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Abstract

This paper describes a vision-based system for 3D lo-
calization and tracking of a mobile robot in an unmod-
ified environment. The system includes a mountable
head with three on-board stereo CCD cameras that can
be installed on the robot. Here the main emphasis is
on the ability to estimate the geometric information of
the robot independently from any prior scene knowl-
edge, landmark or extra sensory device. Distinctive
scene features are identified using a novel algorithm
and their 3D locations are estimated with a stereo al-
gorithm. Using multi-stage feature tracking and mo-
tion estimation in a symbiotic manner, precise motion
vectors are obtained. The 3D position of the scene fea-
tures are updated by a Kalman filtering process. Ex-
perimental results show that robust tracking and local-
ization can be achieved using our vision system.

1 Introduction

Real-time localization and motion tracking of a
mobile robot relative to its environment have been
subjects of interest for many years. Such interest
has resulted in a variety of methods that vary based
upon the environment, prior knowledge about the en-
vironment, sensor, cost, accuracy and the tracking
approach. Many systems are implemented for con-
fined environments by utilizing artificial landmarks [2].
Such systems are highly dependent on their modified
surroundings and can not function under beacon-free
condition.

Several other approaches use maps of their environ-
ments that are either supplied or self generated in a
learning phase. For example, MINERVA [16] is a tour-
guide robot that uses camera mosaics of the ceiling
along with encoders and sonar sensors for its localiza-
tion.

Sim and Dudeck [14] introduced a landmark-map
based method in which the position of the camera was
estimated by a linear position interpolation of some

match correspondences. These correspondences were
chosen from a set of images acquired from xy grid lo-
cations in the learning phase. Although this method
is scene dependent and has a limited accuracy, it does
not suffer from long-term drift.

Ayache and Faugeras [1] presented a vision-based
navigation system by extracting chain of edges that
were later approximated by linear segments. Using
trinocular stereo and triplets of homologous segments
a local 3D map was created at each frame. This map
was used in the next frame to predict new matches
and refine the motion between the two frames and to
create and update a global 3D map. Although the
system is scene independent, it fails where there are
no significant number of edges present in the scene.
Further more there is no report on the long term drift
and the cost.

Harris [6] introduced a 3D vision system by mea-
suring the visual motion of the images’ features. The
position of the camera and the 3D locations of the fea-
tures in the scene were updated over time by means
of Kalman filters. This system has the advantage of
being scene independent, but tolerable motion range
is limited to small amounts between frames.

This paper describes our on-going research [11] at
the University of British Columbia on the problem of
real-time purely vision-based 3D motion tracking. We
assume neither prior knowledge of the environment nor
specific landmarks in the scene. The scene is assumed
to be mostly rigid, although some non-rigid portions
of the scene can be detected and ignored. The motion
of the robot is assumed to be limited in acceleration.
This allows the feature search techniques to work on a
predictable range of possible matches. Features such
as a fast binary corner detector, multi-stage tracking,
and incorporation of large numbers of features from
the sides of the view field have increased the robustness
and accuracy of our system.

Our approach consists of several phases that are
executed as depicted in Figure 1.
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Figure 1: System overview.

Feature Detection: meaningful features are de-
tected in the images that can be tracked over a
sequence of frames.

e 3D Position Estimation: a 3D representation
of the extracted features within the scene is ob-
tained from a trinocular set of stereo images.

Match Tracking: the features are matched us-
ing a multi-stage matching process.

Motion Estimation: the relative motion of
the camera is estimated in an absolute reference
frame.

Tracking Refinement: using an iterative pro-
cess and the estimated motion, the match track-
ing is refined resulting in a more accurate motion
estimation.

3D World Model Refinement: the 3D world
feature locations are refined by combining all the
previous geometric measurements of the same fea-
tures.

Details of each process are presented in the following
sections and is followed by the presentation of the ex-
perimental results and conclusions.

