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Abstract

This paper describes a multi-sensor control system for
motion control of a tracked vehicle (an excavator).
The system includes several controllers that collabo-
rate to move the mobile vehicle on a predefined path.
A fuzzy logic path-tracking controller estimates the ro-
tational and translational velocities for the vehicle to
move along the predesigned path. A cross-coupling
controller corrects the possible orientation error that
may occur when moving along curvatures. A vision-
based motion tracking system finds the 3D motion of
the vehicle as it moves in the working environment.
Finally, a specially designed slippage controller de-
tects and corrects slippage by comparing the motion
through reading of flowmeters and the vision system.
Experiments are conducted to test and verify the pre-
sented system. An analysis of the results shows that
improvement is achieved in both path-tracking accu-
racy and slippage control problems.

1 Introduction

Tracked vehicles, such as excavator-type machines,
are widely used in industries such as forestry, construc-
tion and mining. These machines are used for a vari-
ety of tasks, such as carrying loads, digging ground,
straight traction, and ground leveling. Autonomous
controls for driving or assisting humans in operating
these machines can improve the operation safety and
efficiency. Much research has gone toward controlling
vehicle movement so that only partial or no operator
interaction is required while the vehicle is performing
a task [4] [15]. The most common level of automa-
tion, for these type of vehicles, is achieved by tele-
operation, in which the operator controls the vehicle
remotely [11] [18]. The ultimate goal is to have a com-
pletely autonomous vehicle by eliminating the need for
constant, low level, human guidance. Achieving this

goal in natural environments requires planning every
movement, to avoid any obstacle and to locate the
vehicle at each time with respect to a global coordi-
nate system. With the application of a good control
scheme, the effect of human error can be minimized or
completely removed, and more consistent operation of
the vehicle can be achieved to increase efficiency.

Numerous methods are developed to track trajecto-
ries and paths outdoors [10] [21] [5] [16]. Some of these
methods implement non-linear trajectory control algo-
rithms using the difference between the actual and vir-
tual reference positions. Others accomplish the task by
generating error vectors from the lateral displacement
and heading errors. Path tracking is also performed
using feedforward compensation for the steering mech-
anism to provide anticipatory control of the steering
lag.

The main goal of this work is to move a tracked
vehicle along a known path in an unstructured out-
door environment. This paper is organized as follows.
First a short overview of the system is presented in
Section 2. The design and implementation of the path
tracking controller is described in Section 3. The cross-
coupling motion controller is studied in Section 4. The
motor controller is addressed in Section 5. Section 6
represents the vision based motion tracking system.
The slippage controller is discussed in Section 7. Ex-
perimental results are represented in Section 8, and
conclusions and future work are outlined in Section 9.

2 Track Control System Overview

A block diagram of the semi-autonomous track con-
trol system is shown in Figure 1.

The input to the system is the predefined path pro-
vided either by an operator or a path planning con-
troller. At each time, a path segment is passed to the
path tracking controller. By comparing the current
position of the vehicle (obtained incrementally from
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Figure 1: Track control system block diagram.

the rate flow sensors) with the path to be followed, the
reference translational and rotational velocities for the
mobile robot are computed. The vehicle is either com-
manded to continue driving along the path, when on
the desired path, or made to converge back to the de-
sired path if it has strayed. When the vehicle reaches
the end of the current segment, the path tracking con-
troller requests the next path segment.

The cross-coupling motion controller (CCMC) con-
trols the heading error directly, using the left and right
track reference speeds, as well as the accumulated dis-
tance error between the two tracks.

The vision-based tracking system processes consec-
utive trinocular stereo sets of images to detect and
track correspondences to the most stable points in
the environment. Using stereo algorithm and the 2D
displacements of similar image features in different
frames, the 3D trajectory of the camera, and hence,
the vehicle is estimated.

If the estimated trajectory by the vision system dif-
fers substantially from that of the dead-reckoning sen-
sors, for the same time period, a slippage value is cal-
culated in the slippage controller. The slippage value
is used to compute a scaling factor to reduce the left or
right track reference speeds until the slippage is elim-
inated.

3 Path Tracking Controller

Figure 2 represents the block diagram of the path
tracking controller. This controller maintains the mo-
bile vehicle on a desired path. The inputs to this con-
troller are the current position and orientation of the
vehicle, and the desired path segments. Using these
two pieces of information, the controller estimates the
motion needed to reach the end of the desired path
segment. Upon reaching the end of the desired path

segment, this controller transmits a path segment re-
quest for the next path segment to be traversed.
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Figure 2: Path Tracking Controller block diagram.

