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Binocular Transfer Methods for Point-Feature
Tracking of Image Sequences
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Abstract—Image transfer is a method for projecting a 3D scene
from two or more reference images. Typically, the correspondences
of target points to be transferred and the reference points must
be known over the reference images. We present two new transfer
methods that eliminate the target point correspondence require-
ment. We show that five reference points matched across two refer-
ence images are sufficient to linearly resolve transfer under affine
projection using two views instead of three views as needed by
other techniques. Furthermore, given the correspondences of any
four of the five reference points in any other view, we can transfer
a target point to a third view from any one of the two original ref-
erence views. To improve the robustness of the affine projection
method, we incorporate an orthographic camera model. A factor-
ization method is applied to the reference points matched over two
reference views. Experiments with real image sequences demon-
strate the application of both methods for motion tracking.

Index Terms—Affine camera model, feature tracking, image
transfer, orthographic camera model.

I. INTRODUCTION

FEATURE tracking is important in many applications of
computer vision, including structure from motion [7], [8],

[15], [17], [22], image synthesis [1], [11] and active motion
tracking [4], [16], [17]. Image transfer is a method to perform
feature tracking.

Image transfer has been developed for transferring scene
points from known views. Previous research can be classified as
geometric and algebraic. Geometric image transfer uses camera
geometry relating the image measurements and the structure of
the scene. The camera matrices and the shape of target objects
usually must be recovered to perform image transfer. Mundy
and Zisserman [10] established an image transfer model based
on a linear representation using four control points with an
affine camera model. Shapiro [17] designed an image transfer
algorithm that was applied to clusters of reference points
matched over sequential images. Tomasi and Kanade [22]
applied a factorization method to calculate the intermediate
camera matrices and the shape of the target object point to
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achieve affine image transfer. Reid,et al. [4], [16] applied a
similar transfer method to active motion tracking.

With algebraic methods, recovery of camera matrices and
object shapes is usually unnecessary. Instead, image transfer is
performed with an “algebraic function of views” that involves
only imagecoordinate measurements [18]. These algebraic func-
tions, calledmultiple view linearities[2], [18], [23] andmultiple
view tensors[5], [6], [9], [19], [21], have linear relationships of
the object features to multiple views and they are used to achieve
direct image transfer within the image domain. Ullman and Basri
[23] first showed that any three orthographic views of an object
satisfy a linear function of the corresponding image coordinates.
Shashua [18] extended the latter result to a more general form by
showing that the linear function of three orthographic views is a
particular case of a larger set of trilinear functions among three
perspective views. The trilinear functions were represented by
27 coefficients that can be recovered using seven corresponding
points over three images. When the coefficients are determined,
the target point, whose corresponding coordinates between two
reference images are known, can be directly transferred into the
third image. Hartley [5] proposed a trifocal tensor method for
transferring lines and points from two reference images into a
third image. A 3 3 3 trifocal tensor was shown to be iden-
tical to the coefficients of the trilinear functions introduced by
Shashua. More recently, Kahl and Heyden [7] proposedreduced
third order centered affine tensorsto restrict the locations of
corresponding points, lines, and conics across three views
for shape and motion recovery. Their approach involved only
12 components in the reduced affine tensors. Shashua and Wolf
[20] improved the three-view transfer method for points and
lines using ahomography tensorand its dual.

Transfer methods, regardless of their various forms, have re-
quired that correspondences of the target points be known in
at least two reference views. This requirement is an obstacle
that impedes the practical applications of transfer methods. For
most computer vision applications, correspondence of the target
points between images is difficult to ensure. In the case of shape
from motion and “novel view” synthesis, for example, hundreds
of points may have to be tracked over views, or an extended
image sequence [1], [22]. In these situations, the target points
may lie in a uniform intensity area of an image or they may
be occluded by other objects in the views. Conventional feature
detection methods can track a small number of distinct feature
points. Thus, image transfer methods that rely on these algo-
rithms are likely to fail.

In this research, we develop image transfer methods that elim-
inate the requirement of correspondence of the target points. Our
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methods are developed under a framework of parallel projection
that utilizes models based on affine camera projection and or-
thographic camera projection. As shown in the literature [7], [8],
[10], [14]–[17], [22], [23], parallel camera projection models
(affine and orthographic) are valid approximations to the per-
spective pin-hole camera model when the distance between the
camera and an object is long enough so that the perspective ef-
fects in the imaging process become small. The simplicity of the
parallel camera projection models is crucial for our methods.