2 Feature Detection

Although globally all the points in a scene convey
some information about the motion, locally not all the
pixel correspondences on the scene image carry valu-
able motion information. For example, edges, occlu-
sions or areas of uniform intensity, can at best locally
convey partial information about the motion. For this
reason, we have chosen to work with discrete points
of the scene that have maximum information content

that are paritally invariant with respect to scale and
rotation. In our previous work [11], the Harris cor-
ner detector [4] was used. Although it delivered a
good localization with high stability, it was compu-
tationally expensive. A faster corner detector can lead
to a more accurate and/or faster motion estimation
since the changes between consecutive frames are less.
We developed a binary corner detector [12], inspired
by [15] that performs 1.8 times faster than Harris’
method. The faster performance is achieved by ex-
ploiting binary images and substituting arithmetic op-
erations with logicals. To generate a binary image that
contains a good low-level information content, a Gaus-
sian filter is first applied with a ¢ of 0.8. Next, the
Laplacian is computed at each point of the intensity
image. We approximate the image Laplacian value by:
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I; ; stands for the image intensity value at row ¢ and
column j. Such an approximation for the 2D Laplacian
is separable and is implemented efficiently by logical
operations. The binary image is then generated by the
invariance of the sign of the Laplacian value at each
point. At this point a circular mask with a diameter
of 7 pixels is placed on each point of the binary im-
age. The binary value of each point inside the mask is
compared with that of the central point.

1 if L(p) = L(po);

. (2)
0 if L(p) # L(po)-

C(po,p) :{

L(p) represents the binary image value at location
p(z,y). A total running sum n is generated from the
output of C(pg,p)-

n(po) = > Clpo,p) 3)

n represents the area of the mask where the sign of the
Laplacian of the image is the same as that of the cen-
tral point. For each pixel to be considered a potential
corner, the value of n should be smaller than at least
half the size of the mask w. This value is shown as ¢
in the corner response equation (4).

e

For each candidate with R(po) > 0, a center of gravity
G(po) is computed.

G(po) = \/9(z0)* + 9(y0)* (5)
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The center of gravity, GG, provides the corner direc-
tion, as well as a condition to eliminate points with
random distributions. Randomly distributed binary
patches tend to have a center of gravity fairly close to
the center of the patch. All points with close center of
gravities are filtered out from the remaining process.

G(po) > |ry (7)

The two conditions in (4) and (7) do not provide
enough stability by themselves. A third inspection
is performed by computing the directional derivative
along the corner direction for the remaining candi-
dates. Once again points with small directional inten-
sity variations are eliminated. This condition is shown
by:

[1(po) — I(p)| > It (8)

I; represents the brightness variation threshold. On
average, the Binary method produces 80% of the num-
ber of corners that the Harris method finds. Our
method detects corners on a 240x 320 pixel image with
sub-pixel accuracy in 23.293 msec.

3 3D Position Estimation

The 3D coordinates (X,Y,Z) relative to the robot for
each feature is computed using a stereo algorithm. Our
camera system captures a set of three images which
are precisely aligned horizontally and vertically [10].
Candidate feature correspondences for the overlapping
regions in the three stereo images are found and the
measure of Normalized Sum of Square Differences are
computed for each pair of match candidates. Then,
the best match candidate is found by disparity sum
minimization using the multiple-baseline algorithm [8].
In addition to the epipolar constraint, the agreement
between the horizontal and vertical disparities is em-
ployed. This constraint eliminates unstable features,
particularly those due to shadows. For the areas of
the reference image that are common in either the hor-
izontal or vertical stereo images, the Fua [3] method
is employed. This method enforces the consistency of
the matching process by incorporating a validity check
along the epipolar lines. The Z value is computed us-
ing the average values of the two similar horizontal and
vertical disparities.

s 9(yo) = ———— (6)

4 Multi-Stage Feature Tracking

Corresponding 3D features are tracked from one
frame (at time=t) to the next frame (at time=t + At).
There is no prediction about the value or direction of
the motion. Therefore a wide search scope is required
to cover the range of possible motions. The displace-
ment of the features between frames is affected by the
feature to camera distance, the rotation and/or the
translation that may have occured. This wide search
scope increases the number of match candidates, ele-
vating the possibility of false matches. In order to cor-
rect this problem, the feature tracking is performed in
two iterative steps.

I. First, a large search window of 70x70 pixels is
used around each feature point in the previous
frame. This window provides a search boundary
for the correspondence on the current frame. All
the match candidates that fall inside these bound-
aries are chosen. Next, the Normalized Sum of
Squared Differences for windows of 13x13 pixels
around each corner and its candidates is used to
select the most similar feature. The match cor-
respondences between the two frames are used to
estimate the motion. Although this first stage has
limited accuracy, these results serve as a good ini-
tial estimate of the exact motion.