3.1 Trajectory Error Generation

The trajectory error generation estimates an error
vector in the vehicle frame using the desired destina-
tion and the current position (Figure 3). The desired
destination is provided in the system input, while the
current trajectory is estimated through the readings of
the resolvers.
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Figure 3: Trajectory error generation.

The generated trajectory error can be expressed by

Ty cos(Paw)  Sin(gw) 0 Taw — Tew
Yve | = Sin(¢d,w) _COS(¢d,w) 0 Ydw — Ye,w
¢v,e 0 0 -1 ¢d,’w - Pcw

(1)

where sub-indices (d, w) and (¢, w) represent the desti-
nation and current position in world coordinate frame,
and (v, e) the vehicle error frame. Equation 1 repre-
sents the required positional correction before reaching
to the end of the current path segment.



3.2 Trajectory Vector Update

The trajectory vector update is responsible for re-
questing a new segment when the end of the current
segment is reached. This is achieved when the value
of z, . approaches zero. At each moment, the value
of z, . is carefully observed to ensure that an error in
Yu,e OF ¢y o would have no influence on the segment di-
rection. The trajectory vector update also derives the
error changes of “Zwe Wue and 9Pve that are used in

T, T, T,
the trajectory controller.

3.3 Trajectory Controller

The rotational and translational velocities of the
vehicle, (Vg, <i)d), are controlled by this controller. The
translational control is performed by determining the
desired translational velocity of the vehicle from the
changes in z, . and y,.. The orientation control is
performed by using y, . and ¢, . and their derivatives.
The goal is to converge the inputs to zero

dou.c
T

dyy,e
T

yv,ezoa :07 ¢v,e:03 =0 (2)

3.4 Translational Velocity Controller

Regardless of the position and orientation, this con-
troller is responsible for maintaining a desired accelera-
tion during the starting time and velocity change when
converging to a desired translational velocity. Here,
the sum of changes in z and y of the vehicle are mea-
sured to estimate the actual velocity of the vehicle.
The control rules for converging to, or maintaining, a
desired action can be expressed as

0, if v = +Viee and v < Uges

dvgy 0, if v = —Viee and v > Uges
T, |-A, if v > Vges
A, if v < Vges

3)

(5 (%) o

These equations state that the output of the transla-
tional velocity controller, vq4,,, changes by comparing
the current positional change with the desired transla-
tional velocity. It depends not only on a prespecified
desired velocity, but also on the current values of y, .
and ¢, . Therefore, the translational velocity of the
vehicle decreases when not on the specified path. This
may happen when a path segment changes or track
slippage occurs, and when a turn is attempted. At
each turning point the translational velocity has to
be decreased to prevent the vehicle from overshooting
when converging to a new path. In order to ensure a

stop at an exact stop position with a specific deceler-
ation, the following rules [20] are adopted:

'Ud,s(wv,e) = Sign(wv,e)- \/ 2-ASto;rJ-|fl7'u,e| (5)

D 0, if ’Ud,s(ll?v,e) = Udes
d, :
Tv = A5t0p7 ifv< 'Ud7s($'u,e) (6)
s .
— AStop, if v > vg,5(2o,e)

3.5 Rotational Velocity Controller

This controller forces the vehicle to move on a de-
sired path by controlling the rotational velocity, ¢q. .
For this purpose, two fuzzy PD-regulators, one for y, ¢
and its derivative and another for ¢, . and its deriva-
tive, are implemented. The input space of the fuzzy-
PD controllers are yy ¢, %, ¢y, and % Variables
y and ¢ are divided into five membersﬁip functions
(MFs) and %= and %% into three. Similarly the
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Figure 4: Rotational velocity controller input space.

universe of y, dy and d¢ are partitioned. The output
space for this controller is defined by variable gzlﬁd’v with
a defuzzication of the centroid-based method [17]. In
order to have smooth output changes, the member-
ship functions are equally distributed as shown in Fig-
ure 5-a. The output space mapping function rules are
represented in Figure 5-b.

3.6 PWS Inverse Kinematics

The Power Wheel Steering (PWS) Inverse Kine-
matic for the conversion from the trajectory controller
output, [vq,y, ¢a,], to the desired translational veloc-

ities of the right and left tracks, [Vp,r, Vp,g], are de-
fined by:

o] ) ot

. D
Vb.r L—ar| |vgy + ¢, —t2pe

(7)
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Figure 5: Rotational velocity control output space.

Dirack s the distance between tracks (for our excava-
tor it measures as 1.275m). ar and aj are the de-
tected slippage coefficients, bounded by [0 1].