We investigate a linear closed-form solution of image transfer
under the affine camera projection model. Unlike conventional
transfer methods, our proposed method can transfer a point from
one image to another without having to find its correspondence
in an intermediate image. Since the correspondence of the target
point in the intermediate image is also determinable, our method
can transfer all image points in the original image, including
nondetectable image points, to any images in a given image
sequence. This is valid even if the image of a target point is
occluded, provided four control points for constructing a local
affine coordinate frame (LCF) are known in the view. Because
image transfer will be achieved between two rather than three
views, we call itbinocular transfer. We prove that four general
points matched over three views, and one more point, whose
image correspondence is known over two of the three views,
are sufficient to achieve affine transfer. Because it needs only a
small number of control points, our method is more suitable for
dense point transfer than other techniques.

While simple and flexible, affine transfer is sensitive to noise
in the image measurements and to changes in the configura-
tion of the control points. Moreover, the affine camera model
can introduce skew elements into the transferred images due to
perspective effects. To alleviate the latter problem, we replace
the affine camera model with an orthographic camera model.
To reduce skew errors in the affine transfer, we introduce or-
thogonality into the orthographic camera. Noise sensitivity of
the closed-form solution can be suppressed when more control
points are available over three or more views, and a factorization
method similar to that proposed by Tomasi and Kanada [22] is
applied to the control points, resulting in a new transfer method
based on a linear least-squares estimate. With the least-squares
method, the 4-point LCF needed in the affine method is elimi-
nated.

II. A FFINE TRANSFER: BINOCULAR AND

TRI-OCULAR SOLUTIONS

A. Points in an Affine Local Coordinate Frame

Given any four noncoplaner points in ,
the vectors

(1)

form a basis spanning , where is the origin of the basis.
Therefore, any other point , , can be lin-
early represented by

(2)

where , and are theaffine coordinatesof point .

A 3D affine transformation is described by

(3)

where is a 3 3 matrix and a 3-vector.
Substituting (2) into (3) yields

(4)

where , , , are mappings of , , , under the
affine transformation defined by (3), respectively.

As indicated by (2) and (4), the affine coordinates, and
are geometric invariants under the 3D affine transformation.

In general, the number of geometric invariants in a projection
scenario equals the difference between the dimension of the geo-
metric structure under viewing and the dimension of the trans-
formation group acting on the structure [10], [13]. Since the 3D
affine projection group is represented by a 44 matrix with the
last row being , it has free parame-
ters or degrees of freedom. Each point in has three degrees
of freedom. Therefore, for a five-point structure in, there are

absolute invariants , and . This suggests
that affine invariants are potentially useful for visual tracking.

B. Affine Coordinates Computation: Two-View Solution

The affine camera model introduced by Mundy and Zis-
serman [10] is described by the 3D-2D transformation

(5)

where is a general 2 3 matrix representing the projection
and orientation of a camera,is a general 2-vector representing
the displacement of the image between the two coordinate
frames and is the image of . By substituting (2) into (5) we
obtain the linear representation of a point in the image plane

(6)

where , , 2, 3. A similar result holds for the
transformed case

(7)

The 3D affine transformation in (3) represents the motion of
an object in space and the distortion in its shape. It is under-
standable that the effects of the object motion in the views of a
stationary camera can be identically represented by the images
taken by a moving camera viewing the same object as if it were
motionless. In fact, for the transformed point, we have from
(5) that

(8)

where and represent the parame-
ters of the camera at a new position. Therefore, without loss of
generality, the identity between the motion of the object and the
motion of the camera allows us to consider only one kind of
motion. In the remainder of this paper, we shall consider only
camera motion unless otherwise stated.
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Given the affine coordinates , and of a point, its tra-
jectory in an image sequence can be determined provided the
affine LCF basis over the image sequence is known. We would
like to compute the affine coordinates of a given point when the
LCF is known. Observe from (6) and (7) that the affine coor-
dinates of a point can be calculated from their corresponding
image measurements across two views. Because the require-
ment of two-view correspondence could have disadvantages in
certain applications, we want to compute the affine coordinates
within a single reference view.

To calculate the three unknowns, without a two-view cor-
respondence of the target point using (6) and (7), the affine
epipolar relationship

(9)

is employed, where, , , , and are coefficients that denote
the epipolar geometry of the two views under affine projection
[17].

