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ABSTRACT

Average 3D digital atlas construction from a set of images
is an important task for registration and assessment of intra-
and inter-population differences in structural and functional
imagery. In this paper, we describe the computation of an
average atlas using LDDMM and geodesic shooting where
the velocity vector fields transforming a provisional template
to the ensemble are averaged and evolved via shooting using
the equation for the geodesic conservation of momentum to
give the average atlas. This guarantees that the averaged atlas
so computed remains within the permissible shape space of
the anatomical ensemble being averaged.

1. INTRODUCTION

Average 3D digital atlases [1] are important in various aspects
of Computational Anatomy (CA). Typical applications of dig-
ital atlases include their use in providing a template anatomy
for registration of the other members in the anatomical ensem-
ble and establishing a standard “extrinsic” coordinate system
(akin to an “origin”) for statistical analysis of structural and
functional variability observed in the population. Preceding
the statistical study of anatomical variation in CA, transfor-
mations that allow the placement of different members of the
anatomical ensemble into a common extrinsic coordinate sys-
tem are computed. The provisional template image to which
the ensemble is transformed has often been chosen to be one
representative member of the ensemble. However, an im-
portant feature of good atlases is that they are representa-
tive of the entire population, and include information from
a set of images acquired from the population rather than be-
ing based on a single chosen proviso-template. Choosing and
basing statistical analysis on the coordinates of a single im-
age is said to introduce “bias” to this preferred common co-
ordinates, specially in settings where the transformations are
non-invertible. Therefore, averaged-atlas computation must
involve the averaging of the anatomical ensemble in a mean-
ingful way to ensure that the outcome remains representative
of the topological and shape characteristics of the ensemble.

Computation of an average anatomical image is not a mat-
ter of simply averaging of the image intensities, as due to fi-

nite quantization, anatomical images do not lie in a vector
space. More important is the fact that simple image averag-
ing does not respect the “curved” manifold of the anatomi-
cal shape space. Alternatively, sufficiently rich transforma-
tions of all anatomical images to a chosen provisional tem-
plate could be computed. Then, either the average of the es-
timated transformations could be used to transform the provi-
sional template, or the average of vector fields (the displace-
ment vector fields in the small-deformation, elastic matching
setting or the time-indexed velocity vector fields in the large-
deformation setting) parameterizing each of the estimated trans-
formations be used to compute an average transformation of
the template. Linear averaging of transformations is also not
a valid operation as transformations are not a vector space. It
can be done with good results in the small-deformation set-
ting [2] where it reduces to averaging of the displacement
fields . Hence, most previous approaches has focused on aver-
aging the small deformation displacement vector fields [3, 4]
or the large deformation time-indexed velocity vector fields
(parameterizing diffeomorphic transformations) to compute
the average [5–7]. In the context of biological images and
the tremendous variability expressed in anatomical shape and
form, the infinite-dimensional groupG of diffeomorphisms
forms the natural setting in which to perform such analy-
sis [5]. Diffeomorphisms are smooth and invertible transfor-
mations, and under their action, it is guaranteed that no fusion,
folding or tearing of the anatomical imagery will be found in
the transformed images.

Here, we describe the computation of an average atlas im-
age from an ensemble of images based on the Large Deforma-
tions Diffeomorphic Metric Mapping (LDDMM) methodol-
ogy [8] and the concepts of geodesic shooting in the space of
diffeomorphic transformations [9]. This is an extension of the
average computation in the landmark matching setting using
geodesic shooting [10] where the average shape and statisti-
cal models of variability of an ensemble of landmark datasets
were discussed. The average atlas in this procedure remains
in the shape space of the ensemble of elements being aver-
aged since it follows the diffeomorphic evolution of the pro-
visional template shape via the conservation of momentum
along the geodesic flow on the curved manifold of diffeomor-
phisms. The average atlas computation discussed here was
used in quantifying variability in heart geometry [11].