4 Cross-Coupling Motion Control

A tracked vehicle, such as an excavator moves by
the rotation of two rubber tracks that are driven and
controlled by two independent motors. The steering
action for such a vehicle is accomplished by the differ-
ence in speed of the two tracks. The velocities for such
a vehicle can be expressed by [19]

. VrtovuL . . VR +UL ; _ UR — UL
T=——"sinf ,y= ——cosh , 0 = ———
2 2 Dtrack
(8)

where x, y and 6 show the position and the heading of
the vehicle in the world coordinates, & and y describe
the translational velocities, and 6 represents the angu-
lar velocity. The linear velocities of the left and right
tracks are represented by vy, and vg and Dy,4ck is the
distance between the two tracks. Several external and
internal sources can effect the accuracy of the vehi-
cle’s motion. The heading error describes the robot’s
orientation error, while the tracking error shows the
distance between the actual and desired vehicle posi-
tions. The heading error is the most disturbing, since
it can increase the tracking error over time. Also, since
each track works in an individual loop and receives no
information about the other, when a disturbance hap-
pens in one loop and causes an error in the motion of
the vehicle, it is corrected only in its own loop, while

the other loop caries on as before. The cross-coupling
controller regulates the orientation error e¢ of the ve-
hicle by exchanging feedback information between the
two control loops [8].
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Figure 6: Cross-Coupling Controller block diagram.

The idea of cross-coupling control is based on cal-
culation of the actual error, multiplying that by a con-
troller gain, and feeding this error back to the individ-
ual loops [7] [6], Figure 6. In straight line motions the
orientation error ef is represented by

ef = TAep = B (9)
Dtrack

where dgr and dj, are the total left and right track dis-
placement for the current segment. In order to permit
the vehicle to move along curved paths, the center of
the robot must move along a circle of radius R. The
corresponding track speeds are

Dtrack Dtrack
= _—_— = _— 1
v = V(B — =2y Lop = V(R+—52%)  (10)

where V is the translational velocity of the vehicle.
From these two equations we can derive the relation-
ship between the left and right track velocities to define
two coefficients

Dirack
vr, R — SR
Cr=1,Cp=— = —+="— 11
L s VR VR R—|— Dirack ( )

2R
These two coefficients are used as left and right cross
coupling gains, Figure 6. To track a general nonlinear
trajectory, the radius of the curvature is calculated
at each sampling period and substituted into Equa-
tion 11.



5 Motor Controller

The rotational velocity of each track is controlled
by a PID regulator based upon the desired track trans-
lational velocity, Vzlz, L Or V}I%’ R, specified by the cross-
coupling controller and feed back from the correspond-
ing velocity sensor directly attached to the track axle.
The derivation of the vehicle’s current translational
and rotational velocities, Vouyr, v, gzlﬁcum, from the mea-
sured rotational odometry velocities, we,r, we,Rr, are
described by

Rodo Rodo

VCur,v WC R- Qd +WC',L- 2(1 (12)
— |4 Rodo y Rodo
WCur,w QSC,R-D;)ZO - ¢C’L'ngc

Here Ropg4, represents the radius of the resolvers and
Dpgo denotes the distance between the odometry
wheels. The vehicle motion transformation from the
measured velocities to the position change is given by

dwCur,W COS(¢CU’I‘,W) 0 Vo
dycurae| = [sin(ocuw) 0. |31, 13
d¢C’ur,W 0 1 Curywv

where ¢cyr,w denotes the Cartesian world angle from
the position integrator, and T, the sampling period.

6 Vision-Based Motion Tracking

The vision system includes a head with three CCD
cameras, mountable anywhere on the mobile vehicle.
By processing consecutive trinocular sets images, the
local 3D trajectory of the vehicle in an unstructured
environment can be tracked [14]. The system does not
rely on any prior knowledge of the environment or any
specific landmark in the scene. We assume that the
scene is mostly constructed of rigid objects, although
if there are a few small moving objects the system still
relies on static information. The vehicle’s motion is
assumed to be limited in acceleration.