To obtain a non-trivial solution of (9), the correspondences of
four non-coplanar points over the two images are needed, pro-
vided one of the five unknowns is afree variable. Without loss
of generality, we assumeis a free variable, and set it to unity.
The other unknowns, , and can be determined by resolving
the system of linear equations using four matched points

(10)

The constants, , , are the same for any matched points in
the two views since they are only related to the camera parame-
ters and the viewing positions of the camera. The condition that
the four control points be non-coplanar ensures linear indepen-
dence in (10).

Combining (6) and (7) with (10) yields the following system
of equations in , , , and

(11)

where , and , , , 2, 3 are bases for the affine
representations in (6) and (7).

Rewriting (11) in matrix form, we have

(12)

where

We have seen that four control points are needed to obtain
the epipolar geometric parameters and the affine invariant coor-
dinates. It is appealing to consider using the same set of control
points to accomplish both computations. However, that would
result in a reduction of the rank of so that a unique solution
of (12) could not be obtained. A condition ensuring thatis
full-rank is given in the following result proved in the Appendix.

Lemma 1: if there exist at least five non-coplanar
points.

Assuming there are at least five non-coplanar points, the un-
known vector in (12) can be represented by

(13)

From (13) we obtain ( , ), the image coordinates of the
given target point in the second reference frame and (, ,

), the affine coordinates of the point at the same instant. This
implies that image transfer can be achieved within two views.
Consequently, a closed-form solution of the affine coordinates
in the LCF can be obtained from Lemma 1 and (13) as follows:

Proposition 1: Five matched non-coplanar points across two
views are sufficient to determine the affine coordinates of any
other point visible in one of the two views.

C. Affine Transfer Among Two or More Views

Suppose there exists an image sequence
over which LCF’s are tracked with four matched control points

, , . Let be an arbitrary
point, other than the control points in the first image of the image
sequence. If the affine coordinates of , , , , have been
obtained with the method proposed in Section II-B, then the
counterpart of in any other view , can
be determined as follows:

(14)

where ( , , ) is the affine LCF in theth image.
Because the computation of the affine coordinates can be

performed within any pair of images, for which the correspon-
dences of the five control points are available, the original ref-
erence image is not necessarily the first frame in the image se-
quence. Instead, any frame in the sequence can be used as the
reference from which a transfer process is computed. Therefore,
feature points that are not visible in some, due to occlusion, but
visible in other images can still be transferred throughout an
image sequence. Furthermore, the transfer method is applicable
for real-time motion tracking, whereby progressive updates of
the local coordinate frames are made as the tracking process
continues [16]. When any of the four control points forming
the LCF’s are not visible during the tracking process, additional
control points can be obtained to construct new LCF’s in the
successive frames. The affine coordinates of target points must
be recomputed with respect to the new LCF’s. By this means,
the image transfer of the previously tracked points can be con-
tinued.
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III. I MAGE TRANSFERUNDER ORTHOGRAPHY

The affine transfer method, presented in Section II, provides
an efficient means of binocular transfer. Since it is a least-con-
trol-point optimization solution, the method is control-point
dependent, and particularly applicable to the cases where the
conditions of point feature extraction are ideal, and the affine
camera model (5) is valid. Furthermore, since the affine camera
model is an un-calibrated model, skew effects may be caused
in the transformed images by applying the affine model, partic-
ularly, in the case where perspective effects are present in the
images [10], [17]. In this section, we address another binocular
transfer method that employs a matrix factorization technique
under orthographic projection. The method improves the robust-
ness, and the image skew ability of the affine transfer method.

A. Sequential Image Representation Under Orthography

Let
denote the trajectories of reference object points

over frames in
an image sequence. Let the origin of the world-coordinate
frame be defined as the centroid of the reference object points
and let ( , ) denote the centroid of the images of the
reference points in frame. Then it has been shown by Tomasi
and Kanade [22] that a matrix

...
...

...
... (15)

where

(16)

can be expressed as

(17)

where encodes the coordinate
axis orientations of the image planes of the orthographic camera,
moving in space and represents the
structure of the object. The columns ofare the 3D coordinates
of the reference points with respect to their centroids.

The registered image measurements and are related
to the 3D coordinates of the point by

(18)

where is a vector from the world origin to the origin of the
image frame .