2. REVIEW OF LDDMM

Let the background spaceΩ ⊂ Rn be a bounded domain on
which the image functions in the ensembleI = {I : Ω →
Rd} are defined. LetG denote the admissible subset of the
group of diffeomorphisms of the domainΩ with the law of
compositionψ · φ .= ψ ◦ φ (for the details related to the rig-
orous construction ofG, see [12, 13]). For any imageI ∈ I,
φI

.= I ◦ φ−1 defines an action ofG on I. Given a template
Itemplate, an anatomical ensemble is defined as the orbitI .=
{ φItemplate| φ ∈ G } of Itemplateunder the action ofG. Given
two anatomical imagesI0 and I1 in the orbit, identify the
first image with the identity element inG and the second im-
age with the unknown diffeomorphismϕ ∈ G registering the
given imagesI1 = ϕI0 = I0◦ϕ−1. This unknown diffeomor-
phism is computed as the end-pointϕ = φ1 of a time-indexed
flow φ : [0, 1] → G associated to a smooth, compactly sup-
ported, time-dependent velocity vector fieldvt ∈ V, t ∈ [0, 1]
via the ODEφ̇t = vt ◦ φt, with φ0 = identity, t ∈ [0, 1]. The
estimation of the optimal transformation connecting images
I0 andI1 occurs via the basic variational problem that, in the
Hilbert spaceV of smooth vector fields, takes the form:

v̂ = argmin
v:φ̇t=vt(φt)

(∫ 1

0

‖vt‖2V dt +
1
σ2
‖I0 ◦ φ−1

1 − I1‖2L2

)
.

The optimizerv̂ of this cost generates, upon integration, the
optimal change of coordinatesϕ = φ1. Enforcing a sufficient
amount of smoothness via an appropriate Sobolev norm (such
as through a mixture of differential operatorsL via ‖f‖V =
‖Lf‖L2 , 〈f, g〉V .= 〈Lf, Lg〉L2 where‖ ·‖L2 is the standard
L2 norm for square integrable functions defined onΩ) on the
elements admissible in the spaceV ensures that the solution
to evolution ODE is in the space of diffeomorphisms [12,13].

The variational gradient of this variational cost function
leads to the Fŕechet derivative∇vEt in spaceV to be:

∇vEt = 2vt −K

(
2
σ2
|Dφt,1|∇J0

t

[
J0

t − J1
t

])

where the notationφs,t : Ω → Ω is used to denote the com-
positionφs,t = φt ◦ (φs)−1, J0

t = I0 ◦ φt,0, J
1
t = I1 ◦ φt,1,

|Dφt,1|,∇J0
t are the determinant of the Jacobian and the gra-

dient of the functionsφt,1 andJ0
t respectively. The operator

K is a compact self-adjoint operator such that whenV is de-
fined through a differential operatorL, one getsK(L†L)a =
a for any smooth vector fielda ∈ V ( < a, b >L2=< Ka, b >V

) whereL† is the adjoint ofL. This variational gradient is
used in a standard gradient based scheme exploiting the vec-
tor space structure ofV yielding the update

vn+1 = vn − ε∇vnE

wheren denotes the simulation number, and due to the smooth-
ness constraints imposed on spaceV , enjoys nice numerical
properties with respect to convergence and stability. This is

called the LDDMM solution [8] to the posed variational im-
age matching problem as it provides (1) large deformation
coordinate system transformation in the space of diffeomor-
phisms and (2) the length of the shortest pathinf

∫ 1

0
‖vt‖V dt

connecting the given images defines a metric on the image
orbit I [14].

3. LDDMM BASED GEODESIC SHOOTING

The variational derivative vanishes on the optimizer of the
variational cost. Therefore,∇vEt = 0 gives that the optimal,
geodesic flow satisfies:

(L†L)vt =
2
σ2
|Dφt,1|∇J0

t

[
J0

t − J1
t

]

= αt∇J0
t ∀t ∈ [0, 1]

whereαt = (2/σ2)|Dφt,1|
[
J0

t − J1
t

]
and, att = 0,

(L†L)v0 =
2
σ2
|Dφ0,1| [I0 − I1 ◦ φ0,1]∇I0 = α0∇I0.

The quantity(L†L)vt is the momentum of the diffeomor-
phic flow at timet ∈ [0, 1]. A detailed and rigorous con-
struction of the theory of geodesic shooting originates in [9].
The important property of geodesic shooting of relevance to
construct the averaged atlas is that the momentum associated
to the flow is conserved sinceαt = |Dφt,0|α0 ◦ φt,0 and
J0

t = (Dφt,0)t∇I0 ◦ φt,0. This leads to the partial differen-
tial equation for conservation of momentum:

(L†L)vt = |Dφt,0|(Dφt,0)t(L†L)v0 ◦ φt,0. (1)

which states that the momentum at timet ∈ [0, 1] is known
given the momentum(L†L)v0 att = 0. Therefore, the funda-
mental object in the setting of the solutions to large deforma-
tions template matching problems and on which to build sta-
tistical models of anatomical variability is the velocityv0 (or
the momentum(L†L)v0). This geodesic evolution following
conservation of momentum is the essence of geodesic shoot-
ing. Given either the optimalv0 or α0, the entire geodesic
path for the evolution ofI0 towardsI1 is completely spec-
ified. If we intuitively think of∇I0 as being the appropri-
ate initial “direction” for shooting on the manifoldG to reach
the targetI1 while traversing the geodesic, thenα0 is anal-
ogous to the correct “speed” to start off towards the target
elementϕ = φ1 on G. To practically compute the geodesic
evolution, if we are given sayv0, then we can computeα0

from (L†L)v0 = α0∇I0 and, using semi-lagrangian inte-
gration [8],φt+δt,0 can also be computed, which then gives
αt+δt = |Dφt+δt,0|α0◦φt+δt,0 and therefore the geodesic ve-
locity vector field at the next time-stepvt+δt. Upon iteration,
this computation retrieves the entire geodesic velocity vector
field starting from the specification ofI0 and the optimalv0.

Hence, the first step in our approach to create an aver-
age atlas using LDDMM and geodesic shooting is to employ



LDDMM to compute the optimal transformation of a provi-
sional templateI0 ∈ I to each target imageIi ∈ I, i =
1, . . . , N . The image ensemble could consist of, for exam-
ple, MR images of the neuroanatomy acquired from the same
scanner/pulse-sequence or segmented binary images of a given
anatomical structure such as the heart etc.. These images have
been preprocessed to be in rigid alignment withI0 via stan-
dard rigid registration algorithms. The set of optimal velocity
vector fieldvi

t ∈ V, t ∈ [0, 1], i = 1, . . . , N computed from
LDDMM gives the optimal diffeomorphic change of coordi-
natesϕi, i = 1, . . . , N such that, within the noise specifica-
tion in the inexact matching setting,ϕiI0 ≈ Ii. The second
step is to compute the average initial velocity vector field at
the originv̄0 = (1/N)

∑
i vi

0. The third step is to propogate
this averaged velocity vector field̄v0 forward using the con-
servation equation 1 stopping the evolution in the same num-
ber of discretized time-steps that were used to match each of
the ensemble images to the chosen templateI0. The resul-
tant transformation ofI0 via the geodesically evolved flow is
thus the computed ensemble-averaged atlas. The above pro-
cedure can be iterated with the computed average as the new
template, and stopping the process when the averaged‖v̄0‖ is
small. The geodesic evolution guarantees that the transforma-
tion at everyt ∈ [0, 1] is an element in the admissible group
of diffeomorphisms and hence, the constructed averaged atlas
adheres to the constraints of shape and topology present in the
averaged ensemble.

4. RESULTS

This algorithm has been implemented in C++ as a full 3D
computation. The algorithm was used to calculated the pop-
ulation average for binary segmentations of the cardiac ven-
tricles from normal and diseased dogs (Figure 1 a,b) and bi-
nary caudate segmentations from human MR images (Figure
2). The computed average models are found to agree with a
qualitative representation of the population, and are sharp and
well defined. The algorithm was also applied on grayscale
MR images, a cube surrounding the basal ganglia was cut
from the whole brain MR image and processed with edge pre-
serving smoothing prior to calculating the average grayscale
atlas (Figure 3). The computed atlas also shows that it is a
crisp image with minimal loss of contrast and well-defined
qualitatively average features. Preliminary validation of the
average atlas image, in the spirit of the Fréchet mean, via
1
N

∑N
i=1 ρ2

I(Ii, Ī) whereI is the anatomical ensemble and
ρI the LDDMM metric distance onI indicates that this pro-
cedure leads to a lower sum of the squared distances from the
computed average atlas image.

5. CONCLUSION

This paper present an algorithm for computing a digital 3D
anatomical average atlas from an ensemble of images using

(a)Average Normal Heart

(b)Average Failing Heart

Fig. 1. Segmented binary models of the normal and diseased
dog hearts were used to compute the respective population
average model̄Inormal andĪfailing.

LDDMM and geodesic shooting. The computations are sta-
ble and fast, and the computed atlas has image quality and
contrast similar to the ensemble with minimal blurring effects
entering due to interpolation upon transformation and not in-
herent to the averaging procedure. This is due to the the av-
eraging of geodesic velocity vector fields in the coordinates
of a chosen template and their evolution on the manifold of
diffeomorphisms via geodesic shooting, thus always ensuring
that the computed average image remains within the orbit of
template under diffeomorphisms. As a result, the computed
average is also found to preserve the topology of the template
and represent the average of the variability manifest in the
population.
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Average Segmented Caudate

Fig. 2. Segmented binary models of the caudate were used to
compute the respective population average modelĪcaudate.
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