6.1 Feature Extraction

Although globally all the points in a scene convey
some information about the motion, locally not all
the pixel correspondences on the scene image carry
valuable motion information. Also processing the en-
tire existing image pixels is a time consuming pro-
cess and includes ambiguity. Therefore, we work with
discrete points, corners, of the scene with maximum
information content. Schmid and Mohr [1] evaluate
several corner detectors. They show that Harris and
Stephens corner detector [3] outperforms other meth-
ods with a higher geometric stability and a larger inde-
pendency from imaging conditions. Therefore, Harris
and Stephens’ corner detector is implemented that in-
volves shifting a circular patch of the image in different

directions. If the patch includes a corner, then shifting
along all directions results in large changes. A corner
can be detected when a minimum number of changes
produced by any of the shifts is large enough. FEach
corner’s quality is measured by a corner response R,

R = Det(M) — K(T,(M))* (14)
[ X2@W XYeW oI oI
M=\xvew yew| ‘g Yy (19

6.2 Stereo Vision

The 3D world coordinates relative to the camera for
each corner are computed using stereo algorithm. Our
camera system captures a set of three images which
are precisely aligned horizontally and vertically [13].
Candidate feature correspondences for the overlapping
regions in the three stereo images are found and the
Normalized Sum of Square Differences is computed for
each pair of match candidates. The best match candi-
date is found by disparity sum minimization using the
multiple-baseline algorithm [12]. In addition to the
epipolar constraint, agreement between the horizontal
and vertical disparities is employed, which eliminates
unstable features, particularly those due to shadow ef-
fect. For areas of the reference image that are common
in only one of the horizontal or vertical images, the
Fua [2] method is employed.

6.3 Feature Tracking

Corresponding 3D features are tracked from one
frame to the next in this section. There is no assump-
tion or prediction about the value or direction of the
motion. Therefore, for each corner a simple search
routine is applied that finds all possible match candi-
dates in the vicinity of the predicted position in the
next image frame. Accordingly, NSSD is employed for
each pair of match candidates. In order to cover all
motions, a search scope of 27x27 pixels is employed.

6.4 Motion Estimation

Having a set of corresponding corners between each
two consecutive images, motion estimation becomes
the problem of optimizing a 3D transformation that
projects the world corners, constructed from the first
image, onto the second image. Therefore, the New-
ton’s error minimization is implemented. To minimize
the probability of converging to a false local minimum,
we look for outliers and eliminate them during the it-
eration process. At each iteration a correction vector
z is computed that is subtracted from the current es-
timate (P)), resulting in a new estimate (P(+1).

Pt = pli) _ g (16)



Given a vector of error measurements between the
world 3D features and their projections, we find the z
that minimizes this error. The effect of each element
of correction vector x; on error measurement e; is the
multiplication of error partial derivative with respect
to that parameter to the same correction vector

_ 8ei

Jr=e where Jii = oz,

(17)

J is the Jacobian matrix and e; presents the error
between the predicted location of the object and actual
position of the match found in image coordinates [9].

6.5 Position Refinement

Sensor noise and quantization associated with the
image can each introduce slight displacements at fea-
ture locations within the image. As the camera navi-
gates in its environment, most of the features fall into
the camera field of view for a period of several frames.
Detection of a feature in each frame by itself provides
an additional information about that feature. Also,
as the camera becomes closer to a feature, or as the
features move from the image sides to its center, the
3D accuracy of the feature can improve dramatically.
Therefore, combining the measurement for a feature
with all its previous associated information reduces the
uncertainty of that feature. In our system a positional
covariance is associated with each observed feature us-
ing a Kalman filter generation. Each filter is updated
using new information for the same feature over time.

wit = wil + ATV A (18)
x; = xiq + ki(b; — Ajziq) (19)
ki = U),'AZTV;-_I (20)

In these equations i represents the frame number. w;
is the uncertainty in the estimation of z corresponding
to frame ¢, k; denotes the filter gain, b; indicates the
current measurement of the feature, V; represents the
covariance matrix of the errors and A; is the identity
matrix. We keep track of the features for a while, 6
consecutive frames, and then retire them.

7 Slippage Controller

One major problem with track robots such as ex-
cavators is the track slippage during sudden starts or
stops, and over various types of surfaces. Slippage
usually occurs when one or both tracks lose traction
with the ground, which makes the readings of the
dead-reckoning position odometer errornous. More-
over, when different amounts of slippage occur between
left and right tracks, the track vehicle does not follow

the appropriate curvature of the desired path. This
creates path tracking, and/or position estimation er-
rors. The individual track slippage condition is de-
tected by comparing the track distance traveled dur-
ing a time period, as measured by the track flowmeter
sensor, with that calculated by the vision system. At
each time, the vision system provides six motion pa-
rameters (AX, AY, AZ, A¢,, A¢,, A¢.). In this work,
only AX, AY and A¢, are of interest, since these were
the only motions measurable by the individual track
hydraulic lowmeters. Figure 7 illustrates the motion
of the center of the excavator and the motion of the
camera system between two image frames.