In the presence of image measurement noise,can be
approximated using singular value decomposition at the three
largest singular values of [3], [22]

(19)

where is a matrix and is a matrix.

Since the SVD of is up to a nonsingular 3 3 matrix ,
the determination of needs an estimate of such that

(20)

Since is a matrix denoting the actual rotation of the ortho-
graphic camera, and the rows of are orthonormal, we have

(21)

Define the symmetric matrix . can be resolved
by a linear-square method from the metric constraints on mul-
tiple views ( ) in (21). When it is positive-definite, can
be parameterized by , where is a unique lower trian-
gular matrix obtained from the Cholesky decomposition of
[3]. Then can be defined as (where is the rotation
matrix of the camera at the first view) in the context of self-cal-
ibration [14].

In the presence of noise, the positive-definiteness ofmay
be violated, and the Cholesky decomposition ofmay fail.
Enumeration of different selections of the reference points
to decompose the matrix in (19) from all available reference
points can lead to a positive definitein many cases. An open
problem, how to guarantee the positive-definiteness ofin the
enumeration method, still remains, however.

A more reliable method to tackle the Cholesky decomposition
problem, is a non-linear minimization of the multi-view metric
constraints in (21), imposed with the positive-definite constraint
of . To do so, assume is positive-definite, and is parameter-
ized by , where is

Because of the homogeneity of the non-singular matrix, the
last diagonal element of is assumed to be unity without loss
of generality; therefore, we have .

Let . The five independent parame-
ters of the Cholesky parameterization ofin can be deter-
mined through the following minimization problem:

(22)

where .
An iterative non-linear least squares approach such as the

Levenberg-Marquardt method [12] can be applied to solve the
latter minimization problem.

The transformation can be determined as

(23)

where is the rotation matrix of the camera at the first view,
through a simple self-calibration process presented in [14].
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Knowing the camera matrix , we can represent the reg-
istered image measurements in frameof a target point

as

where is the number of the reference points and

is the centroid of all reference points plus the target point in the
image. For , we obtain a similar expression.

In summary, we obtain

(24)

Equation (24) is similar in form to (18) except the coefficient
is introduced by adding the target point in the com-

putation of the image centroid (, ). When is sufficiently
large, so that (18) can be substituted for (24).

B. Epipolar Constraint

The epipolar constraint in the affine projection method of
Section II-B is now derived for the particular case of ortho-
graphic projection.

Rewrite the orthographic projection model, (18), as

(25)

where

By partitioning as ( ) where is a 2 2 matrix
with orthonormal rows and is a 2-vector, we express (25) as

(26)

Similar partitioning performed on another viewleads to

(27)

By eliminating the world coordinates , (26) and (27)
yield a representation of theepipolar linebetween the two or-
thographic views

(28)

where , and . By
definition, the quantities , and depend only on the relative
motion of the orthographic camera between the two views and
are independent of the position of the target point.

Let be a vector perpendicular to. Eliminating the depth
in (28) by using results in

(29)

which can be expressed in explicit form as

(30)

where , and . Equa-
tion (30) has exactly a same form as the affine epipolar con-
straint equation in (9).

In the registered image coordinates, the homogeneous
epipolar line (30) becomes

(31)

with four independent constants, , , and .
If we define , determining the epipolar con-

straint is equivalent to resolvingusing (30) or (31).
Although a non-trivial solution of can be obtained from

the image correspondences of a minimal set of four reference
points, it has been shown in our experiments and those reported
by Shapiro [17], that more points can generate a more robust and
accurate solution. Therefore, we employ a linear least-squares
estimate to obtain the epipolar vector.

Let , and

A scatter matrix is defined as

(32)

Define a cost function for the least square estimate ofin
(31) as

(33)

which is related to the scatter matrixand the epipolar constant
vector as:

(34)

Shapiro [17] showed that when is minimum in a least-
squares sense, is the eigenvector corresponding to the min-
imum eigenvalue , satisfying

(35)

implying that

With the above observations, we can obtain a minimum least-
squares solution by solving for in (35).

C. Least-Squares Method for Image Transfer

Given , the image of a target point
in a reference view , we want to determine

the trajectory of the target point over the image sequence:
.

To solve the transfer task, we propose the following steps.

1) Compute the camera matrix in (20) using singular
value decomposition of the registered measurement ma-
trix in Section III-A.

2) Calculate the 3D coordinates of the target pointto be
transferred, whose image is in the refer-
ence view .
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3) Determine , the image of the target point
in any view , using (24) and (16).