IT. Second, using the rough motion estimation, all
the features of the previous frame are transfered
to the coordinates of the current frame. Regard-
less of the motion type or the distance of the fea-
tures from the coordinate center, features with
a persistent 3D location will end up on a very
close neighborhood (we allow up to 4 pixels from
their true correspondence in the current frame).
By employing a constraint on the distance of the
match features, correspondences are found very
quickly with high accuracy. Since the feature
space is sparse, there is usually only one candi-
date for each feature in the neighborhood. The
Normalized Sum of Squared Differences is used to
find the true match when there is more than one
candidate.

Figure 2 shows match correspondences in the two
steps. Not only is the number of false matches de-
creased when the prior motion information is used,
but the total number of correct matches is increased
by 30%. These matches were missed in the initial stage
due to ambiguity with the large search window.
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Figure 2: (I) and (IT) Feature tracking with no motion knowledge. (IIT) and (IV) Feature tracking using the rough motion estimation.
Rejected false matches are shown by black lines. The red arrow shows one feature’s motion from first frame to next.

5 Motion Estimation

Having a set of corresponding features in two con-
secutive frames, the motion estimation becomes a
problem of optimizing a 3D transformation. This
transformation projects the world features that are
constructed from the first image onto the second im-
age. Although the 3D construction of 2D features is a
non-linear function, the problem of motion estimation
is still well-posed. This fact occurs because 3D mo-
tion includes rotations and translations. Rotations are
functions of the cosine of the rotation angles. Trans-
lations parallel to the image plane are almost linear.
Translations toward or away from the camera intro-
duce a perspective distortion as a function of the in-
verse of the distance from the camera. The problem
of 3D motion estimation is therefore a promising can-
didate for the application of Newton’s method, which
is based on the assumption that the function is locally
linear. To minimize the probability of converging to
a false local minimum, outliers are eliminated during
the iteration process.

In our method, at each iteration, a correction vector
z is computed that is subtracted from the current esti-
mate resulting in a new estimate. If P() is the vector
of image coordinates (u,v) for iteration 4, then

P+ — pl) _ g (9)

Given a vector of error measurements between the
world 3D features and their projections, we find the
x that eliminates (minimizes) this error. The effect of
each element of correction vector x; on error measure-
ment e;, is the multiplication of the partial derivative
of the error with respect to that parameter. This pa-
rameter is found by considering the main assumption
of local linearity of the function
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J is the Jacobian matrix and e; represents the er-
ror between the predicted location of the object and
the actual position of the match found in image co-
ordinates. W is a diagonal weighting matrix and its



components represent the uncertainty of each feature
over time. This uncertainty decreases after a feature
has been viewed repeatedly. More details about the
weight coefficients are provided in the next section.
Each row of the matrix from Equation 10 states that
one measured error, e;, should be equal to the sum of
all changes in that error resulting from the parameter
correction [7]. Equation 10 is usually over-determined
and no unique solution exists, therefore we find a vec-
tor = that minimizes the 2-norm of the residual.

min||W Jz — Wel|? (11)

Equation 11 has the same solution as the normal equa-
tion

z=[(WHTWJ] (W) TWe (12)

In each iteration of Newton’s method, we solve the
normal Equation 12 for = using LU decomposition [9].

6 3D Model Refinement

Several parameters can impact the system accuracy.
Sensor noise and quantization associated with the im-
age can each introduce a slight displacement at the
feature locations within the image. Furthermore, such
inaccuracies can lead to faulty match correspondences
between frames. As the mobile robot navigates in its
environment, most of the features fall into the camera
field of view for a period of several frames. Detection
of a feature in each frame by itself provides additional
information about that feature. Also, as the camera
becomes closer to a feature or as the features move
from the image sides to its center, the 3D accuracy
of the feature can improve dramatically. The second
improvement is due to the fact that camera images
are more distorted near the corners of the image as
compared to the center of the image. Therefore by
combining the measurement for a feature with all the
previous information associated with the same feature,
the uncertainty of that feature will reduce.

