIDTH: INTEGER := 32;
NUM_COUNTERS: INTEGER := 2; --Max of 10, Min of 1
RESET_ADDR: STD_LOGIC_VECTOR(0 to 31) := X"FFFF_FFE4";
C_BASEADDR: STD_LOGIC_VECTOR(0 to 31) := X"FFFF_FF00";
C_HIGHADDR: STD_LOGIC_VECTOR(0 to 31) := X"FFFF_FFFF"

);
port( OPB_ABus: in STD_LOGIC_VECTOR(0 to C_OPB_AWIDTH-1);

OPB_Clk: in STD_LOGIC;
OPB_RNW: in STD_LOGIC;
OPB_select: in STD_LOGIC;
cntrs: in cntrArray(0 to NUM_COUNTERS-1);
snoopy_DBus: out STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
reset: out STD_LOGIC;
snoopy_xferAck: out STD_LOGIC);
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end entity opb_output;

architecture behaviour of opb_output is
signal valid_hi_reset_bits: STD_LOGIC;
signal valid_reset_control: STD_LOGIC;
signal valid_read_control: STD_LOGIC;
signal valid_lo_addr_bits: STD_LOGIC;
signal valid_hi_addr_bits: STD_LOGIC;
signal sel_bits: STD_LOGIC_VECTOR(0 to 3);
signal mux3_out: cntrArray(0 to 7);
signal mux2_out: cntrArray(0 to 3);
signal mux1_out: cntrArray(0 to 1);
signal mux0_out: STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
signal mux_out: STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
signal int_snoopy_xferAck: STD_LOGIC;
signal int_reset: STD_LOGIC;
signal int_snoopy_DBus: STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1);
signal lowerbnd: STD_LOGIC_VECTOR(0 to C_OPB_AWIDTH-1):= C_BASEADDR;
signal upperbnd: STD_LOGIC_VECTOR(0 to C_OPB_AWIDTH-1):= C_HIGHADDR;
signal gnd_bus: STD_LOGIC_VECTOR(0 to C_OPB_DWIDTH-1):= X"0000_0000";

COMPONENT mux IS
PORT( in_0 : in STD_LOGIC_VECTOR(0 to 31);
in_1 : in STD_LOGIC_VECTOR(0 to 31);
sel_bit : in STD_LOGIC;
out_val : out STD_LOGIC_VECTOR(0 to 31));

END COMPONENT mux;

COMPONENT valid_opb_addr IS
generic( NUM_MSBS : INTEGER := 24);
port( addr : in STD_LOGIC_VECTOR(0 TO 31);

lowerbnd : in STD_LOGIC_VECTOR(0 to 31);
upperbnd : in STD_LOGIC_VECTOR(0 to 31);
valid_addr : in STD_LOGIC;
enable : out STD_LOGIC);
END COMPONENT valid_opb_addr;

begin

--Assumptions (for now):
--valid addresses occur every 8 bytes to allow for 64 bit counters
--I’ve hard-wired a 16 to 1 mux architecture (not the most efficient)
--xferAck isn’t guaranteed to be high for only one clk cycle

OE0: valid_opb_addr port map (OPB_ABus, lowerbnd, upperbnd, OPB_select,
valid_hi_addr_bits);

valid_lo_addr_bits <= ’1’ WHEN OPB_ABus(C_OPB_AWIDTH-2 to C_OPB_AWIDTH-1) = "00"
ELSE ’0’;

valid_hi_reset_bits <= ’1’ WHEN ((valid_hi_addr_bits = ’1’) and
(OPB_ABus(C_OPB_AWIDTH-8 to C_OPB_AWIDTH-3) = RESET_ADDR(24 to 29)) )

ELSE ’0’;

--OPB_select is included in the determination of valid_hi_addr_bits
valid_reset_control <= valid_lo_addr_bits and valid_hi_reset_bits and (not(OPB_RNW));
valid_read_control <= valid_lo_addr_bits and valid_hi_addr_bits and OPB_RNW;

sel_bits <= OPB_ABus(C_OPB_AWIDTH-8 to C_OPB_AWIDTH-5);

--HOW DO I GENERATE XFERACK AND VALID HI BITS FOR READ?

G3: IF (NUM_COUNTERS>1) GENERATE
G3A: FOR i in 0 to ((NUM_COUNTERS/2)-1) GENERATE
M3: mux port map (cntrs(2*i), cntrs((2*i)+1), sel_bits(3), mux3_out(i));
END GENERATE;

END GENERATE;
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G3_0: IF (NUM_COUNTERS mod 2=0) GENERATE -- even
G3_0A: FOR i in (NUM_COUNTERS/2) to 7 GENERATE
M3_0: mux port map(gnd_bus, gnd_bus, sel_bits(3), mux3_out(i));
END GENERATE;

END GENERATE;