Section III-A describes the methods required for the first step
in the above image transfer. We present the solutions for Step 2
and Step 3 below.

Let a second reference view be. Using the method pre-
sented in Section III-B, we compute the epipolar vector

encoding the epipolar geometry between views
and , which is expressed by (31).

We formulate the projections ofin the two views using the
epipolar constraint. Equation (31) as follows:

(36)

where , and
are coordinate vectors

of the image planes of the two views. The linear system in the
five unknowns , , , , and can be rewritten as

(37)

where
and

By simple manipulations, we obtain

(38)

Under the metric conditions in (21), unless the coor-
dinate axes of the camera image planes become parallel due to
camera motion. This is a rare case in practice. Therefore, we as-
sume that has full rank and is invertible. The 3D coordinates
and the image in view of the target point are obtained by
solving (37) as

(39)

Using the 3D coordinates of the target point, its image
in any frame can be obtained from (24) and (16):

(40)

where and is the number of reference points
for the computation of the sequential image representation and
the epipolar constraint.

IV. EXPERIMENTAL RESULTS

We have applied the proposed transfer methods to track
moving targets in real image sequences. The experiments
described in this section, demonstrate the performance of the
transfer methods for motion tracking.

A. Tracking by Affine Transfer

The first image sequence was captured using a CCD camera
with a 25 mm lens mounted on an active platform, which al-
lowed the camera to perform translational movements approx-
imately 1.6 m from the target object—a model head. The size
of the images in the sequence is 512512 pixels. As shown
below, the difference between the transferred coordinates and
the real coordinates of target points is small. Therefore, the
transfer method can be used to track objects represented by the
transferred target points.

Fig. 1(a) shows a reference frame in the first sequence, from
which target points are to be transferred over the image se-
quence. Twenty-two black dots on the face of the object were
used as feature points. These points were numbered for identi-
fication.

To verify the accuracy of the affine transfer method, points
2, 11, 13, 21 were selected to compute the epipolar parameters,
while points 2, 11, 13, 12 were used to construct the affine local
coordinate frame (LCF). Table I lists the details of the trans-
ferred point coordinates, the measurements of the point coor-
dinates and the errors of the transferred coordinates from the
measurements in a third image. Similar results were obtained for
the remaining frames of the image sequence. Table II lists the
statistics for the transfer accuracy over the first three of the se-
quential images, where RMSV denotes the root-mean-square of
variance of the absolute transfer errors. About 90% of the trans-
ferred points have sub-pixel accuracy and the average transfer
error is also less than one pixel.

There are two sources of the transfer error. One source is mea-
surement error in the feature point detection. The measurement
error can be assumed to be Gaussian since no factor dominated
the measurement accuracy. Another error source comes from the
assumptions of the affine camera model, which only models the
imaging processes well when the object extent in depth is small,
compared to the distance between the object and the camera.
When the conditions for the affine camera model assumption
are violated, systemic error will result. This point will be veri-
fied in the orthographic transfer experiment.

Any improvement in feature point detection accuracy would
reduce the transfer error of the points. The second type of error
can be reduced either by ensuring the camera model assump-
tions, or by employing camera models such as weak-perspec-
tive or para-perspective [17] that accommodate the perspective
effects in the imaging processes.

To assess the transfer performance of the method, the edges
obtained with a LOG (Laplacian of Gaussian) edge detector
in the reference image were tracked over the image sequence
using the affine transfer method. Fig. 2 illustrates the results of
the edge image transfer. The edge points detected in Fig. 2(a)
were transferred into the sequential images shown in Fig. 2(b),
(c) and (d). The transferred edge images were superimposed in
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Fig. 1. Reference images of the image sequences. (a) Reference image for
tracking by affine transfer, where the labeled dots are the feature points under
consideration. (b) Reference image of the target sequence for tracking by
orthographic transfer. The feature points overlaid with superimposed squares
were selected as reference points.

each of the sequential images. The superimposed images show
good overall transfer accuracy. Furthermore, the positions of the
points occluded in some images can be predicted in other im-
ages. This is demonstrated in Fig. 2(c) where the points at the
top of the target head visible in the first image were clipped
due to the limited field of view of the camera. However, the
missing points are actually predicted innegativecoordinates in
the image and represented by the points in the top row of the
image. The four control points for the LCF were assumed to be
visible in every image.