A positional covariance is associated with each ob-
served feature using a Kalman filter. Each filter is
updated using new information for the same feature
over time. The location covariance of each feature, w;
in Equation 13, is used as the coefficient of the weight
matrix in Equation 10. Features that are either close
to the camera or are seen over a few frames or have sta-
ble 3D locations, have high weights in the least-squares
minimization (Equation 11). The Kalman filter imple-
mentation is achieved in a similar fashion to Shapiro’s

method [13].

wit = w4 v 13)
i = wi—1 + ki(b; — wi—1) (14)

In these equations i represents the frame number. w;
is the uncertainty in the estimation of z corresponding
to frame i, k; denotes the filter gain, b; indicates the
current measurement of the feature, V; represents the
covariance matrix of the errors. To prevent bias from
distant features, we work in the disparity space with
axes that are the current image plane coordinates and
the corresponding feature disparity [5]. We keep track
of the features for a while even if they move out of
camera’s field of view. However if a feature is not seen
in the last 6 consecutive frames it will be retired.

7 Experimental Results

The performance of the system has been evaluated
through several experiments. The camera system cap-
tures gray scale images of 480x640 pixels. These im-
ages are rectified to a size of 240x 320 pixels on a 1.14
GHz AMD Athlon™ processor. In order to reduce
the ambiguity between the pitch rotation and sideways
movements, a set of wide angle lenses with a 104° field
of view is used. These lenses incorporate information
from the sides of the images that behave differently
under translational and rotational movements. The
integration of the multi-stage feature tracking and mo-
tion estimation, allow a larger motion range between
frames.

A graphical interface was created that produces a
3D model of the camera motion as it is being esti-
mated. Two of these experiments are presented in this
section. The first experiment is designed to measure
the resulting drift using a closed path. For this pur-
pose, the camera starts moving from point A on an
arbitrary route and then returns to its starting point
(Figure 3). Along this path 72 consecutive frames are
processed. Table 1 represents the existing drift in this
example. In this table Motion Range represents the
absolute amount of the motion along each coordinate
variable. The motion range along the Z axis is 2.94 m,
along the X axis is 1.25 m, and around the Y axis has
a rotational range of 10°. To show the improvement
resulting from Kalman filtering, the results are pre-
sented once with the Kalman filter and once without.

The second experiment is intended to investigate
the localization accuracy. The camera is moved along
a route from point A to the known point B. A num-
ber of 32 frames are processed along this route. The
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Figure 3: A graphical user interface displays the 3D position and orientation of the camera in a virtual environment.

Table 1: System drift for the first experiment.

Kalman Motion Range System Drift
Filter X(cm), Y(cm), Z(cm), X(cm), Y(cm), Z(cm),
yaw(?), pitch(?), roll(°) | yaw(°), pitch(?), roll(®)
125,0, 294, —-1.77,-7.57,-0.45
On 0°,10°,0° 1.1°,0.22°, —0.06°
125,0,294, 13.68, —8.06,4.04
Off 0°,10°,0° 0.20°,—-2.43°,0.24°

coordinates of point B are measured manually in a
coordinate system with center A, Figure 4. Table 2
provides the estimated location and compares it with
the actual location of point B. The path in this ex-
periment is roughly L-shaped and the motion includes
translation as well as rotation. Th motion range in-
cludes the overall translation of 159 cm along Z, 45
cm along X and the pitch rotation of 45°. From these
results, the drift of the system is limited to only a few
centimeters.

Table 2: Localization error for the second experiment.

Estimated Location
X(cm), Y(cm), Z(cm)
| 0.21,-1.09, —154.85 |

Actual Location
X(cm), Y(cm), Z(cm)
| 0,0,—158.9

The system performance has a speed of 2.8Hz for
gray scale images of 240x320 pixels on a 1.14 GHz
AMD Athlon™ processor. The majority of the to-
tal computation time is spent on the correspondence
matching routine (48.9%) in the stereo and the feature
tracking processes.

8 Conclusions and Future Work

In this paper, we described a 3D vision-based loca-
tion and motion tracking system for unknown environ-
ment to be used for the control of a mobile robot. This
system effectively reduces the computational cost by
employing a fast binary feature detector. The 3D per-
formance is achieved by a set of triple stereo cameras
with wide fields of view. Features such as sub-pixel
resolution for feature detection and stereo, multi-stage
feature tracking and motion estimation, and Kalman
filtering have improved the accuracy and robustness of
the system.

Currently, we are looking at the problem of mini-
mizing the noise that is introduced in the rectification
process. We have planned to incorporate a multi-scale
match correspondence process to speed up the perfor-
mance.
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