G3_1: IF (NUM_COUNTERS mod 2=1) GENERATE -- odd
M3_1: mux port map(cntrs(NUM_COUNTERS-1), gnd_bus, sel_bits(3),
mux3_out(NUM_COUNTERS/2));
G3_1A: FOR i in (NUM_COUNTERS/2)+1 to 7 GENERATE
M3_1A: mux port map(gnd_bus, gnd_bus, sel_bits(3), mux3_out(i));
END GENERATE;

END GENERATE;

G2: FOR i in 0 to 3 GENERATE
M2: mux port map(mux3_out(2*i), mux3_out((2*i)+1), sel_bits(2), mux2_out(i));
END GENERATE;

G1: FOR i in 0 to 1 GENERATE
M1: mux port map(mux2_out(2*i), mux2_out((2*i)+1), sel_bits(1), mux1_out(i));
END GENERATE;

G0: mux port map(mux1_out(0), mux1_out(1), sel_bits(0), mux0_out);
MOUT: mux port map(gnd_bus, mux0_out, valid_read_control, mux_out);

----Process for xmd output:
process(OPB_Clk)
begin

if( rising_edge(OPB_Clk) ) then
if ( valid_read_control = ’1’ ) then
int_reset <= ’0’;
int_snoopy_DBus <= mux_out;
int_snoopy_xferAck <= ’1’;
elsif ( valid_reset_control = ’1’ ) then
int_reset <= ’1’;
int_snoopy_DBus <= gnd_bus;
int_snoopy_xferAck <= ’1’;
else
int_reset <= ’0’;
int_snoopy_DBus <= gnd_bus;
int_snoopy_xferAck <= ’0’;

end if;
else

int_reset <= int_reset;
int_snoopy_DBus <= int_snoopy_DBus;
int_snoopy_xferAck <= int_snoopy_xferAck;
end if;

end process;

reset <= int_reset;
snoopy_Dbus <= int_snoopy_DBus;
snoopy_xferAck <= int_snoopy_xferAck;

end architecture behaviour;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
--mux.vhd
----------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;

--Entity Declaration:
entity mux is



194

--GENERIC(bus_width: INTEGER := 32);
PORT( in_0: in STD_LOGIC_VECTOR(0 to 31);
in_1: in STD_LOGIC_VECTOR(0 to 31);
sel_bit: in STD_LOGIC;
out_val: out STD_LOGIC_VECTOR(0 to 31));
end entity mux;

--Architecture Description:
architecture behaviour of mux is
begin
out_val <= in_0 WHEN sel_bit = ’0’ ELSE in_1;
end behaviour;
----------------------------------------------------------------------------

----------------------------------------------------------------------------
--valid_opb_addr.vhd
----------------------------------------------------------------------------
library IEEE;
use IEEE.STD_Logic_1164.all;
use IEEE.STD_Logic_arith.all;
use IEEE.STD_Logic_signed.all;

entity valid_opb_addr is
generic(NUM_MSBS : INTEGER := 24);
port( addr : in STD_LOGIC_VECTOR(0 TO 31);

lowerbnd : in STD_LOGIC_VECTOR(0 to 31);
upperbnd : in STD_LOGIC_VECTOR(0 to 31);
valid_addr : in STD_LOGIC;
enable : out STD_LOGIC);

end valid_opb_addr;

architecture behaviour of valid_opb_addr is
signal met_lowerbnd: STD_LOGIC;
signal met_upperbnd: STD_LOGIC;
signal base_sub: STD_LOGIC_VECTOR(0 to NUM_MSBS-1);
signal high_sub: STD_LOGIC_VECTOR(0 to NUM_MSBS-1);
signal in_range: STD_LOGIC;

begin

--in range = equal or greater than
base_sub <= addr(0 TO NUM_MSBS-1) - lowerbnd(0 TO NUM_MSBS-1);
high_sub <= upperbnd(0 TO NUM_MSBS-1) - addr(0 TO NUM_MSBS-1);

met_lowerbnd <= base_sub(0); --+ve means MSB is 0
met_upperbnd <= high_sub(0); --+ve means MSB is 0

in_range <= met_lowerbnd nor met_upperbnd; --if either is 1, disable
enable <= in_range and valid_addr;

end behaviour;
----------------------------------------------------------------------------



Appendix F

Input File Format for WOoDSTOCK

/* Filename: gen_monitor_input_format.c

* Author: Lesley Shannon

* Date: July 28, 2005

* Description:

* This file describe the format for the input file used

* to describe the system to be monitored by WOoDSTOCK.

* To provide the information for the input file,

* draw a DAG and label the nodes (CEs) from 0 to

* NumNodes-1 and label the edges (Links) from 0 to

* NumLinks-1.

**********************************************************/

NumNodes
NumLinks

Node0 NumInputs NumOutputs NumEquations

*Input(s)

*Output(s)
Equation0

*Equation1...

Node1 NumInputs NumOutputs NumEquations

*Input(s)

*Output(s)
Equation0

*Equation1...

****************************************************
Notes:

*The equations are used to indicate the relationship
between input packets received by the node to
output packets generated by the node. Equations
use boolean equations where ’*’ indicates ’and’
and ’+’ indicates ’or’. An equation is terminated
using a semicolon.
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