TABLE I
TRANSFERACCURACY OF THEAFFINE TRANSFERMETHOD

TABLE II
STATISTICS FOR THEACCURACY OF THEAFFINE TRANSFERMETHOD

B. Tracking by Orthographic Transfer

Fig. 1(b) shows the reference frame in another image se-
quence of the target taken by the same camera as Fig. 1(a). The
object (cube with an array of white dots on the surfaces) has
been placed in the background to create a more complex scene.
The 18 feature points with the superimposed squares are man-
ually-selected reference points to be tracked over the image se-
quence. The second reference frame for the epipolar geometry
computation is shown in Fig. 3(b). To verify the transfer perfor-
mance, we evaluated the edge points detected with the LOG op-
erator in the first reference image. The edge points overlaying
the first reference image from Fig. 3(a) were transferred into
the other three frames of the target sequence as illustrated in
Figs. 3(b), (c) and (d). We see that the overall transfer accuracy
in Fig. 3 is comparable to that obtained by the affine transfer
method.

To gain a quantitative estimate of the accuracy, we calculated
the statistics as in the affine case of the transfer errors of the re-
maining feature points (dots on the target) over the first three se-
quential images. Table III lists the statistical results from which
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Fig. 2. Feature point transfer over the image sequence, (a), (b), (c), (d). Edge points in the first image were correctly transferred into other imagesin the sequence.

we can see that orthographic transfer has the same order of ac-
curacy as that obtained by affine transfer. This suggests that sub-
pixel average accuracy can also be achieved using orthographic
transfer.

It is not a coincidence that the two methods have the same
order of transfer accuracy. Both the methods assume parallel
projection models of cameras. The two projection models differ
in their projection fashions. There are no constraints on the pro-
jection direction from an object to an image plane in the affine
case; whereas the projection rays in the orthographic model are
always assumed to be perpendicular to an image plane. The
similarity of the two projection models can be seen in the two
projection functions with similar forms in (5) and (18). Sec-
ondly, image transfer is accomplished by a similar epipolar-con-

strained linear solution by both transfer methods. Therefore, the
systemic error, caused by the projection models, and the random
errors caused by the measurement and numerical error, should
be close for both transfer methods. This result should extend to
general sequences.

On the other hand, since the tracking results based on the or-
thographic transfer method become independent of the positions
and configuration of the reference points, a significant improve-
ment in robustness of orthographic transfer has been gained.
This is the most important advantage of the orthographic method
as compared to the affine transfer method.

Nevertheless, high transfer accuracy was not obtained for the
object in the background. The orthographic camera model is
valid only when object extents in depth are small compared to
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Fig. 3. Edge points transferred from the reference frame into other frames in the target image sequence. The object primarily performs translation over the
sequence.

TABLE III
STATISTICS FOR THEACCURACY OF THEORTHOGRAPHICTRANSFERMETHOD

the distance between the camera and the object. Therefore, a
scene with large depth dimension suffers distortions in ortho-
graphic images. Since all reference points used in the image
transfer method were selected from the target face, the ortho-
graphic camera model achieves its highest projection accuracy
there. Other points suffer less projection accuracy, and thus af-
fect the transfer accuracy. Consequently, the transferred edge
points, such as those on the left-hand edge of the cube, deviated
from their actual positions in the images. This situation can be
clearly seen in Figs. 3(b) and (c).

The orthographic transfer method was also applied to an
image sequence consisting of 182 frames of a model building.
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Fig. 4. Actual pitch, roll, and yaw rotations performed by the camera in the image sequence.

The sequence was acquired with a CCD camera performing
precise pitch, roll, and yaw motion about the target object.
The image size of this sequence was 512480 pixels. Fig. 4
illustrates the three types of rotational data recorded by the
joint encoders of the camera positioning platform.

The first reference frame used for the image transfer exper-
iment was selected as the 100th frame of the image sequence.
A set of 32 reference points was selected in the reference
frame and manually matched to the corresponding points in
other frames. Fig. 5 shows the reference points indicated by
small squares in the reference image. The points indicated
by cross marks were used to test the transfer accuracy. The
second reference frame for the epipolar computation is shown
in Fig. 6(b).