Camera system

< e
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| Ar— I
¢ Xt of ER =
o = =
X k-1
Y = = e,
offset = —
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y €
Y k Yr, k-1 Ye‘ k e k-1

Figure 7: Excavator and camera in world coordinate.
Assuming that Xep-1=0,Y, 41 =0 (21)

the excavator and camera motion from frame k — 1 to
k in world coordinate system can be represented by

AXe=Xep —Xepo1 = X (22)
AY, =Y, —Yer1=Yer (23)
AXe=Xer — Xeg—1 = AXyision (24)
AY, =Y., — Ye o1 = AY%ision (25)

The coordinate of the camera center is expressed by
AAch,lcfl = Xe,kfl + Xoffset = Xoffset (26)
AY'c,k—l = Y'e,k—l + Yoffset = Yoffset (27)
AX, = Xer + Lsin(¢ — 6) (28)
AY,r =Yer + Leos(¢p — 0) (29)

(30)

L= /X201 et + V201 st = 0.891m 30

The motion of the camera can be rewritten as

AXm'sion = Xe,k + LS’LTL(¢ - 0) - XOffSEt (31)
AYvision — Tek + LCOS(¢ - 0) - Yoffset (32)



Changes in the position of excavator can be expressed
by the estimated motion by the vision system as

Xe,k = AAvaision + Xoffset - LSin(AQSvision - 0)

Yve,k = AYvision + Yoffset - LCOS(A¢vision -

With the assumption of a constant speed for the exca-
vator between two consecutive frames, the excavator
translational and rotational speeds are estimated by

— \/AXZision + AYUQision (35)

‘/eacc,vision — AT

A¢vision
Wezc,vision = T (36)

Here AT represents the time between the two frames,
50ms. The individual left and right track distances,
measured by the vision system can be estimated by

B

AdL,m'sion = ‘/eacc,visionAT - 5wemc,m‘sionAT (37)
B

AdR,vision = ‘/emc,visionAT + Ewemc,visionAT (38)

During a typical instance of slippage, the distance
measured by the respective track hydraulic flowme-
ter is larger than that estimated by the vision system.
The track slippage, therefore, can be defined by

Adi,‘)"low - Adi,m’sion
Adi,’uision

a; = Slzpl = x 100 (39)
Here the subscript ¢ can be either L or R for the right
or left track respectively. As the slippage value varies
in magnitude between 0% to 100%, it represents con-
ditions of zero track slippage to total track slippage.

8 Experimental Results

The performance of our system is evaluated through
several experiments, some of which are demonstrated
here. Figure 8 shows the result of the trajectory error
generation for a typical path segment change. In this
experiment the vehicle navigates from its current posi-
tion (Zeyr v =75¢M, Yeur,y=50cm) to a desired location
of (Zeur,y=140cm, Yeyr y=0cm). Figures 8-b, -c and -d
represent the corresponding changes in ¢, ¥, and
Gore-

Figure 9 represents the performance of the slippage
controller in conjuction with the rest of our system.
In this experiment, the right track goes through a 25
degree slippage, solid line. The system automatically
adjusts the speed of the left track, and as soon as the
slippage is passed, the system goes back to normal
values.

0 e S R S S T
0 20 40 6.0 80 10.0 12.0 140 16.0 18.0 sec

20 L L L L L L L L sec
0 20 40 60 80 10.0 120 140 16.0 18.0

Py ()

1 1 1 1 1 1 1 1 1 " sec
0 20 40 6.0 8.0 10.0 12.0 14.0 16.0 18.0
(d)

Figure 8: Trajectory error in a segment change.

Figure 10 demonstrates the performance of the sys-
tem in moving the vehicle on a desired path. In this
experiment, the vehicle moves along the dotted line,
from starting point A to the goal point B. The vehi-
cle goes through slippage at the beginning (solid line).
This slippage changes the orientation of the vehicle
in an unwanted direction. Through slippage detection
and control, the orientation is corrected shortly after.

The displayed results are the average values for
three individual executions. The accumulated posi-
tional error along z and y directions are less than 7%
with a small heading error of 2%.

9 Conclusions and Future Work

A novel approach is presented in this paper for path
tracking with slippage control. The approach is gen-
eral and can be applied to any track vehicle. Not only
does our fuzzy logic tracking control scheme simplify
the design, but the existing tolerance in fuzzy logic for
dealing with imprecision and uncertainties makes this
system more reliable for outdoor environments (espe-
cially in natural terrains). Also, the implemented vi-
sion system is scene-independent, and does not need
any prior information about the scene.

The future work includes the implementation of a
dynamic path planning system by employing multi-
ple laser scanners for an even more automated perfor-
mance.
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