Similarly, as in the previous case, the edge points detected
in the first reference image of Fig. 5 were used as target points
for verifying the performance of the transfer method. The target
frames into which the target points are to be transferred were se-
lected as frames 100, 105, 110, 115, 120, and 125 in the image
sequence. By referring to Fig. 4 we see that the target frames are
within a range for which the three camera rotations are approx-
imately linear. This approach for image selection simplifies the
dependence of transfer accuracy on camera rotation. The overall
transfer performance can be assessed visually from Fig. 6. The
data in Fig. 7 were obtained by calculating the differences be-
tween the transferred image coordinates and the manually-se-
lected image coordinates. Statistics for the transfer error shown
in Fig. 7 are given in Table IV.

Figs. 6, 7 and Table IV show that the transferred edge points
for frames 105 and 110 match their actual positions very

Fig. 5. Reference image and reference points of the image sequence.

closely. The outline of the target was correctly determined
and most details of the object were matched satisfactorily in
the images. However, the transfer accuracy decreases as the
camera rotates from the reference position. This is because
the orthographic camera model that is least-calibrated does
not simulate the camera well when perspective effects in the
images caused by camera rotation are obvious.

Since the transfer errors with respect to small camera rota-
tions are small, the performance degradation can be reduced by
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Fig. 6. Edge points transferred from the reference frame into other frames in the image sequence. (a)–(f) correspond to frames 100, 105, 110, 115, 120,and 125
in the sequence, respectively.

a recursive transfer scheme in which the step size of the transfer
iteration is limited by a small camera rotation and the output

of the current iteration is used as the input for the next itera-
tion. Fig. 8 shows the transfer errors using the recursive scheme,
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Fig. 7. Transfer errors of the image sequence.

TABLE IV
STATISTICS FOR THEACCURACY OF THEORTHOGRAPHICTRANSFERMETHOD

ON THE MODEL BUILDING SEQUENCETRANSFERMETHOD

Fig. 8. Transfer errors of the image sequence using the recursive transfer
method.

where the iteration step is 5 frames. The transfer accuracy im-
proved significantly when compared to Fig. 7.

V. CONCLUSIONS

We have developed image transfer methods based on affine
camera and orthographic camera models. The novel feature of
our methods is the elimination of the requirement for target
point correspondence over two reference views. The transfer
methods were analyzed for cases of novel view synthesis, where
trajectories of dense points were required.

For the affine transfer method, image transfer was achieved
by calculating the coordinates of the target point in a local co-
ordinate system that is invariant to camera motion. This is an
efficient method because only five control points are needed to
transfer a target point from one view to another without the need
for correspondence of the target point over the views. If any
four of the five control points are matched in any other view, the
target point can be transferred into the third view with subpixel
accuracy. Furthermore, the method can accommodate occlusion
during image transfer. Orthographic transfer was introduced to
improve the robustness of the affine transfer method to image
noise and control point configuration. The orthographic transfer
method employs SVD factorization to construct a framework in
which the sequential image is represented under orthographic
projection. A least-squares method was used to estimate the
epipolar geometry between the reference views and derive an
epipolar constraint for the image transfer. Our experimental re-
sults demonstrated that both methods achieved subpixel transfer
accuracy and the orthographic transfer method has high robust-
ness to image noise.

However, relatively poor performance has been demon-
strated with both the orthographic and the affine transfer
methods when perspective effects are obvious, since the affine
and orthographic camera models have insufficient calibration
to accommodate perspective effects. Performance could be
improved by the use of other camera models that require more
calibration such as the weak perspective or the paraperspective
[17].

APPENDIX

Lemma 1

if there exist at least five non-coplanar points.
Proof: By determinant calculation, we have

(41)

where is the coefficient matrix in (12) and

Given a set of four general control points, a system of linear
equations in the affine epipolar parameters is written from (10)
as

(42)

Assume that this set of control points is identical to that for the
affine coordinate computation. Then, subtracting the first line in
(42) from the second and the third line from the fourth, yields
the following simultaneous equations:

(43)
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Rewriting (43) in matrix form, we have

(44)

Since the basis has linearly independent vectors,
the images of in the two affine views are also lin-
early independent, which yields:

Then, and are computed by

(45)

where

By substituting (45) into (41) we have

(46)

This suggests that will be zero if the same set of four
control points is applied to both the affine basis construction and
the affine epipolar parameter computation. To guarantee
, there must be at least one differing element in the two sets

of control points for basis construction and epipolar parameter
computation. Then, at leastfive points, with no more than four
coplanar, are necessary to ensure .
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